529 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			529 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
| /****************************************************************************
 | |
| 
 | |
| Copyright(c) 2019 by Aerospace C.Power (Chongqing) Microelectronics. ALL RIGHTS RESERVED.
 | |
| 
 | |
| This Information is proprietary to Aerospace C.Power (Chongqing) Microelectronics and MAY NOT
 | |
| be copied by any method or incorporated into another program without
 | |
| the express written consent of Aerospace C.Power. This Information or any portion
 | |
| thereof remains the property of Aerospace C.Power. The Information contained herein
 | |
| is believed to be accurate and Aerospace C.Power assumes no responsibility or
 | |
| liability for its use in any way and conveys no license or title under
 | |
| any patent or copyright and makes no representation or warranty that this
 | |
| Information is free from patent or copyright infringement.
 | |
| 
 | |
| ****************************************************************************/
 | |
| 
 | |
| /* os shim includes */
 | |
| #include "iot_config.h"
 | |
| #include "os_types.h"
 | |
| #include "os_utils.h"
 | |
| #include "hw_reg_api.h"
 | |
| #include "iot_errno_api.h"
 | |
| #include "iot_mem.h"
 | |
| 
 | |
| /* driver includes */
 | |
| #include "phy_nf.h"
 | |
| #include "phy_bb.h"
 | |
| #include "os_timer_api.h"
 | |
| #include "phy_rxtd_reg.h"
 | |
| #include "mac_sys_reg.h"
 | |
| #include "iot_io.h"
 | |
| #include "hw_phy_api.h"
 | |
| #include "iot_system.h"
 | |
| #include "phy_ana.h"
 | |
| #include "granite_reg.h"
 | |
| #include "phy_status.h"
 | |
| #include "iot_adc.h"
 | |
| #include "phy_phase.h"
 | |
| #include "os_utils_api.h"
 | |
| 
 | |
| #define CAL_NF_INVAILD_PHASE  (PLC_PHASE_C + 1)
 | |
| 
 | |
| typedef enum{
 | |
|     CAL_NF_PHASE_STATE_IDLE = 0,
 | |
|     CAL_NF_PHASE_STATE_ON_GOING = 1,
 | |
|     CAL_NF_PHASE_STATE_COMPLETED = 2,
 | |
|     CAL_NF_PHASE_STATE_FAIL = 3,
 | |
| } CAL_NF_PHASE_STATE;
 | |
| 
 | |
| /* callback for phy call mac dsr function */
 | |
| phy_call_mac_dsr_cb_t phy_call_mac_dsr_cb = NULL;
 | |
| 
 | |
| /* callback for phy call mac spur function */
 | |
| phy_call_mac_spur_cb_t phy_call_mac_spur_cb = NULL;
 | |
| 
 | |
| /* callback for phy call mac scan band function */
 | |
| phy_call_mac_scan_band_cb_t phy_call_mac_scan_band_cb = NULL;
 | |
| 
 | |
| void register_phy_call_mac_dsr_cb(phy_call_mac_dsr_cb_t cb)
 | |
| {
 | |
|     phy_call_mac_dsr_cb = cb;
 | |
| }
 | |
| 
 | |
| void register_phy_call_mac_spur_cb(phy_call_mac_spur_cb_t cb)
 | |
| {
 | |
|     phy_call_mac_spur_cb = cb;
 | |
| }
 | |
| 
 | |
| void register_phy_call_mac_scan_band_cb(phy_call_mac_scan_band_cb_t cb)
 | |
| {
 | |
|     phy_call_mac_scan_band_cb = cb;
 | |
| }
 | |
| 
 | |
| uint8_t IRAM_ATTR phy_agc_acc_dly_get(void)
 | |
| {
 | |
|     uint32_t tmp = 0;
 | |
|     uint8_t dly_exp = 0;
 | |
| 
 | |
|     /*
 | |
|     * get 20ms dly for different acc step
 | |
|     *  192/ 384/ 768/ 1536/ 3072/ 6144/
 | |
|     */
 | |
|     tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_ACC_STEP_ADDR);
 | |
|     uint32_t acc_step = REG_FIELD_GET(SW_AGC_ACC_STEP_HS, tmp);
 | |
|     if (acc_step == 0) {
 | |
|         dly_exp = 13;
 | |
|     } else if (acc_step == 1) {
 | |
|         dly_exp = 12;
 | |
|     } else if (acc_step == 2) {
 | |
|         dly_exp = 11;
 | |
|     } else if (acc_step == 3) {
 | |
|         dly_exp = 10;
 | |
|     } else if (acc_step == 4) {
 | |
