780 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			780 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
| /*
 | |
|  * Copyright (c) 2006-2023, RT-Thread Development Team
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  * Change Logs:
 | |
|  * Date           Author       Notes
 | |
|  * 2016-09-28     armink       first version.
 | |
|  */
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <string.h>
 | |
| #include <rtdevice.h>
 | |
| #include "spi_flash.h"
 | |
| #include "spi_flash_sfud.h"
 | |
| 
 | |
| #ifdef RT_USING_SFUD
 | |
| 
 | |
| #ifndef RT_SFUD_DEFAULT_SPI_CFG
 | |
| 
 | |
| #ifndef RT_SFUD_SPI_MAX_HZ
 | |
| #define RT_SFUD_SPI_MAX_HZ 50000000
 | |
| #endif
 | |
| 
 | |
| /* read the JEDEC SFDP command must run at 50 MHz or less */
 | |
| #define RT_SFUD_DEFAULT_SPI_CFG                  \
 | |
| {                                                \
 | |
|     .mode = RT_SPI_MODE_0 | RT_SPI_MSB,          \
 | |
|     .data_width = 8,                             \
 | |
|     .max_hz = RT_SFUD_SPI_MAX_HZ,                \
 | |
| }
 | |
| #endif /* RT_SFUD_DEFAULT_SPI_CFG */
 | |
| 
 | |
| #ifdef SFUD_USING_QSPI
 | |
| #define RT_SFUD_DEFAULT_QSPI_CFG                 \
 | |
| {                                                \
 | |
|     RT_SFUD_DEFAULT_SPI_CFG,                     \
 | |
|     .medium_size = 0x800000,                     \
 | |
|     .ddr_mode = 0,                               \
 | |
|     .qspi_dl_width = 4,                          \
 | |
| }
 | |
| #endif /* SFUD_USING_QSPI */
 | |
| 
 | |
| static rt_err_t rt_sfud_control(rt_device_t dev, int cmd, void *args) {
 | |
|     RT_ASSERT(dev);
 | |
| 
 | |
|     switch (cmd) {
 | |
|     case RT_DEVICE_CTRL_BLK_GETGEOME: {
 | |
|         struct rt_device_blk_geometry *geometry = (struct rt_device_blk_geometry *) args;
 | |
|         struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
 | |
| 
 | |
|         if (rtt_dev == RT_NULL || geometry == RT_NULL) {
 | |
|             return -RT_ERROR;
 | |
|         }
 | |
| 
 | |
|         geometry->bytes_per_sector = rtt_dev->geometry.bytes_per_sector;
 | |
|         geometry->sector_count = rtt_dev->geometry.sector_count;
 | |
|         geometry->block_size = rtt_dev->geometry.block_size;
 | |
|         break;
 | |
|     }
 | |
|     case RT_DEVICE_CTRL_BLK_ERASE: {
 | |
|         rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr;
 | |
|         struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
 | |
|         sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
 | |
|         rt_size_t phy_size;
 | |
| 
 | |
|         if (addrs == RT_NULL || start_addr > end_addr || rtt_dev == RT_NULL || sfud_dev == RT_NULL) {
 | |
|             return -RT_ERROR;
 | |
|         }
 | |
| 
 | |
|         if (end_addr == start_addr) {
 | |
|             end_addr ++;
 | |
|         }
 | |
| 
 | |
|         phy_start_addr = start_addr * rtt_dev->geometry.bytes_per_sector;
 | |
|         phy_size = (end_addr - start_addr) * rtt_dev->geometry.bytes_per_sector;
 | |
| 
 | |
|         if (sfud_erase(sfud_dev, phy_start_addr, phy_size) != SFUD_SUCCESS) {
 | |
|             return -RT_ERROR;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|     return RT_EOK;
 | |
| }
 | |
| 
 | |
| 
 | |
| static rt_ssize_t rt_sfud_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) {
 | |
|     struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
 | |
|     sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
 | |
| 
 | |
|     RT_ASSERT(dev);
 | |
|     RT_ASSERT(rtt_dev);
 | |
|     RT_ASSERT(sfud_dev);
 | |
|     /* change the block device's logic address to physical address */
 | |
|     rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
 | |
|     rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
 | |
| 
 | |
|     if (sfud_read(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
 | |
|         return 0;
 | |
|     } else {
 | |
|         return size;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static rt_ssize_t rt_sfud_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) {
 | |
|     struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
 | |
|     sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
 | |
| 
 | |
