502 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			502 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 *  Armv8-A Cryptographic Extension support functions for Aarch64
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *  Copyright The Mbed TLS Contributors
							 | 
						||
| 
								 | 
							
								 *  SPDX-License-Identifier: Apache-2.0
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
							 | 
						||
| 
								 | 
							
								 *  not use this file except in compliance with the License.
							 | 
						||
| 
								 | 
							
								 *  You may obtain a copy of the License at
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *  http://www.apache.org/licenses/LICENSE-2.0
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *  Unless required by applicable law or agreed to in writing, software
							 | 
						||
| 
								 | 
							
								 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
							 | 
						||
| 
								 | 
							
								 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
							 | 
						||
| 
								 | 
							
								 *  See the License for the specific language governing permissions and
							 | 
						||
| 
								 | 
							
								 *  limitations under the License.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if defined(__aarch64__) && !defined(__ARM_FEATURE_CRYPTO) && \
							 | 
						||
| 
								 | 
							
								    defined(__clang__) && __clang_major__ >= 4
							 | 
						||
| 
								 | 
							
								/* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * The intrinsic declaration are guarded by predefined ACLE macros in clang:
							 | 
						||
| 
								 | 
							
								 * these are normally only enabled by the -march option on the command line.
							 | 
						||
| 
								 | 
							
								 * By defining the macros ourselves we gain access to those declarations without
							 | 
						||
| 
								 | 
							
								 * requiring -march on the command line.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * `arm_neon.h` could be included by any header file, so we put these defines
							 | 
						||
| 
								 | 
							
								 * at the top of this file, before any includes.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								#define __ARM_FEATURE_CRYPTO 1
							 | 
						||
| 
								 | 
							
								/* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it
							 | 
						||
| 
								 | 
							
								 * for older compilers.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								#define __ARM_FEATURE_AES    1
							 | 
						||
| 
								 | 
							
								#define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <string.h>
							 | 
						||
| 
								 | 
							
								#include "common.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if defined(MBEDTLS_AESCE_C)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "aesce.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if defined(MBEDTLS_HAVE_ARM64)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Compiler version checks. */
							 | 
						||
| 
								 | 
							
								#if defined(__clang__)
							 | 
						||
| 
								 | 
							
								#   if __clang_major__ < 4
							 | 
						||
| 
								 | 
							
								#       error "Minimum version of Clang for MBEDTLS_AESCE_C is 4.0."
							 | 
						||
| 
								 | 
							
								#   endif
							 | 
						||
| 
								 | 
							
								#elif defined(__GNUC__)
							 | 
						||
| 
								 | 
							
								#   if __GNUC__ < 6
							 | 
						||
| 
								 | 
							
								#       error "Minimum version of GCC for MBEDTLS_AESCE_C is 6.0."
							 | 
						||
| 
								 | 
							
								#   endif
							 | 
						||
| 
								 | 
							
								#elif defined(_MSC_VER)
							 | 
						||
| 
								 | 
							
								/* TODO: We haven't verified MSVC from 1920 to 1928. If someone verified that,
							 | 
						||
| 
								 | 
							
								 *       please update this and document of `MBEDTLS_AESCE_C` in
							 | 
						||
| 
								 | 
							
								 *       `mbedtls_config.h`. */
							 | 
						||
| 
								 | 
							
								#   if _MSC_VER < 1929
							 | 
						||
| 
								 | 
							
								#       error "Minimum version of MSVC for MBEDTLS_AESCE_C is 2019 version 16.11.2."
							 | 
						||
| 
								 | 
							
								#   endif
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef __ARM_NEON
							 | 
						||
| 
								 | 
							
								#include <arm_neon.h>
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								#error "Target does not support NEON instructions"
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if !(defined(__ARM_FEATURE_CRYPTO) || defined(__ARM_FEATURE_AES)) || \
							 | 
						||
| 
								 | 
							
								    defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG)
							 | 
						||
| 
								 | 
							