|         dly_exp = 9;
 | |
|     } else if (acc_step == 4) {
 | |
|         dly_exp = 8;
 | |
|     } else {
 | |
|         dly_exp = 10;
 | |
|     }
 | |
| 
 | |
|     return dly_exp;
 | |
| }
 | |
| 
 | |
| #if PLC_SUPPORT_3PHASE_NF
 | |
| 
 | |
| static void IRAM_ATTR phy_cal_nf_start()
 | |
| {
 | |
|     /* get dly depend on ACC_STEP */
 | |
|     uint8_t dly_exp = phy_agc_acc_dly_get();
 | |
| 
 | |
|     uint32_t tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_NOISE_CAL_ADDR);
 | |
|     /* config dly */
 | |
|     REG_FIELD_SET(SW_CAL_NOISE_DLY_EXP, tmp, dly_exp);
 | |
|     /* trig again */
 | |
|     REG_FIELD_SET(SW_CAL_NOISE_START, tmp, 1);
 | |
|     PHY_RXTD_WRITE_REG(CFG_BB_AGC_NOISE_CAL_ADDR, tmp);
 | |
| 
 | |
|     /* clear cal nf cnt */
 | |
|     g_phy_ctxt.dep.cal_nf_cnt = 0;
 | |
| }
 | |
| 
 | |
| static uint32_t IRAM_ATTR phy_cal_nf_get_nf()
 | |
| {
 | |
|     uint32_t tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_NOISE_CAL_ADDR);
 | |
|     return REG_FIELD_GET(SW_CAL_NOISE_PWR, tmp);
 | |
| }
 | |
| 
 | |
| static uint32_t IRAM_ATTR phy_cal_nf_check_done()
 | |
| {
 | |
|     uint32_t tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_NOISE_CAL_ADDR);
 | |
|     return REG_FIELD_GET(SW_CAL_NOISE_DONE, tmp);
 | |
| }
 | |
| 
 | |
| static uint32_t IRAM_ATTR phy_cal_nf_get_phase()
 | |
| {
 | |
|     uint32_t tmp = RGF_MAC_READ_REG(CFG_RD_MACPHY_INTF_0_ADDR);
 | |
|     return REG_FIELD_GET(PHY_RX_PHASE_SEL, tmp);
 | |
| }
 | |
| 
 | |
| void phy_cal_nf_systick_stop()
 | |
| {
 | |
| #define PHY_CAL_NF_REQUIRE_TIMEOUT  50
 | |
| 
 | |
|     if (!g_phy_cpu_share_ctxt.cal_3phase_nf_init) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     g_phy_ctxt.dep.cal_nf_stop = 1;
 | |
| 
 | |
|     uint32_t start_ms = os_boot_time32();
 | |
|     uint32_t span = 0;
 | |
| 
 | |
|     do {
 | |
|         span = os_boot_time32() - start_ms;
 | |
|     } while (g_phy_ctxt.dep.cal_nf_stop != 0 &&
 | |
|         span < PHY_CAL_NF_REQUIRE_TIMEOUT);
 | |
| 
 | |
|     if (g_phy_ctxt.dep.cal_nf_stop) {
 | |
|         IOT_ASSERT(0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void phy_cal_nf_systick_start()
 | |
| {
 | |
|     g_phy_ctxt.dep.cal_nf_triger = 1;
 | |
| }
 | |
| 
 | |
| void phy_cal_nf_init()
 | |
| {
 | |
|     g_phy_cpu_share_ctxt.cal_3phase_nf_init = 1;
 | |
|     g_phy_ctxt.dep.cal_nf_stop = 0;
 | |
|     g_phy_ctxt.dep.cal_nf_triger = 0;
 | |
|     g_phy_ctxt.dep.cal_nf_running = 0;
 | |
|     g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_A] = 0;
 | |
|     g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_B] = 0;
 | |
|     g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_C] = 0;
 | |
|     g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_A] = 0;
 | |
|     g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_B] = 0;
 | |
|     g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_C] = 0;
 | |
|     g_phy_ctxt.dep.cal_nf_last_phase = CAL_NF_INVAILD_PHASE;
 | |
|     g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_A] = CAL_NF_PHASE_STATE_IDLE;
 | |
|     g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_B] = CAL_NF_PHASE_STATE_IDLE;
 | |
|     g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_C] = CAL_NF_PHASE_STATE_IDLE;
 | |
| }
 | |
| 
 | |
| void IRAM_ATTR phy_cal_nf_fsm()
 | |
| {
 | |
| #define CAL_NF_TIMEOUT_MS 150
 | |
|     uint32_t cur_phase, last_phase;
 | |
|     uint8_t cal_nf = PHY_NF_RST_VAL;
 | |
| 
 | |
|     if (g_phy_ctxt.dep.cal_nf_stop) {
 | |
|         g_phy_ctxt.dep.cal_nf_stop = 0;