|     RT_ASSERT(dev);
 | |
|     RT_ASSERT(rtt_dev);
 | |
|     RT_ASSERT(sfud_dev);
 | |
|     /* change the block device's logic address to physical address */
 | |
|     rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
 | |
|     rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
 | |
| 
 | |
|     if (sfud_erase_write(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
 | |
|         return 0;
 | |
|     } else {
 | |
|         return size;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * SPI write data then read data
 | |
|  */
 | |
| static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
 | |
|         size_t read_size) {
 | |
|     sfud_err result = SFUD_SUCCESS;
 | |
|     sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
 | |
|     struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
 | |
| 
 | |
|     RT_ASSERT(spi);
 | |
|     RT_ASSERT(sfud_dev);
 | |
|     RT_ASSERT(rtt_dev);
 | |
| #ifdef SFUD_USING_QSPI
 | |
|     struct rt_qspi_device *qspi_dev = RT_NULL;
 | |
| #endif
 | |
|     if (write_size) {
 | |
|         RT_ASSERT(write_buf);
 | |
|     }
 | |
|     if (read_size) {
 | |
|         RT_ASSERT(read_buf);
 | |
|     }
 | |
| #ifdef SFUD_USING_QSPI
 | |
|     if(rtt_dev->rt_spi_device->bus->mode & RT_SPI_BUS_MODE_QSPI) {
 | |
|         qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device);
 | |
|         if (write_size && read_size) {
 | |
|             if (rt_qspi_send_then_recv(qspi_dev, write_buf, write_size, read_buf, read_size) <= 0) {
 | |
|                 result = SFUD_ERR_TIMEOUT;
 | |
|             }
 | |
|         } else if (write_size) {
 | |
|             if (rt_qspi_send(qspi_dev, write_buf, write_size) <= 0) {
 | |
|                 result = SFUD_ERR_TIMEOUT;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
| #endif
 | |
|     {
 | |
|         if (write_size && read_size) {
 | |
|             if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) {
 | |
|                 result = SFUD_ERR_TIMEOUT;
 | |
|             }
 | |
|         } else if (write_size) {
 | |
|             if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) <= 0) {
 | |
|                 result = SFUD_ERR_TIMEOUT;
 | |
|             }
 | |
|         } else {
 | |
|             if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) <= 0) {
 | |
|                 result = SFUD_ERR_TIMEOUT;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| #ifdef SFUD_USING_QSPI
 | |
| /**
 | |
|  * QSPI fast read data
 | |
|  */
 | |
| static sfud_err qspi_read(const struct __sfud_spi *spi, uint32_t addr, sfud_qspi_read_cmd_format *qspi_read_cmd_format, uint8_t *read_buf, size_t read_size) {
 | |
|     struct rt_qspi_message message;
 | |
|     sfud_err result = SFUD_SUCCESS;
 | |
| 
 | |
|     sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
 | |
|     struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
 | |
|     struct rt_qspi_device *qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device);
 | |
| 
 | |
|     RT_ASSERT(spi);
 | |
|     RT_ASSERT(sfud_dev);
 | |
|     RT_ASSERT(rtt_dev);
 | |
|     RT_ASSERT(qspi_dev);
 | |
| 
 | |
|     /* set message struct */
 | |
|     message.instruction.content = qspi_read_cmd_format->instruction;
 | |
|     message.instruction.qspi_lines = qspi_read_cmd_format->instruction_lines;
 | |
| 
 | |
|     message.address.content = addr;
 | |
|     message.address.size = qspi_read_cmd_format->address_size;
 | |
|     message.address.qspi_lines = qspi_read_cmd_format->address_lines;
 | |
| 
 | |
|     message.alternate_bytes.content = 0;
 | |
|     message.alternate_bytes.size = 0;
 | |
|     message.alternate_bytes.qspi_lines = 0;
 | |
| 
 | |
|     message.dummy_cycles = qspi_read_cmd_format->dummy_cycles;
 | |
| 
 | |
|     message.parent.send_buf = RT_NULL;
 | |
|     message.parent.recv_buf = read_buf;
 | |
|     message.parent.length = read_size;
 | |
|     message.parent.cs_release = 1;
 | |
|     message.parent.cs_take = 1;
 | |
|     message.qspi_data_lines = qspi_read_cmd_format->data_lines;
 | |
| 
 | |
|     if (rt_qspi_transfer_message(qspi_dev, &message) != read_size) {
 | |
|         result = SFUD_ERR_TIMEOUT;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void spi_lock(const sfud_spi *spi) {