								#   if defined(__ARMCOMPILER_VERSION)
							 | 
						||
| 
								 | 
							
								#       if __ARMCOMPILER_VERSION <= 6090000
							 | 
						||
| 
								 | 
							
								#           error "Must use minimum -march=armv8-a+crypto for MBEDTLS_AESCE_C"
							 | 
						||
| 
								 | 
							
								#       else
							 | 
						||
| 
								 | 
							
								#           pragma clang attribute push (__attribute__((target("aes"))), apply_to=function)
							 | 
						||
| 
								 | 
							
								#           define MBEDTLS_POP_TARGET_PRAGMA
							 | 
						||
| 
								 | 
							
								#       endif
							 | 
						||
| 
								 | 
							
								#   elif defined(__clang__)
							 | 
						||
| 
								 | 
							
								#       pragma clang attribute push (__attribute__((target("aes"))), apply_to=function)
							 | 
						||
| 
								 | 
							
								#       define MBEDTLS_POP_TARGET_PRAGMA
							 | 
						||
| 
								 | 
							
								#   elif defined(__GNUC__)
							 | 
						||
| 
								 | 
							
								#       pragma GCC push_options
							 | 
						||
| 
								 | 
							
								#       pragma GCC target ("+crypto")
							 | 
						||
| 
								 | 
							
								#       define MBEDTLS_POP_TARGET_PRAGMA
							 | 
						||
| 
								 | 
							
								#   elif defined(_MSC_VER)
							 | 
						||
| 
								 | 
							
								#       error "Required feature(__ARM_FEATURE_AES) is not enabled."
							 | 
						||
| 
								 | 
							
								#   endif
							 | 
						||
| 
								 | 
							
								#endif /* !(__ARM_FEATURE_CRYPTO || __ARM_FEATURE_AES) ||
							 | 
						||
| 
								 | 
							
								          MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if defined(__linux__)
							 | 
						||
| 
								 | 
							
								#include <asm/hwcap.h>
							 | 
						||
| 
								 | 
							
								#include <sys/auxv.h>
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * AES instruction support detection routine
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								int mbedtls_aesce_has_support(void)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								#if defined(__linux__)
							 | 
						||
| 
								 | 
							
								    unsigned long auxval = getauxval(AT_HWCAP);
							 | 
						||
| 
								 | 
							
								    return (auxval & (HWCAP_ASIMD | HWCAP_AES)) ==
							 | 
						||
| 
								 | 
							
								           (HWCAP_ASIMD | HWCAP_AES);
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								    /* Assume AES instructions are supported. */
							 | 
						||
| 
								 | 
							
								    return 1;
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Single round of AESCE encryption */
							 | 
						||
| 
								 | 
							
								#define AESCE_ENCRYPT_ROUND                   \
							 | 
						||
| 
								 | 
							
								    block = vaeseq_u8(block, vld1q_u8(keys)); \
							 | 
						||
| 
								 | 
							
								    block = vaesmcq_u8(block);                \
							 | 
						||
| 
								 | 
							
								    keys += 16
							 | 
						||
| 
								 | 
							
								/* Two rounds of AESCE encryption */
							 | 
						||
| 
								 | 
							
								#define AESCE_ENCRYPT_ROUND_X2        AESCE_ENCRYPT_ROUND; AESCE_ENCRYPT_ROUND
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								MBEDTLS_OPTIMIZE_FOR_PERFORMANCE
							 | 
						||
| 
								 | 
							
								static uint8x16_t aesce_encrypt_block(uint8x16_t block,
							 | 
						||
| 
								 | 
							
								                                      unsigned char *keys,
							 | 
						||
| 
								 | 
							
								                                      int rounds)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    /* 10, 12 or 14 rounds. Unroll loop. */
							 | 
						||
| 
								 | 
							
								    if (rounds == 10) {
							 | 
						||
| 
								 | 
							
								        goto rounds_10;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    if (rounds == 12) {
							 | 
						||
| 
								 | 
							
								        goto rounds_12;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    AESCE_ENCRYPT_ROUND_X2;
							 | 
						||
| 
								 | 
							
								rounds_12:
							 | 
						||
| 
								 | 
							
								    AESCE_ENCRYPT_ROUND_X2;
							 | 
						||
| 
								 | 
							
								rounds_10:
							 | 
						||
| 
								 | 
							
								    AESCE_ENCRYPT_ROUND_X2;
							 | 
						||
| 
								 | 
							
								    AESCE_ENCRYPT_ROUND_X2;
							 | 
						||
| 
								 | 
							
								    AESCE_ENCRYPT_ROUND_X2;
							 | 
						||
| 
								 | 
							
								    AESCE_ENCRYPT_ROUND_X2;
							 | 
						||
| 
								 | 
							
								    AESCE_ENCRYPT_ROUND;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /* AES AddRoundKey for the previous round.
							 | 
						||
| 
								 | 
							