 | |
|         /* reset fsm */
 | |
|         g_phy_ctxt.dep.cal_nf_triger = 0;
 | |
|         g_phy_ctxt.dep.cal_nf_running = 0;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* recalculate every second */
 | |
|     if (g_phy_ctxt.dep.cal_nf_triger) {
 | |
|         g_phy_ctxt.dep.cal_nf_triger = 0;
 | |
|         g_phy_ctxt.dep.cal_nf_running = 1;
 | |
|         g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_A] = 0;
 | |
|         g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_B] = 0;
 | |
|         g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_C] = 0;
 | |
|         g_phy_ctxt.dep.cal_nf_last_phase = CAL_NF_INVAILD_PHASE;
 | |
|         g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_A] = CAL_NF_PHASE_STATE_IDLE;
 | |
|         g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_B] = CAL_NF_PHASE_STATE_IDLE;
 | |
|         g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_C] = CAL_NF_PHASE_STATE_IDLE;
 | |
|     }
 | |
| 
 | |
|     if (!g_phy_ctxt.dep.cal_nf_running) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     cur_phase = phy_cal_nf_get_phase();
 | |
|     if (cur_phase == PLC_PHASE_ALL) {
 | |
|         cur_phase = PLC_PHASE_A;
 | |
|     }
 | |
| 
 | |
|     if (cur_phase > PLC_PHASE_C) {
 | |
|         /* reset fsm */
 | |
|         g_phy_ctxt.dep.cal_nf_triger = 0;
 | |
|         g_phy_ctxt.dep.cal_nf_running = 0;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     last_phase = g_phy_ctxt.dep.cal_nf_last_phase;
 | |
|     if (CAL_NF_INVAILD_PHASE == last_phase) {
 | |
|         if (CAL_NF_PHASE_STATE_COMPLETED ==
 | |
|             g_phy_ctxt.dep.cal_nf_phase_fsm[cur_phase]) {
 | |
|             return;
 | |
|         }
 | |
|         /* restart cal nf */
 | |
|         phy_cal_nf_start();
 | |
|         g_phy_ctxt.dep.cal_nf_phase_fsm[cur_phase] =
 | |
|             CAL_NF_PHASE_STATE_ON_GOING;
 | |
|         g_phy_ctxt.dep.cal_nf_last_phase = cur_phase;
 | |
|     } else {
 | |
|         if (last_phase != cur_phase) {
 | |
|             g_phy_ctxt.dep.cal_nf_phase_fsm[last_phase] =
 | |
|                 CAL_NF_PHASE_STATE_FAIL;
 | |
|             g_phy_ctxt.dep.cal_nf_last_phase = CAL_NF_INVAILD_PHASE;
 | |
|         } else {
 | |
|             if (phy_cal_nf_check_done()) {
 | |
|                 cal_nf = phy_cal_nf_get_nf();
 | |
|                 if (cal_nf != PHY_NF_RST_VAL) {
 | |
|                     g_phy_cpu_share_ctxt.nf_phase[cur_phase] = cal_nf;
 | |
|                     g_phy_ctxt.dep.nf_cal_ms[cur_phase] =
 | |
|                         g_phy_ctxt.dep.cal_nf_cnt;
 | |
|                     g_phy_ctxt.dep.cal_nf_phase_fsm[cur_phase] =
 | |
|                         CAL_NF_PHASE_STATE_COMPLETED;
 | |
|                     g_phy_ctxt.dep.cal_nf_last_phase = CAL_NF_INVAILD_PHASE;
 | |
|                     if (g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_A] ==
 | |
|                         CAL_NF_PHASE_STATE_COMPLETED &&
 | |
|                         g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_B] ==
 | |
|                         CAL_NF_PHASE_STATE_COMPLETED &&
 | |
|                         g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_C] ==
 | |
|                         CAL_NF_PHASE_STATE_COMPLETED) {
 | |
|                         g_phy_ctxt.dep.cal_nf_running = 0;
 | |
|                     }
 | |
|                 } else {
 | |
|                     /* restart cal nf */
 | |
|                     phy_cal_nf_start();
 | |
|                 }
 | |