 | |
|     sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
 | |
|     struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
 | |
| 
 | |
|     RT_ASSERT(spi);
 | |
|     RT_ASSERT(sfud_dev);
 | |
|     RT_ASSERT(rtt_dev);
 | |
| 
 | |
|     rt_mutex_take(&(rtt_dev->lock), RT_WAITING_FOREVER);
 | |
| }
 | |
| 
 | |
| static void spi_unlock(const sfud_spi *spi) {
 | |
|     sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
 | |
|     struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
 | |
| 
 | |
|     RT_ASSERT(spi);
 | |
|     RT_ASSERT(sfud_dev);
 | |
|     RT_ASSERT(rtt_dev);
 | |
| 
 | |
|     rt_mutex_release(&(rtt_dev->lock));
 | |
| }
 | |
| 
 | |
| static void retry_delay_100us(void) {
 | |
|     /* 100 microsecond delay */
 | |
|     rt_thread_delay((RT_TICK_PER_SECOND * 1 + 9999) / 10000);
 | |
| }
 | |
| 
 | |
| sfud_err sfud_spi_port_init(sfud_flash *flash) {
 | |
|     sfud_err result = SFUD_SUCCESS;
 | |
| 
 | |
|     RT_ASSERT(flash);
 | |
| 
 | |
|     /* port SPI device interface */
 | |
|     flash->spi.wr = spi_write_read;
 | |
| #ifdef SFUD_USING_QSPI
 | |
|     flash->spi.qspi_read = qspi_read;
 | |
| #endif
 | |
|     flash->spi.lock = spi_lock;
 | |
|     flash->spi.unlock = spi_unlock;
 | |
|     flash->spi.user_data = flash;
 | |
|     if (RT_TICK_PER_SECOND < 1000) {
 | |
|         LOG_W("[SFUD] Warning: The OS tick(%d) is less than 1000. So the flash write will take more time.", RT_TICK_PER_SECOND);
 | |
|     }
 | |
|     /* 100 microsecond delay */
 | |
|     flash->retry.delay = retry_delay_100us;
 | |
|     /* 60 seconds timeout */
 | |
|     flash->retry.times = 60 * 10000;
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| #ifdef RT_USING_DEVICE_OPS
 | |
| const static struct rt_device_ops flash_device_ops =
 | |
| {
 | |
|     RT_NULL,
 | |
|     RT_NULL,
 | |
|     RT_NULL,
 | |
|     rt_sfud_read,
 | |
|     rt_sfud_write,
 | |
|     rt_sfud_control
 | |
| };
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Probe SPI flash by SFUD (Serial Flash Universal Driver) driver library and though SPI device by specified configuration.
 | |
|  *
 | |
|  * @param spi_flash_dev_name the name which will create SPI flash device
 | |
|  * @param spi_dev_name using SPI device name
 | |
|  * @param spi_cfg SPI device configuration
 | |
|  * @param qspi_cfg QSPI device configuration
 | |
|  *
 | |
|  * @return probed SPI flash device, probe failed will return RT_NULL
 | |
|  */
 | |
| rt_spi_flash_device_t rt_sfud_flash_probe_ex(const char *spi_flash_dev_name, const char *spi_dev_name,
 | |
|         struct rt_spi_configuration *spi_cfg, struct rt_qspi_configuration *qspi_cfg)
 | |
| {
 | |
|     rt_spi_flash_device_t rtt_dev = RT_NULL;
 | |
|     sfud_flash *sfud_dev = RT_NULL;
 | |
|     char *spi_flash_dev_name_bak = RT_NULL, *spi_dev_name_bak = RT_NULL;
 | |
|     extern sfud_err sfud_device_init(sfud_flash *flash);
 | |
| #ifdef SFUD_USING_QSPI
 | |
|     struct rt_qspi_device *qspi_dev = RT_NULL;
 | |
| #endif
 | |
| 
 | |
|     RT_ASSERT(spi_flash_dev_name);
 | |
|     RT_ASSERT(spi_dev_name);
 | |
| 
 | |
|     rtt_dev = (rt_spi_flash_device_t) rt_malloc(sizeof(struct spi_flash_device));
 | |
|     sfud_dev = (sfud_flash_t) rt_malloc(sizeof(sfud_flash));
 | |
|     spi_flash_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_flash_dev_name) + 1);
 | |
|     spi_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_dev_name) + 1);
 | |
| 
 | |
|     if (rtt_dev) {
 | |
|         rt_memset(rtt_dev, 0, sizeof(struct spi_flash_device));
 | |
|         /* initialize lock */
 | |
|         rt_mutex_init(&(rtt_dev->lock), spi_flash_dev_name, RT_IPC_FLAG_PRIO);
 | |
|     }
 | |
| 
 | |
|     if (rtt_dev && sfud_dev && spi_flash_dev_name_bak && spi_dev_name_bak) {
 | |
|         rt_memset(sfud_dev, 0, sizeof(sfud_flash));
 | |
|         rt_strncpy(spi_flash_dev_name_bak, spi_flash_dev_name, rt_strlen(spi_flash_dev_name));
 | |
|         rt_strncpy(spi_dev_name_bak, spi_dev_name, rt_strlen(spi_dev_name));
 | |
|         /* make string end sign */
 | |
|         spi_flash_dev_name_bak[rt_strlen(spi_flash_dev_name)] = '\0';
 | |
|         spi_dev_name_bak[rt_strlen(spi_dev_name)] = '\0';
 | |