								     * SubBytes, ShiftRows for the final round.  */
							 | 
						||
| 
								 | 
							
								    block = vaeseq_u8(block, vld1q_u8(keys));
							 | 
						||
| 
								 | 
							
								    keys += 16;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /* Final round: no MixColumns */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /* Final AddRoundKey */
							 | 
						||
| 
								 | 
							
								    block = veorq_u8(block, vld1q_u8(keys));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return block;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* Single round of AESCE decryption
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * AES AddRoundKey, SubBytes, ShiftRows
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *      block = vaesdq_u8(block, vld1q_u8(keys));
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * AES inverse MixColumns for the next round.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * This means that we switch the order of the inverse AddRoundKey and
							 | 
						||
| 
								 | 
							
								 * inverse MixColumns operations. We have to do this as AddRoundKey is
							 | 
						||
| 
								 | 
							
								 * done in an atomic instruction together with the inverses of SubBytes
							 | 
						||
| 
								 | 
							
								 * and ShiftRows.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * It works because MixColumns is a linear operation over GF(2^8) and
							 | 
						||
| 
								 | 
							
								 * AddRoundKey is an exclusive or, which is equivalent to addition over
							 | 
						||
| 
								 | 
							
								 * GF(2^8). (The inverse of MixColumns needs to be applied to the
							 | 
						||
| 
								 | 
							
								 * affected round keys separately which has been done when the
							 | 
						||
| 
								 | 
							
								 * decryption round keys were calculated.)
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 *      block = vaesimcq_u8(block);
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								#define AESCE_DECRYPT_ROUND                   \
							 | 
						||
| 
								 | 
							
								    block = vaesdq_u8(block, vld1q_u8(keys)); \
							 | 
						||
| 
								 | 
							
								    block = vaesimcq_u8(block);               \
							 | 
						||
| 
								 | 
							
								    keys += 16
							 | 
						||
| 
								 | 
							
								/* Two rounds of AESCE decryption */
							 | 
						||
| 
								 | 
							
								#define AESCE_DECRYPT_ROUND_X2        AESCE_DECRYPT_ROUND; AESCE_DECRYPT_ROUND
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static uint8x16_t aesce_decrypt_block(uint8x16_t block,
							 | 
						||
| 
								 | 
							
								                                      unsigned char *keys,
							 | 
						||
| 
								 | 
							
								                                      int rounds)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    /* 10, 12 or 14 rounds. Unroll loop. */
							 | 
						||
| 
								 | 
							
								    if (rounds == 10) {
							 | 
						||
| 
								 | 
							
								        goto rounds_10;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    if (rounds == 12) {
							 | 
						||
| 
								 | 
							
								        goto rounds_12;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    AESCE_DECRYPT_ROUND_X2;
							 | 
						||
| 
								 | 
							
								rounds_12:
							 | 
						||
| 
								 | 
							
								    AESCE_DECRYPT_ROUND_X2;
							 | 
						||
| 
								 | 
							
								rounds_10:
							 | 
						||
| 
								 | 
							
								    AESCE_DECRYPT_ROUND_X2;
							 | 
						||
| 
								 | 
							
								    AESCE_DECRYPT_ROUND_X2;
							 | 
						||
| 
								 | 
							
								    AESCE_DECRYPT_ROUND_X2;
							 | 
						||
| 
								 | 
							
								    AESCE_DECRYPT_ROUND_X2;
							 | 
						||
| 
								 | 
							
								    AESCE_DECRYPT_ROUND;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the
							 | 
						||
| 
								 | 
							
