Files
kunlun/dtest/kl2_clk_test/kl2_clk_test.c

205 lines
5.5 KiB
C
Raw Normal View History

2024-09-28 14:24:04 +08:00
/****************************************************************************
*
* Copyright(c) 2019 by Aerospace C.Power (Chongqing) Microelectronics. ALL RIGHTS RESERVED.
*
* This Information is proprietary to Aerospace C.Power (Chongqing) Microelectronics Ltd and MAY NOT
* be copied by any method or incorporated into another program without
* the express written consent of Aerospace C.Power. This Information or any portion
* thereof remains the property of Aerospace C.Power. The Information contained herein
* is believed to be accurate and Aerospace C.Power assumes no responsibility or
* liability for its use in any way and conveys no license or title under
* any patent or copyright and makes no representation or warranty that this
* Information is free from patent or copyright infringement.
*
* ****************************************************************************/
#include "os_types.h"
#include "dbg_io.h"
#include "iot_diag.h"
#include "iot_io.h"
#include "flash.h"
#include "gpio_mtx.h"
#include "iot_wdg.h"
#include "iot_irq.h"
#include "irq.h"
#include "gp_timer.h"
#include "clk_hw.h"
#define REG32(a) (*((volatile uint32_t *)(a)))
typedef enum {
AHB_CLK_25M = 0,
AHB_CLK_200M = 1,
} ahb_clk_25m_t;
iot_irq_t g_timer_handle;
void switch_clk(uint8_t clk)
{
if (clk == AHB_CLK_25M) {
clk_set_freq(CPU_FREQ_25M);
} else if (clk == AHB_CLK_200M) {
clk_set_freq(CPU_FREQ_200M);
}
}
uint8_t rdata[0x100] = {0};
uint8_t wdata[0x100] = {1,2,3,4,5,6,7,8,9,0,255,254,253,252,251,250};
uint8_t flash_write_test()
{
#define FLASH_TEST_OFFSET 0x0
uint8_t ret = 0;
for(uint32_t i = 0; i < 0x100; i++) {
wdata[i] = i;
rdata[i] = 0;
}
iot_printf("\n[SFC API TEST] start write test\n");
g_sfc_ctrl->erase_sector(FLASH_TEST_OFFSET, MOD_SW_MODE_DIS);
g_sfc_ctrl->write(wdata,FLASH_TEST_OFFSET, sizeof(wdata),
MOD_SFC_PROG_STAND, MOD_SW_MODE_DIS);
g_sfc_ctrl->read(rdata,FLASH_TEST_OFFSET,sizeof(wdata), MOD_SFC_READ_SIG);
for(uint32_t i = 0; i < 0x100; i++) {
if (wdata[i] != rdata[i]) {
iot_printf("qspi write, qspi read error\n");
ret = 1;
break;
}
}
iot_printf("quad write test\n");
g_sfc_ctrl->erase_sector(FLASH_TEST_OFFSET, MOD_SW_MODE_DIS);
wdata[10] = 0xa5;
rdata[10] = 0x0;
g_sfc_ctrl->write(wdata,FLASH_TEST_OFFSET,sizeof(wdata),
MOD_SFC_PROG_QUAD, MOD_SW_MODE_DIS);
g_sfc_ctrl->read(rdata,FLASH_TEST_OFFSET,sizeof(wdata), MOD_SFC_READ_SIG);
for(uint32_t i = 0; i < 0x100; i++) {
if (wdata[i] != rdata[i]) {
iot_printf("qspi write, qspi read error\n");
ret = 1;
break;
}
}
iot_printf("[SFC API TEST] end write test\n");
return ret;
}
void flash_gpio_bind()
{
#define SFC_CLK 53
#define SFC_CS 48
#define SFC_D0 52
#define SFC_D1 49
#define SFC_D2 50
#define SFC_D3 51
#define SIG_IN_SFC_D0 4
#define SIG_IN_SFC_D1 5
#define SIG_IN_SFC_D2 6
#define SIG_IN_SFC_D3 7
gpio_mtx_enable();
gpio_pin_select(SFC_CLK, 1);
gpio_pin_select(SFC_CS, 1);
gpio_pin_select(SFC_D0, 1);
gpio_pin_select(SFC_D1, 1);
gpio_pin_select(SFC_D2, 1);
gpio_pin_select(SFC_D3, 1);
gpio_mtx_sig_in(SIG_IN_SFC_D0, SFC_D0, GPIO_MTX_MODE_CORE);
gpio_mtx_sig_in(SIG_IN_SFC_D1, SFC_D1, GPIO_MTX_MODE_CORE);
gpio_mtx_sig_in(SIG_IN_SFC_D2, SFC_D2, GPIO_MTX_MODE_CORE);
gpio_mtx_sig_in(SIG_IN_SFC_D3, SFC_D3, GPIO_MTX_MODE_CORE);
}
void write_test_done(uint8_t val)
{
volatile uint32_t *reg = (volatile uint32_t *) 0x44000010;
*reg = val;
}
uint8_t g_test_done = 0;
uint8_t g_test_cnt = 0;
uint32_t timer_handle(uint32_t vector, iot_addrword_t data)
{
if (vector == HAL_VECTOR_GPTMR) {
g_test_cnt++;
if (g_test_cnt >= 10) {
gp_timer_stop(0);
}
gp_timer_clear_int_status(0);
}
return 0;
}
int main()
{
uint8_t ret = 0;
dbg_uart_init();
/* clock frequency switch test */
iot_printf("[CLK TEST] start...\n");
for(uint8_t i = 0; i < 5; i++) {
switch_clk(AHB_CLK_200M);
for(volatile uint8_t j = 0; j < 100; j++);
switch_clk(AHB_CLK_25M);
for(volatile uint8_t j = 0; j < 100; j++);
}
iot_printf("[CLK TEST] end---\n");
/* 100MHz flash test */
iot_printf("[FLASH TEST] start...\n");
switch_clk(AHB_CLK_200M);
clk_apb_div(1);
flash_gpio_bind();
// emc enable
REG32(0x62000004) |= (1);
REG32(0x62000008) |= (1);
for(volatile uint8_t i = 0; i < 100; i++);
REG32(0x62000008) &= ~(1);
flash_init(1);
// switch sfc clock to 100MHz
ret = flash_write_test();
iot_printf("flash test result: %d\n", ret);
g_test_done = ret;
/* wfi test */
gp_timer_init();
gp_timer_set(0, 1*1000, 1);
g_timer_handle =
iot_interrupt_create(HAL_VECTOR_GPTMR, HAL_INTR_PRI_7,
0, timer_handle);
iot_interrupt_attach(g_timer_handle);
iot_interrupt_unmask(g_timer_handle);
gp_timer_start(0);
while(1) {
if (g_test_cnt >= 10) {
break;
}
// cpu1 sleep ena
REG32(0x6200000c) |= 0x4;
__asm volatile ("wfi");
switch_clk(AHB_CLK_200M);
for(volatile uint8_t j = 0; j < 100; j++);
switch_clk(AHB_CLK_25M);
for(volatile uint8_t j = 0; j < 100; j++);
}
if(g_test_done) {
write_test_done(g_test_done);
} else {
write_test_done(0x5a);
}
while(1);
return ret;
}