|         /* SPI configure */
 | |
|         {
 | |
|             /* RT-Thread SPI device initialize */
 | |
|             rtt_dev->rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
 | |
|             if (rtt_dev->rt_spi_device == RT_NULL || rtt_dev->rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
 | |
|                 LOG_E("ERROR: SPI device %s not found!", spi_dev_name);
 | |
|                 goto error;
 | |
|             }
 | |
|             sfud_dev->spi.name = spi_dev_name_bak;
 | |
| 
 | |
| #ifdef SFUD_USING_QSPI
 | |
|             /* set the qspi line number and configure the QSPI bus */
 | |
|             if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) {
 | |
|                 qspi_dev = (struct rt_qspi_device *)rtt_dev->rt_spi_device;
 | |
|                 qspi_cfg->qspi_dl_width = qspi_dev->config.qspi_dl_width;
 | |
|                 rt_qspi_configure(qspi_dev, qspi_cfg);
 | |
|             }
 | |
|             else
 | |
| #endif
 | |
|                 rt_spi_configure(rtt_dev->rt_spi_device, spi_cfg);
 | |
|         }
 | |
|         /* SFUD flash device initialize */
 | |
|         {
 | |
|             sfud_dev->name = spi_flash_dev_name_bak;
 | |
|             /* accessed each other */
 | |
|             rtt_dev->user_data = sfud_dev;
 | |
|             rtt_dev->rt_spi_device->user_data = rtt_dev;
 | |
|             rtt_dev->flash_device.user_data = rtt_dev;
 | |
|             sfud_dev->user_data = rtt_dev;
 | |
|             /* initialize SFUD device */
 | |
|             if (sfud_device_init(sfud_dev) != SFUD_SUCCESS) {
 | |
|                 LOG_E("ERROR: SPI flash probe failed by SPI device %s.", spi_dev_name);
 | |
|                 goto error;
 | |
|             }
 | |
|             /* when initialize success, then copy SFUD flash device's geometry to RT-Thread SPI flash device */
 | |
|             rtt_dev->geometry.sector_count = sfud_dev->chip.capacity / sfud_dev->chip.erase_gran;
 | |
|             rtt_dev->geometry.bytes_per_sector = sfud_dev->chip.erase_gran;
 | |
|             rtt_dev->geometry.block_size = sfud_dev->chip.erase_gran;
 | |
| #ifdef SFUD_USING_QSPI
 | |
|             /* reconfigure the QSPI bus for medium size */
 | |
|             if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) {
 | |
|                 qspi_cfg->medium_size = sfud_dev->chip.capacity;
 | |
|                 rt_qspi_configure(qspi_dev, qspi_cfg);
 | |
|                 if(qspi_dev->enter_qspi_mode != RT_NULL)
 | |
|                     qspi_dev->enter_qspi_mode(qspi_dev);
 | |
| 
 | |
|                 /* set data lines width */
 | |
|                 sfud_qspi_fast_read_enable(sfud_dev, qspi_dev->config.qspi_dl_width);
 | |
|             }
 | |
| #endif /* SFUD_USING_QSPI */
 | |
|         }
 | |
| 
 | |
|         /* register device */
 | |
|         rtt_dev->flash_device.type = RT_Device_Class_Block;
 | |
| #ifdef RT_USING_DEVICE_OPS
 | |
|         rtt_dev->flash_device.ops  = &flash_device_ops;
 | |
| #else
 | |
|         rtt_dev->flash_device.init = RT_NULL;
 | |
|         rtt_dev->flash_device.open = RT_NULL;
 | |
|         rtt_dev->flash_device.close = RT_NULL;
 | |
|         rtt_dev->flash_device.read = rt_sfud_read;
 | |
|         rtt_dev->flash_device.write = rt_sfud_write;
 | |
|         rtt_dev->flash_device.control = rt_sfud_control;
 | |
| #endif
 | |
| 
 | |
|         rt_device_register(&(rtt_dev->flash_device), spi_flash_dev_name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
 | |
| 
 | |
|         LOG_I("Probe SPI flash %s by SPI device %s success.",spi_flash_dev_name, spi_dev_name);
 | |
|         return rtt_dev;
 | |
|     } else {
 | |
|         LOG_E("ERROR: Low memory.");
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
| error:
 | |
| 
 | |
|     if (rtt_dev) {
 | |
|         rt_mutex_detach(&(rtt_dev->lock));
 | |
|     }
 | |
|     /* may be one of objects memory was malloc success, so need free all */
 | |
|     rt_free(rtt_dev);
 | |
|     rt_free(sfud_dev);
 | |
|     rt_free(spi_flash_dev_name_bak);
 | |
|     rt_free(spi_dev_name_bak);
 | |
| 
 | |
|     return RT_NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Probe SPI flash by SFUD(Serial Flash Universal Driver) driver library and though SPI device.