								     * last full round. */
							 | 
						||
| 
								 | 
							
								    block = vaesdq_u8(block, vld1q_u8(keys));
							 | 
						||
| 
								 | 
							
								    keys += 16;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /* Inverse AddRoundKey for inverting the initial round key addition. */
							 | 
						||
| 
								 | 
							
								    block = veorq_u8(block, vld1q_u8(keys));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return block;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * AES-ECB block en(de)cryption
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
							 | 
						||
| 
								 | 
							
								                            int mode,
							 | 
						||
| 
								 | 
							
								                            const unsigned char input[16],
							 | 
						||
| 
								 | 
							
								                            unsigned char output[16])
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    uint8x16_t block = vld1q_u8(&input[0]);
							 | 
						||
| 
								 | 
							
								    unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (mode == MBEDTLS_AES_ENCRYPT) {
							 | 
						||
| 
								 | 
							
								        block = aesce_encrypt_block(block, keys, ctx->nr);
							 | 
						||
| 
								 | 
							
								    } else {
							 | 
						||
| 
								 | 
							
								        block = aesce_decrypt_block(block, keys, ctx->nr);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    vst1q_u8(&output[0], block);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Compute decryption round keys from encryption round keys
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								void mbedtls_aesce_inverse_key(unsigned char *invkey,
							 | 
						||
| 
								 | 
							
								                               const unsigned char *fwdkey,
							 | 
						||
| 
								 | 
							
								                               int nr)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    int i, j;
							 | 
						||
| 
								 | 
							
								    j = nr;
							 | 
						||
| 
								 | 
							
								    vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16));
							 | 
						||
| 
								 | 
							
								    for (i = 1, j--; j > 0; i++, j--) {
							 | 
						||
| 
								 | 
							
								        vst1q_u8(invkey + i * 16,
							 | 
						||
| 
								 | 
							
								                 vaesimcq_u8(vld1q_u8(fwdkey + j * 16)));
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static inline uint32_t aes_rot_word(uint32_t word)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    return (word << (32 - 8)) | (word >> 8);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static inline uint32_t aes_sub_word(uint32_t in)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in));
							 | 
						||
| 
								 | 
							
								    uint8x16_t zero = vdupq_n_u8(0);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    /* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields
							 | 
						||
| 
								 | 
							
								     * the correct result as ShiftRows doesn't change the first row. */
							 | 
						||
| 
								 | 
							
								    v = vaeseq_u8(zero, v);
							 | 
						||
| 
								 | 
							
								    return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Key expansion function
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								static void aesce_setkey_enc(unsigned char *rk,
							 | 
						||
| 
								 | 
							
								                             const unsigned char *key,
							 | 
						||
| 
								 | 
							
								                             const size_t key_bit_length)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10,
							 | 
						||
| 
								 | 
							
								                                    0x20, 0x40, 0x80, 0x1b, 0x36 };
							 | 
						||
| 
								 | 
							
								    /* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
							 | 
						||
| 
								 | 
							
								     *   - Section 5, Nr = Nk + 6
							 | 
						||
| 
								 | 
							
								     *   - Section 5.2, the length of round keys is Nb*(Nr+1)
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    const uint32_t key_len_in_words = key_bit_length / 32;  /* Nk */
							 | 
						||
| 
								 | 
							
								    const size_t round_key_len_in_words = 4;                /* Nb */
							 | 
						||
| 
								 | 
							
								    const size_t rounds_needed = key_len_in_words + 6;      /* Nr */
							 | 
						||
| 
								 | 
							
								    const size_t round_keys_len_in_words =
							 | 
						||
| 
								 | 
							
								        round_key_len_in_words * (rounds_needed + 1);       /* Nb*(Nr+1) */
							 | 
						||
| 
								 | 
							
								    const uint32_t *rko_end = (uint32_t *) rk + round_keys_len_in_words;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    memcpy(rk, key, key_len_in_words * 4);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    for (uint32_t *rki = (uint32_t *) rk;
							 | 
						||
| 
								 | 
							
								         rki + key_len_in_words < rko_end;
							 | 
						||
| 
								 | 
							
								         rki += key_len_in_words) {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        size_t iteration = (rki - (uint32_t *) rk) / key_len_in_words;
							 | 
						||
| 
								 | 
							
								        uint32_t *rko;
							 | 
						||
| 
								 | 
							
								        rko = rki + key_len_in_words;
							 | 
						||
| 
								 | 
							
								        rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1]));
							 | 
						||
| 
								 | 
							