|             } else {
 | |
|                 g_phy_ctxt.dep.cal_nf_cnt++;
 | |
|                 if (g_phy_ctxt.dep.cal_nf_cnt >= CAL_NF_TIMEOUT_MS) {
 | |
|                     /* restart cal nf */
 | |
|                     phy_cal_nf_start();
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void phy_cal_nf_on_3phase()
 | |
| {
 | |
|     uint32_t tmp;
 | |
|     uint8_t origin_hs, phase_idx, tmp_nf_192p;
 | |
|     uint8_t rx_phase_force_en, rx_phase_force;
 | |
| 
 | |
|     /* save force value */
 | |
|     tmp = RGF_MAC_READ_REG(CFG_PHY_FORCE_0_ADDR);
 | |
|     rx_phase_force_en = REG_FIELD_GET(CFG_PHY_RX_PHASE_SEL_FORCE_EN, tmp);
 | |
|     rx_phase_force = REG_FIELD_GET(CFG_PHY_RX_PHASE_SEL, tmp);
 | |
| 
 | |
|     /* 192 point */
 | |
|     tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_ACC_STEP_ADDR);
 | |
|     /* backup hs */
 | |
|     origin_hs = (uint8_t)REG_FIELD_GET(SW_AGC_ACC_STEP_HS, tmp);
 | |
|     REG_FIELD_SET(SW_AGC_ACC_STEP_HS, tmp, PHY_AGC_ACC_STEP_192P);
 | |
|     PHY_RXTD_WRITE_REG(CFG_BB_AGC_ACC_STEP_ADDR, tmp);
 | |
| 
 | |
|     for (phase_idx = PLC_PHASE_A; phase_idx <= PLC_PHASE_C; phase_idx++) {
 | |
|         phy_rx_phase_force_set_on_dump(true, phase_idx);
 | |
|         tmp_nf_192p = phy_rx_nf_by_rxtd_get(phy_agc_acc_dly_get());
 | |
|         if (tmp_nf_192p != PHY_NF_RST_VAL) {
 | |
|             g_phy_cpu_share_ctxt.nf_phase[phase_idx] = tmp_nf_192p;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     g_phy_ctxt.dep.nf =
 | |
|         max(g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_A],
 | |
|         max(g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_B],
 | |
|         g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_C]));
 | |
| 
 | |
|     /* revert hs */
 | |
|     REG_FIELD_SET(SW_AGC_ACC_STEP_HS, tmp, origin_hs);
 | |
|     PHY_RXTD_WRITE_REG(CFG_BB_AGC_ACC_STEP_ADDR, tmp);
 | |
| 
 | |
|     phy_rx_phase_force_set_on_dump(rx_phase_force_en, rx_phase_force);
 | |
| 
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| void phy_cal_nf_systick_stop()
 | |
| {
 | |
| }
 | |
| 
 | |
| void IRAM_ATTR phy_cal_nf_fsm()
 | |
| {
 | |
| }
 | |
| 
 | |
| void phy_cal_nf_init()
 | |
| {
 | |
|     g_phy_cpu_share_ctxt.cal_3phase_nf_init = 0;
 | |
| }
 | |
| 
 | |
| void phy_cal_nf_on_3phase()
 | |
| {
 | |
| }
 | |
| 
 | |
| void phy_cal_nf_systick_start()
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* PLC_SUPPORT_3PHASE_NF */
 | |
| 
 | |
| void phy_snr_cal_timer_handler()
 | |
| {
 | |
| #if HW_PLATFORM >= HW_PLATFORM_FPGA
 | |
|     static uint8_t cnt = 0;
 | |
|     iot_phy_sts_info_t total_sts = {0};
 | |
|     uint8_t rodata = 0;
 | |
|     uint32_t phy_status = 0;
 | |
| 
 | |
|     if (g_phy_cpu_share_ctxt.cal_3phase_nf_init) {
 | |
|         g_phy_ctxt.dep.nf =
 | |
|             max(g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_A],
 | |
|             max(g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_B],
 | |
|             g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_C]));
 | |
| 
 | |
|         /* print current noise floor */
 | |
|         iot_printf("[PHY] a_nf:%d, t_ms:%lu, b_nf:%d, t_ms:%lu, "
 | |
|             "c_nf:%d, t_ms:%d\n",
 | |
|             g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_A],
 | |
|             g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_A],
 | |
|             g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_B],
 | |
|             g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_B],
 | |