 | |
|  *
 | |
|  * @param spi_flash_dev_name the name which will create SPI flash device
 | |
|  * @param spi_dev_name using SPI device name
 | |
|  *
 | |
|  * @return probed SPI flash device, probe failed will return RT_NULL
 | |
|  */
 | |
| rt_spi_flash_device_t rt_sfud_flash_probe(const char *spi_flash_dev_name, const char *spi_dev_name)
 | |
| {
 | |
|     struct rt_spi_configuration cfg = RT_SFUD_DEFAULT_SPI_CFG;
 | |
| #ifndef SFUD_USING_QSPI
 | |
|     return rt_sfud_flash_probe_ex(spi_flash_dev_name, spi_dev_name, &cfg, RT_NULL);
 | |
| #else
 | |
|     struct rt_qspi_configuration qspi_cfg = RT_SFUD_DEFAULT_QSPI_CFG;
 | |
| 
 | |
|     return rt_sfud_flash_probe_ex(spi_flash_dev_name, spi_dev_name, &cfg, &qspi_cfg);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Delete SPI flash device
 | |
|  *
 | |
|  * @param spi_flash_dev SPI flash device
 | |
|  *
 | |
|  * @return the operation status, RT_EOK on successful
 | |
|  */
 | |
| rt_err_t rt_sfud_flash_delete(rt_spi_flash_device_t spi_flash_dev) {
 | |
|     sfud_flash *sfud_flash_dev = (sfud_flash *) (spi_flash_dev->user_data);
 | |
| 
 | |
|     RT_ASSERT(spi_flash_dev);
 | |
|     RT_ASSERT(sfud_flash_dev);
 | |
| 
 | |
|     rt_device_unregister(&(spi_flash_dev->flash_device));
 | |
| 
 | |
|     rt_mutex_detach(&(spi_flash_dev->lock));
 | |
| 
 | |
|     rt_free(sfud_flash_dev->spi.name);
 | |
|     rt_free(sfud_flash_dev->name);
 | |
|     rt_free(sfud_flash_dev);
 | |
|     rt_free(spi_flash_dev);
 | |
| 
 | |
|     return RT_EOK;
 | |
| }
 | |
| 
 | |
| sfud_flash_t rt_sfud_flash_find(const char *spi_dev_name)
 | |
| {
 | |
|     rt_spi_flash_device_t  rtt_dev       = RT_NULL;
 | |
|     struct rt_spi_device  *rt_spi_device = RT_NULL;
 | |
|     sfud_flash_t           sfud_dev      = RT_NULL;
 | |
| 
 | |
|     rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name);
 | |
|     if (rt_spi_device == RT_NULL || rt_spi_device->parent.type != RT_Device_Class_SPIDevice) {
 | |
|         LOG_E("ERROR: SPI device %s not found!", spi_dev_name);
 | |
|         goto __error;
 | |
|     }
 | |
| 
 | |
|     rtt_dev = (rt_spi_flash_device_t) (rt_spi_device->user_data);
 | |
|     if (rtt_dev && rtt_dev->user_data) {
 | |
|         sfud_dev = (sfud_flash_t) (rtt_dev->user_data);
 | |
|         return sfud_dev;
 | |
|     } else {
 | |
|         LOG_E("ERROR: SFUD flash device not found!");
 | |
|         goto __error;
 | |
|     }
 | |
| 
 | |
| __error:
 | |
|     return RT_NULL;
 | |
| }
 | |
| 
 | |
| sfud_flash_t rt_sfud_flash_find_by_dev_name(const char *flash_dev_name)
 | |
| {
 | |
|     rt_spi_flash_device_t  rtt_dev       = RT_NULL;
 | |
|     sfud_flash_t           sfud_dev      = RT_NULL;
 | |
| 
 | |
|     rtt_dev = (rt_spi_flash_device_t) rt_device_find(flash_dev_name);
 | |
|     if (rtt_dev == RT_NULL || rtt_dev->flash_device.type != RT_Device_Class_Block) {
 | |
|         LOG_E("ERROR: Flash device %s not found!", flash_dev_name);
 | |
|         goto __error;
 | |
|     }
 | |
| 
 | |
|     if (rtt_dev->user_data) {
 | |
|         sfud_dev = (sfud_flash_t) (rtt_dev->user_data);
 | |
|         return sfud_dev;
 | |
|     } else {
 | |
|         LOG_E("ERROR: SFUD flash device not found!");
 | |
|         goto __error;
 | |
|     }
 | |
| 
 | |
| __error:
 | |
|     return RT_NULL;
 | |
| }
 | |
| 
 | |
| #if defined(RT_USING_FINSH)
 | |
| 
 | |
| #include <finsh.h>
 | |
| 
 | |
| static void sf(uint8_t argc, char **argv) {
 | |
| 
 | |
| #define __is_print(ch)                ((unsigned int)((ch) - ' ') < 127u - ' ')
 | |
| #define HEXDUMP_WIDTH                 16
 | |
| #define CMD_PROBE_INDEX               0
 | |
| #define CMD_READ_INDEX                1
 | |
| #define CMD_WRITE_INDEX               2
 | |
| #define CMD_ERASE_INDEX               3
 | |
| #define CMD_RW_STATUS_INDEX           4
 | |
| #define CMD_BENCH_INDEX               5
 | |
| 
 | |
|     sfud_err result = SFUD_SUCCESS;
 | |
|     static const sfud_flash *sfud_dev = NULL;
 | |
|     static rt_spi_flash_device_t rtt_dev = NULL, rtt_dev_bak = NULL;
 | |
|     size_t i = 0, j = 0;
 | |
| 
 | |
|     const char* sf_help_info[] = {
 | |
|             [CMD_PROBE_INDEX]     = "sf probe [spi_device]           - probe and init SPI flash by given 'spi_device'",
 | |
|             [CMD_READ_INDEX]      = "sf read addr size               - read 'size' bytes starting at 'addr'",
 | |
|             [CMD_WRITE_INDEX]     = "sf write addr data1 ... dataN   - write some bytes 'data' to flash starting at 'addr'",