								        rko[0] ^= rcon[iteration] ^ rki[0];
							 | 
						||
| 
								 | 
							
								        rko[1] = rko[0] ^ rki[1];
							 | 
						||
| 
								 | 
							
								        rko[2] = rko[1] ^ rki[2];
							 | 
						||
| 
								 | 
							
								        rko[3] = rko[2] ^ rki[3];
							 | 
						||
| 
								 | 
							
								        if (rko + key_len_in_words > rko_end) {
							 | 
						||
| 
								 | 
							
								            /* Do not write overflow words.*/
							 | 
						||
| 
								 | 
							
								            continue;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
							 | 
						||
| 
								 | 
							
								        switch (key_bit_length) {
							 | 
						||
| 
								 | 
							
								            case 128:
							 | 
						||
| 
								 | 
							
								                break;
							 | 
						||
| 
								 | 
							
								            case 192:
							 | 
						||
| 
								 | 
							
								                rko[4] = rko[3] ^ rki[4];
							 | 
						||
| 
								 | 
							
								                rko[5] = rko[4] ^ rki[5];
							 | 
						||
| 
								 | 
							
								                break;
							 | 
						||
| 
								 | 
							
								            case 256:
							 | 
						||
| 
								 | 
							
								                rko[4] = aes_sub_word(rko[3]) ^ rki[4];
							 | 
						||
| 
								 | 
							
								                rko[5] = rko[4] ^ rki[5];
							 | 
						||
| 
								 | 
							
								                rko[6] = rko[5] ^ rki[6];
							 | 
						||
| 
								 | 
							
								                rko[7] = rko[6] ^ rki[7];
							 | 
						||
| 
								 | 
							
								                break;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Key expansion, wrapper
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								int mbedtls_aesce_setkey_enc(unsigned char *rk,
							 | 
						||
| 
								 | 
							
								                             const unsigned char *key,
							 | 
						||
| 
								 | 
							
								                             size_t bits)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    switch (bits) {
							 | 
						||
| 
								 | 
							
								        case 128:
							 | 
						||
| 
								 | 
							
								        case 192:
							 | 
						||
| 
								 | 
							
								        case 256:
							 | 
						||
| 
								 | 
							
								            aesce_setkey_enc(rk, key, bits);
							 | 
						||
| 
								 | 
							
								            break;
							 | 
						||
| 
								 | 
							
								        default:
							 | 
						||
| 
								 | 
							
								            return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if defined(MBEDTLS_GCM_C)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 5
							 | 
						||
| 
								 | 
							
								/* Some intrinsics are not available for GCC 5.X. */
							 | 
						||
| 
								 | 
							
								#define vreinterpretq_p64_u8(a) ((poly64x2_t) a)
							 | 
						||
| 
								 | 
							
								#define vreinterpretq_u8_p128(a) ((uint8x16_t) a)
							 | 
						||
| 
								 | 
							
								static inline poly64_t vget_low_p64(poly64x2_t __a)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    uint64x2_t tmp = (uint64x2_t) (__a);
							 | 
						||
| 
								 | 
							
								    uint64x1_t lo = vcreate_u64(vgetq_lane_u64(tmp, 0));
							 | 
						||
| 
								 | 
							
								    return (poly64_t) (lo);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								#endif /* !__clang__ && __GNUC__ && __GNUC__ == 5*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* vmull_p64/vmull_high_p64 wrappers.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Older compilers miss some intrinsic functions for `poly*_t`. We use
							 | 
						||
| 
								 | 
							
								 * uint8x16_t and uint8x16x3_t as input/output parameters.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								#if defined(__GNUC__) && !defined(__clang__)
							 | 
						||
| 
								 | 
							
								/* GCC reports incompatible type error without cast. GCC think poly64_t and
							 | 
						||
| 
								 | 
							
								 * poly64x1_t are different, that is different with MSVC and Clang. */
							 | 
						||
| 
								 | 
							
								#define MBEDTLS_VMULL_P64(a, b) vmull_p64((poly64_t) a, (poly64_t) b)
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								/* MSVC reports `error C2440: 'type cast'` with cast. Clang does not report
							 | 
						||
| 
								 | 
							
