120 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			120 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|  | #include "math.h"
 | |||
|  | #include "fft.h"   
 | |||
|  |    | |||
|  | void conjugate_complex(int n,complex in[],complex out[])   | |||
|  | {   | |||
|  |   int i = 0;   | |||
|  |   for(i=0;i<n;i++)   | |||
|  |   {   | |||
|  |     out[i].imag = -in[i].imag;   | |||
|  |     out[i].real = in[i].real;   | |||
|  |   }    | |||
|  | }   | |||
|  |    | |||
|  | void c_abs(complex f[],float out[],int n)   | |||
|  | {   | |||
|  |   int i = 0;   | |||
|  |   float t;   | |||
|  |   for(i=0;i<n;i++)   | |||
|  |   {   | |||
|  |     t = f[i].real * f[i].real + f[i].imag * f[i].imag;   | |||
|  |     out[i] = iot_sqrt(t);   | |||
|  |   }    | |||
|  | }   | |||
|  |    | |||
|  | void c_plus(complex a,complex b,complex *c)   | |||
|  | {   | |||
|  |   c->real = a.real + b.real;   | |||
|  |   c->imag = a.imag + b.imag;   | |||
|  | }   | |||
|  |    | |||
|  | void c_sub(complex a,complex b,complex *c)   | |||
|  | {   | |||
|  |   c->real = a.real - b.real;   | |||
|  |   c->imag = a.imag - b.imag;    | |||
|  | }   | |||
|  |    | |||
|  | void c_mul(complex a,complex b,complex *c)   | |||
|  | {   | |||
|  |   c->real = a.real * b.real - a.imag * b.imag;   | |||
|  |   c->imag = a.real * b.imag + a.imag * b.real;      | |||
|  | }   | |||
|  |    | |||
|  | void c_div(complex a,complex b,complex *c)   | |||
|  | {   | |||
|  |   c->real = (a.real * b.real + a.imag * b.imag)/(b.real * b.real +b.imag * b.imag);   | |||
|  |   c->imag = (a.imag * b.real - a.real * b.imag)/(b.real * b.real +b.imag * b.imag);   | |||
|  | }   | |||
|  |    | |||
|  | #define SWAP(a,b)  tempr=(a);(a)=(b);(b)=tempr  
 | |||
|  |    | |||
|  | void Wn_i(int n,int i,complex *Wn,char flag)   | |||
|  | {   | |||
|  |   Wn->real = iot_cos(2*PI*i/n); | |||
|  |    | |||
|  |   if(flag == 1) | |||
|  |     Wn->imag = -iot_sin(2*PI*i/n); | |||
|  |   else if(flag == 0) | |||
|  |     Wn->imag = -iot_sin(2*PI*i/n); | |||
|  | }   | |||
|  |      | |||
|  | void fft(int N,complex f[])   | |||
|  | {   | |||
|  |   complex t,wn; | |||
|  |   int i,j,k,m,n,l,r,M;   | |||
|  |   int la,lb,lc;   | |||
|  |   /*----M=log2(N)----*/   | |||
|  |   for(i=N,M=1;(i=i/2)!=1;M++);    | |||
|  |      | |||
|  |   for(i=1,j=N/2;i<=N-2;i++)   | |||
|  |   {   | |||
|  |     if(i<j)   | |||
|  |     {   | |||
|  |       t=f[j];   | |||
|  |       f[j]=f[i];   | |||
|  |       f[i]=t;   | |||
|  |     }   | |||
|  |     k=N/2;   | |||
|  |     while(k<=j)   | |||
|  |     {   | |||
|  |       j=j-k;   | |||
|  |       k=k/2;   | |||
|  |     }   | |||
|  |     j=j+k;   | |||
|  |   }   | |||
|  |    | |||
|  |   /*----FFT----*/   | |||
|  |   for(m=1;m<=M;m++)   | |||
|  |   {   | |||
|  |     la=iot_pow(2,m); //la=2^m<><6D><EFBFBD><EFBFBD><EFBFBD><EFBFBD>m<EFBFBD><6D>ÿ<EFBFBD><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڵ<EFBFBD><DAB5><EFBFBD>       
 | |||
|  |     lb=la/2;    //lb<6C><62><EFBFBD><EFBFBD><EFBFBD><EFBFBD>m<EFBFBD><6D>ÿ<EFBFBD><C3BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ε<EFBFBD>Ԫ<EFBFBD><D4AA>  
 | |||
|  |                  //ͬʱ<CDAC><CAB1>Ҳ<EFBFBD><D2B2>ʾÿ<CABE><C3BF><EFBFBD><EFBFBD><EFBFBD>ε<EFBFBD>Ԫ<EFBFBD><D4AA><EFBFBD>½ڵ<C2BD>֮<EFBFBD><D6AE><EFBFBD>ľ<EFBFBD><C4BE><EFBFBD>  
 | |||
|  |     /*----<2D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>----*/   | |||
|  |     for(l=1;l<=lb;l++)   | |||
|  |     {   | |||
|  |       r=(l-1)*iot_pow(2,M-m);      | |||
|  |       for(n=l-1;n<N-1;n=n+la) //<2F><><EFBFBD><EFBFBD>ÿ<EFBFBD><C3BF><EFBFBD><EFBFBD><EFBFBD>飬<EFBFBD><E9A3AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ΪN/la  
 | |||
|  |       {   | |||
|  |         lc=n+lb;  //n,lc<6C>ֱ<EFBFBD><D6B1><EFBFBD><EFBFBD><EFBFBD>һ<EFBFBD><D2BB><EFBFBD><EFBFBD><EFBFBD>ε<EFBFBD>Ԫ<EFBFBD><D4AA><EFBFBD>ϡ<EFBFBD><CFA1>½ڵ<C2BD><DAB5><EFBFBD><EFBFBD><EFBFBD>       
 | |||
|  |         Wn_i(N,r,&wn,1);//wn=Wnr  
 | |||
|  |         c_mul(f[lc],wn,&t);//t = f[lc] * wn<77><6E><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>  
 | |||
|  |         c_sub(f[n],t,&(f[lc]));//f[lc] = f[n] - f[lc] * Wnr  
 | |||
|  |         c_plus(f[n],t,&(f[n]));//f[n] = f[n] + f[lc] * Wnr  
 | |||
|  |       }   | |||
|  |     }   | |||
|  |   }   | |||
|  | }   | |||
|  |    | |||
|  | //<2F><><EFBFBD><EFBFBD>Ҷ<EFBFBD><D2B6><EFBFBD>任  
 | |||
|  | void ifft(int N,complex f[])   | |||
|  | {   | |||
|  |   int i=0;   | |||
|  |   conjugate_complex(N,f,f);   | |||
|  |   fft(N,f);   | |||
|  |   conjugate_complex(N,f,f);   | |||
|  |   for(i=0;i<N;i++)   | |||
|  |   {   | |||
|  |     f[i].imag = (f[i].imag)/N;   | |||
|  |     f[i].real = (f[i].real)/N;   | |||
|  |   }   | |||
|  | } |