 | |
|             [CMD_ERASE_INDEX]     = "sf erase addr size              - erase 'size' bytes starting at 'addr'",
 | |
|             [CMD_RW_STATUS_INDEX] = "sf status [<volatile> <status>] - read or write '1:volatile|0:non-volatile' 'status'",
 | |
|             [CMD_BENCH_INDEX]     = "sf bench                        - full chip benchmark. DANGER: It will erase full chip!",
 | |
|     };
 | |
| 
 | |
|     if (argc < 2) {
 | |
|         rt_kprintf("Usage:\n");
 | |
|         for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
 | |
|             rt_kprintf("%s\n", sf_help_info[i]);
 | |
|         }
 | |
|         rt_kprintf("\n");
 | |
|     } else {
 | |
|         const char *operator = argv[1];
 | |
|         uint32_t addr, size;
 | |
| 
 | |
|         if (!strcmp(operator, "probe")) {
 | |
|             if (argc < 3) {
 | |
|                 rt_kprintf("Usage: %s.\n", sf_help_info[CMD_PROBE_INDEX]);
 | |
|             } else {
 | |
|                 char *spi_dev_name = argv[2];
 | |
|                 rtt_dev_bak = rtt_dev;
 | |
| 
 | |
|                 /* delete the old SPI flash device */
 | |
|                 if(rtt_dev_bak) {
 | |
|                     rt_sfud_flash_delete(rtt_dev_bak);
 | |
|                 }
 | |
| 
 | |
|                 rtt_dev = rt_sfud_flash_probe("sf_cmd", spi_dev_name);
 | |
|                 if (!rtt_dev) {
 | |
|                     return;
 | |
|                 }
 | |
| 
 | |
|                 sfud_dev = (sfud_flash_t)rtt_dev->user_data;
 | |
|                 if (sfud_dev->chip.capacity < 1024 * 1024) {
 | |
|                     rt_kprintf("%d KB %s is current selected device.\n", sfud_dev->chip.capacity / 1024, sfud_dev->name);
 | |
|                 } else {
 | |
|                     rt_kprintf("%d MB %s is current selected device.\n", sfud_dev->chip.capacity / 1024 / 1024,
 | |
|                             sfud_dev->name);
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             if (!sfud_dev) {
 | |
|                 rt_kprintf("No flash device selected. Please run 'sf probe'.\n");
 | |
|                 return;
 | |
|             }
 | |
|             if (!rt_strcmp(operator, "read")) {
 | |
|                 if (argc < 4) {
 | |
|                     rt_kprintf("Usage: %s.\n", sf_help_info[CMD_READ_INDEX]);
 | |
|                     return;
 | |
|                 } else {
 | |
|                     addr = strtol(argv[2], NULL, 0);
 | |
|                     size = strtol(argv[3], NULL, 0);
 | |
|                     uint8_t *data = rt_malloc(size);
 | |
|                     if (data) {
 | |
|                         result = sfud_read(sfud_dev, addr, size, data);
 | |
|                         if (result == SFUD_SUCCESS) {
 | |
|                             rt_kprintf("Read the %s flash data success. Start from 0x%08X, size is %ld. The data is:\n",
 | |
|                                     sfud_dev->name, addr, size);
 | |
|                             rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
 | |
|                             for (i = 0; i < size; i += HEXDUMP_WIDTH)
 | |
|                             {
 | |
|                                 rt_kprintf("[%08X] ", addr + i);
 | |
|                                 /* dump hex */
 | |
|                                 for (j = 0; j < HEXDUMP_WIDTH; j++) {
 | |
|                                     if (i + j < size) {
 | |
|                                         rt_kprintf("%02X ", data[i + j]);
 | |
|                                     } else {
 | |
|                                         rt_kprintf("   ");
 | |
|                                     }
 | |
|                                 }
 | |
|                                 /* dump char for hex */
 | |
|                                 for (j = 0; j < HEXDUMP_WIDTH; j++) {
 | |
|                                     if (i + j < size) {
 | |
|                                         rt_kprintf("%c", __is_print(data[i + j]) ? data[i + j] : '.');
 | |
|                                     }
 | |
|                                 }
 | |
|                                 rt_kprintf("\n");
 | |
|                             }
 | |
|                             rt_kprintf("\n");
 | |
|                         }
 | |
|                         rt_free(data);
 | |
|                     } else {
 | |
|                         rt_kprintf("Low memory!\n");
 | |