								 * error with/without cast. And I think poly64_t and poly64x1_t are same, no
							 | 
						||
| 
								 | 
							
								 * cast for clang also. */
							 | 
						||
| 
								 | 
							
								#define MBEDTLS_VMULL_P64(a, b) vmull_p64(a, b)
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								static inline uint8x16_t pmull_low(uint8x16_t a, uint8x16_t b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return vreinterpretq_u8_p128(
							 | 
						||
| 
								 | 
							
								        MBEDTLS_VMULL_P64(
							 | 
						||
| 
								 | 
							
								            vget_low_p64(vreinterpretq_p64_u8(a)),
							 | 
						||
| 
								 | 
							
								            vget_low_p64(vreinterpretq_p64_u8(b))
							 | 
						||
| 
								 | 
							
								            ));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static inline uint8x16_t pmull_high(uint8x16_t a, uint8x16_t b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    return vreinterpretq_u8_p128(
							 | 
						||
| 
								 | 
							
								        vmull_high_p64(vreinterpretq_p64_u8(a),
							 | 
						||
| 
								 | 
							
								                       vreinterpretq_p64_u8(b)));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* GHASH does 128b polynomial multiplication on block in GF(2^128) defined by
							 | 
						||
| 
								 | 
							
								 * `x^128 + x^7 + x^2 + x + 1`.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Arm64 only has 64b->128b polynomial multipliers, we need to do 4 64b
							 | 
						||
| 
								 | 
							
								 * multiplies to generate a 128b.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * `poly_mult_128` executes polynomial multiplication and outputs 256b that
							 | 
						||
| 
								 | 
							
								 * represented by 3 128b due to code size optimization.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Output layout:
							 | 
						||
| 
								 | 
							
								 * |            |             |             |
							 | 
						||
| 
								 | 
							
								 * |------------|-------------|-------------|
							 | 
						||
| 
								 | 
							
								 * | ret.val[0] | h3:h2:00:00 | high   128b |
							 | 
						||
| 
								 | 
							
								 * | ret.val[1] |   :m2:m1:00 | middle 128b |
							 | 
						||
| 
								 | 
							
								 * | ret.val[2] |   :  :l1:l0 | low    128b |
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								static inline uint8x16x3_t poly_mult_128(uint8x16_t a, uint8x16_t b)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    uint8x16x3_t ret;
							 | 
						||
| 
								 | 
							
								    uint8x16_t h, m, l; /* retval high/middle/low */
							 | 
						||
| 
								 | 
							
								    uint8x16_t c, d, e;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    h = pmull_high(a, b);                       /* h3:h2:00:00 = a1*b1 */
							 | 
						||
| 
								 | 
							
								    l = pmull_low(a, b);                        /*   :  :l1:l0 = a0*b0 */
							 | 
						||
| 
								 | 
							
								    c = vextq_u8(b, b, 8);                      /*      :c1:c0 = b0:b1 */
							 | 
						||
| 
								 | 
							
								    d = pmull_high(a, c);                       /*   :d2:d1:00 = a1*b0 */
							 | 
						||
| 
								 | 
							
								    e = pmull_low(a, c);                        /*   :e2:e1:00 = a0*b1 */
							 | 
						||
| 
								 | 
							
								    m = veorq_u8(d, e);                         /*   :m2:m1:00 = d + e */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    ret.val[0] = h;
							 | 
						||
| 
								 | 
							
								    ret.val[1] = m;
							 | 
						||
| 
								 | 
							
								    ret.val[2] = l;
							 | 
						||
| 
								 | 
							
								    return ret;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * Modulo reduction.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * See: https://www.researchgate.net/publication/285612706_Implementing_GCM_on_ARMv8
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Section 4.3
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Modular reduction is slightly more complex. Write the GCM modulus as f(z) =
							 | 
						||
| 
								 | 
							
								 * z^128 +r(z), where r(z) = z^7+z^2+z+ 1. The well known approach is to
							 | 
						||
| 
								 | 
							
								 * consider that z^128 ≡r(z) (mod z^128 +r(z)), allowing us to write the 256-bit
							 | 
						||
| 
								 | 
							
								 * operand to be reduced as a(z) = h(z)z^128 +l(z)≡h(z)r(z) + l(z). That is, we
							 | 
						||
| 
								 | 
							
								 * simply multiply the higher part of the operand by r(z) and add it to l(z). If
							 | 
						||
| 
								 | 
							
								 * the result is still larger than 128 bits, we reduce again.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								static inline uint8x16_t poly_mult_reduce(uint8x16x3_t input)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    uint8x16_t const ZERO = vdupq_n_u8(0);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    uint64x2_t r = vreinterpretq_u64_u8(vdupq_n_u8(0x87));
							 | 
						||
| 
								 | 
							
								#if defined(__GNUC__)
							 | 
						||
| 
								 | 
							
								    /* use 'asm' as an optimisation barrier to prevent loading MODULO from
							 | 
						||
| 
								 | 
							
								     * memory. It is for GNUC compatible compilers.
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    asm ("" : "+w" (r));
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								    uint8x16_t const MODULO = vreinterpretq_u8_u64(vshrq_n_u64(r, 64 - 8));
							 | 
						||
| 
								 | 
							
								    uint8x16_t h, m, l; /* input high/middle/low 128b */
							 | 
						||
| 
								 | 
							
								    uint8x16_t c, d, e, f, g, n, o;
							 | 
						||
| 
								 | 
							
								    h = input.val[0];            /* h3:h2:00:00                          */
							 | 
						||
| 
								 | 
							
								    m = input.val[1];            /*   :m2:m1:00                          */
							 | 
						||
| 
								 | 
							
								    l = input.val[2];            /*   :  :l1:l0                          */
							 | 
						||
| 
								 | 
							
								    c = pmull_high(h, MODULO);   /*   :c2:c1:00 = reduction of h3        */
							 | 
						||
| 
								 | 
							
								    d = pmull_low(h, MODULO);    /*   :  :d1:d0 = reduction of h2        */
							 | 
						||
| 
								 | 
							
								    e = veorq_u8(c, m);          /*   :e2:e1:00 = m2:m1:00 + c2:c1:00    */
							 | 
						||
| 
								 | 
							
								    f = pmull_high(e, MODULO);   /*   :  :f1:f0 = reduction of e2        */
							 | 
						||
| 
								 | 
							
								    g = vextq_u8(ZERO, e, 8);    /*   :  :g1:00 = e1:00                  */
							 | 
						||
| 
								 | 
							
								    n = veorq_u8(d, l);          /*   :  :n1:n0 = d1:d0 + l1:l0          */
							 | 
						||
| 
								 | 
							
								    o = veorq_u8(n, f);          /*       o1:o0 = f1:f0 + n1:n0          */
							 | 
						||
| 
								 | 
							
								    return veorq_u8(o, g);       /*             = o1:o0 + g1:00          */
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * GCM multiplication: c = a times b in GF(2^128)
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								void mbedtls_aesce_gcm_mult(unsigned char c[16],
							 | 
						||
| 
								 | 
							
								                            const unsigned char a[16],
							 | 
						||
| 
								 | 
							
								                            const unsigned char b[16])
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    uint8x16_t va, vb, vc;
							 | 
						||
| 
								 | 
							
								    va = vrbitq_u8(vld1q_u8(&a[0]));
							 | 
						||
| 
								 | 
							
								    vb = vrbitq_u8(vld1q_u8(&b[0]));
							 | 
						||
| 
								 | 
							
								    vc = vrbitq_u8(poly_mult_reduce(poly_mult_128(va, vb)));
							 | 
						||
| 
								 | 
							
								    vst1q_u8(&c[0], vc);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif /* MBEDTLS_GCM_C */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if defined(MBEDTLS_POP_TARGET_PRAGMA)
							 | 
						||
| 
								 | 
							
								#if defined(__clang__)
							 | 
						||
| 
								 | 
							
								#pragma clang attribute pop
							 | 
						||
| 
								 | 
							
								#elif defined(__GNUC__)
							 | 
						||
| 
								 | 
							
								#pragma GCC pop_options
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								#undef MBEDTLS_POP_TARGET_PRAGMA
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif /* MBEDTLS_HAVE_ARM64 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif /* MBEDTLS_AESCE_C */
							 |