|                     }
 | |
|                 }
 | |
|             } else if (!rt_strcmp(operator, "write")) {
 | |
|                 if (argc < 4) {
 | |
|                     rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_INDEX]);
 | |
|                     return;
 | |
|                 } else {
 | |
|                     addr = strtol(argv[2], NULL, 0);
 | |
|                     size = argc - 3;
 | |
|                     uint8_t *data = rt_malloc(size);
 | |
|                     if (data) {
 | |
|                         for (i = 0; i < size; i++) {
 | |
|                             data[i] = strtol(argv[3 + i], NULL, 0);
 | |
|                         }
 | |
|                         result = sfud_write(sfud_dev, addr, size, data);
 | |
|                         if (result == SFUD_SUCCESS) {
 | |
|                             rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n",
 | |
|                                     sfud_dev->name, addr, size);
 | |
|                             rt_kprintf("Write data: ");
 | |
|                             for (i = 0; i < size; i++) {
 | |
|                                 rt_kprintf("%d ", data[i]);
 | |
|                             }
 | |
|                             rt_kprintf(".\n");
 | |
|                         }
 | |
|                         rt_free(data);
 | |
|                     } else {
 | |
|                         rt_kprintf("Low memory!\n");
 | |
|                     }
 | |
|                 }
 | |
|             } else if (!rt_strcmp(operator, "erase")) {
 | |
|                 if (argc < 4) {
 | |
|                     rt_kprintf("Usage: %s.\n", sf_help_info[CMD_ERASE_INDEX]);
 | |
|                     return;
 | |
|                 } else {
 | |
|                     addr = strtol(argv[2], NULL, 0);
 | |
|                     size = strtol(argv[3], NULL, 0);
 | |
|                     result = sfud_erase(sfud_dev, addr, size);
 | |
|                     if (result == SFUD_SUCCESS) {
 | |
|                         rt_kprintf("Erase the %s flash data success. Start from 0x%08X, size is %ld.\n", sfud_dev->name,
 | |
|                                 addr, size);
 | |
|                     }
 | |
|                 }
 | |
|             } else if (!rt_strcmp(operator, "status")) {
 | |
|                 if (argc < 3) {
 | |
|                     uint8_t status;
 | |
|                     result = sfud_read_status(sfud_dev, &status);
 | |
|                     if (result == SFUD_SUCCESS) {
 | |
|                         rt_kprintf("The %s flash status register current value is 0x%02X.\n", sfud_dev->name, status);
 | |
|                     }
 | |
|                 } else if (argc == 4) {
 | |
|                     bool is_volatile = strtol(argv[2], NULL, 0);
 | |
|                     uint8_t status = strtol(argv[3], NULL, 0);
 | |
|                     result = sfud_write_status(sfud_dev, is_volatile, status);
 | |
|                     if (result == SFUD_SUCCESS) {
 | |
|                         rt_kprintf("Write the %s flash status register to 0x%02X success.\n", sfud_dev->name, status);
 | |
|                     }
 | |
|                 } else {
 | |
|                     rt_kprintf("Usage: %s.\n", sf_help_info[CMD_RW_STATUS_INDEX]);
 | |
|                     return;
 | |
|                 }
 | |
|             } else if (!rt_strcmp(operator, "bench")) {
 | |
|                 if ((argc > 2 && rt_strcmp(argv[2], "yes")) || argc < 3) {
 | |
|                     rt_kprintf("DANGER: It will erase full chip! Please run 'sf bench yes'.\n");
 | |
|                     return;
 | |
|                 }
 | |
|                 /* full chip benchmark test */
 | |
|                 addr = 0;
 | |
|                 size = sfud_dev->chip.capacity;
 | |
|                 uint32_t start_time, time_cast;
 | |
|                 size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size = SFUD_WRITE_MAX_PAGE_SIZE, cur_op_size;
 | |
|                 uint8_t *write_data = rt_malloc(write_size), *read_data = rt_malloc(read_size);
 | |
| 
 | |
|                 if (write_data && read_data) {
 | |
|                     for (i = 0; i < write_size; i ++) {
 | |
|                         write_data[i] = i & 0xFF;
 | |
|                     }
 | |
|                     /* benchmark testing */
 | |
|                     rt_kprintf("Erasing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
 | |
|                     start_time = rt_tick_get();
 | |
|                     result = sfud_erase(sfud_dev, addr, size);
 | |
|                     if (result == SFUD_SUCCESS) {
 | |
|                         time_cast = rt_tick_get() - start_time;
 | |
|                         rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
 | |
|                                 time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
 | |
|                     } else {
 | |
|                         rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result);
 | |
|                     }
 | |
|                     /* write test */
 | |
|                     rt_kprintf("Writing the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
 | |
|                     start_time = rt_tick_get();
 | |
|                     for (i = 0; i < size; i += write_size) {
 | |
|                         if (i + write_size <= size) {
 | |
|                             cur_op_size = write_size;
 | |
|                         } else {
 | |
|                             cur_op_size = size - i;
 | |
|                         }
 | |
|                         result = sfud_write(sfud_dev, addr + i, cur_op_size, write_data);
 | |
|                         if (result != SFUD_SUCCESS) {
 | |
|                             rt_kprintf("Writing %s failed, already wr for %lu bytes, write %d each time\n", sfud_dev->name, i, write_size);
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                     if (result == SFUD_SUCCESS) {
 | |
|                         time_cast = rt_tick_get() - start_time;
 | |
|                         rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
 | |
|                                 time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
 | |
|                     } else {
 | |
|                         rt_kprintf("Write benchmark has an error. Error code: %d.\n", result);
 | |
|                     }
 | |
|                     /* read test */
 | |
|                     rt_kprintf("Reading the %s %ld bytes data, waiting...\n", sfud_dev->name, size);
 | |
|                     start_time = rt_tick_get();
 | |
|                     for (i = 0; i < size; i += read_size) {
 | |
|                         if (i + read_size <= size) {
 | |
|                             cur_op_size = read_size;
 | |
|                         } else {
 | |
|                             cur_op_size = size - i;
 | |
|                         }
 | |
|                         result = sfud_read(sfud_dev, addr + i, cur_op_size, read_data);
 | |
|                         /* data check */
 | |
|                         if (memcmp(write_data, read_data, cur_op_size))
 | |
|                         {
 | |
|                             rt_kprintf("Data check ERROR! Please check you flash by other command.\n");
 | |
|                             result = SFUD_ERR_READ;
 | |
|                         }
 | |
| 
 | |
|                         if (result != SFUD_SUCCESS) {
 | |
|                             rt_kprintf("Read %s failed, already rd for %lu bytes, read %d each time\n", sfud_dev->name, i, read_size);
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                     if (result == SFUD_SUCCESS) {
 | |
|                         time_cast = rt_tick_get() - start_time;
 | |
|                         rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
 | |
|                                 time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
 | |
|                     } else {
 | |
|                         rt_kprintf("Read benchmark has an error. Error code: %d.\n", result);
 | |
|                     }
 | |
|                 } else {
 | |
|                     rt_kprintf("Low memory!\n");
 | |
|                 }
 | |
|                 rt_free(write_data);
 | |
|                 rt_free(read_data);
 | |
|             } else {
 | |
|                 rt_kprintf("Usage:\n");
 | |
|                 for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
 | |
|                     rt_kprintf("%s\n", sf_help_info[i]);
 | |
|                 }
 | |
|                 rt_kprintf("\n");
 | |
|                 return;
 | |
|             }
 | |
|             if (result != SFUD_SUCCESS) {
 | |
|                 rt_kprintf("This flash operate has an error. Error code: %d.\n", result);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| MSH_CMD_EXPORT(sf, SPI Flash operate.);
 | |
| #endif /* defined(RT_USING_FINSH) */
 | |
| 
 | |
| #endif /* RT_USING_SFUD */
 |