|             g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_C],
 | |
|             g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_C]);
 | |
| 
 | |
|         phy_cal_nf_systick_start();
 | |
|     } else {
 | |
|         /* check cal noise done  */
 | |
|         uint32_t tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_NOISE_CAL_ADDR);
 | |
|         if(REG_FIELD_GET(SW_CAL_NOISE_DONE,tmp))
 | |
|         {
 | |
|             /*121 is reset value, not valid value*/
 | |
|             if(REG_FIELD_GET(SW_CAL_NOISE_PWR,tmp) != PHY_NF_RST_VAL){
 | |
|                 g_phy_ctxt.dep.nf = REG_FIELD_GET(SW_CAL_NOISE_PWR,tmp);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* update cpu share nf */
 | |
|         tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_ACC_STEP_ADDR);
 | |
|         switch(REG_FIELD_GET(SW_AGC_ACC_STEP_HS, tmp))
 | |
|         {
 | |
|             case 0:
 | |
|                 g_phy_cpu_share_ctxt.nf_192p = g_phy_ctxt.dep.nf;
 | |
|                 break;
 | |
|             case 1:
 | |
|                 g_phy_cpu_share_ctxt.nf_384p = g_phy_ctxt.dep.nf;
 | |
|                 break;
 | |
|             case 2:
 | |
|                 g_phy_cpu_share_ctxt.nf_768p = g_phy_ctxt.dep.nf;
 | |
|                 break;
 | |
|             case 3:
 | |
|                 g_phy_cpu_share_ctxt.nf_1536p = g_phy_ctxt.dep.nf;
 | |
|                 break;
 | |
|             case 4:
 | |
|                 g_phy_cpu_share_ctxt.nf_3072p = g_phy_ctxt.dep.nf;
 | |
|                 break;
 | |
|             case 5:
 | |
|                 g_phy_cpu_share_ctxt.nf_6144p = g_phy_ctxt.dep.nf;
 | |
|                 break;
 | |
|             default:
 | |
|                 break;
 | |
|         }
 | |
| 
 | |
|         /* get dly depend on ACC_STEP */
 | |
|         uint32_t dly_exp = phy_agc_acc_dly_get();
 | |
| 
 | |
|         /* config dly */
 | |
|         tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_NOISE_CAL_ADDR);
 | |
|         REG_FIELD_SET(SW_CAL_NOISE_DLY_EXP, tmp, dly_exp);
 | |
|         PHY_RXTD_WRITE_REG(CFG_BB_AGC_NOISE_CAL_ADDR, tmp);
 | |
| 
 | |
|         /* trig again */
 | |
|         tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_NOISE_CAL_ADDR);
 | |
|         REG_FIELD_SET(SW_CAL_NOISE_START, tmp, 1);
 | |
|         PHY_RXTD_WRITE_REG(CFG_BB_AGC_NOISE_CAL_ADDR, tmp);
 | |
| 
 | |
|         /* print current noise floor */
 | |
|         iot_printf("[PHY] nf:%d, rx_phase:%d\n", g_phy_ctxt.dep.nf,
 | |
|             (RGF_MAC_READ_REG(CFG_RD_MACPHY_INTF_0_ADDR) &
 | |
|             PHY_RX_PHASE_SEL_MASK) >> PHY_RX_PHASE_SEL_OFFSET);
 | |
|     }
 | |
| 
 | |
|     /* print phy tx/rx cnt for each 4s */
 | |
|     if (phy_get_fw_mode() == MM_MODE && \
 | |
|         cnt >= 3) {
 | |
|         phy_sts_get(&total_sts);
 | |
|         iot_printf("mac tx ok:%d/4s, fc_ok:%d/4s, fc_err:%d/4s,", \
 | |
|             total_sts.mac_tx_ok_cnt, total_sts.fc_crc_ok_cnt, \
 | |
|             total_sts.fc_crc_fail_cnt);
 | |
| 
 | |
|         iot_printf("pld_ok:%d/4s, pld fail:%d/4s, sync ok:%d/4s\r\n", \
 | |
|             total_sts.pld_crc_ok_cnt, total_sts.pld_crc_fail_cnt, \
 | |
|             total_sts.sync_ok_cnt);
 | |
| 
 | |
|         uint8_t thd0_dft, thd1_dft;
 | |
|         phy_rxfd_pkt_det_thd_get(&thd0_dft, &thd1_dft);
 | |
|         iot_printf("rxfd_thd0:%d, rxfd_thd1:%d,", thd0_dft, thd1_dft);
 | |
| 
 | |
|         phy_ana_i2c_read(CFG_ANA_TOP_REG_ADDR, &phy_status, &rodata);
 | |
|         iot_printf("ANA_TOP:%x ",phy_status);
 | |
| 
 | |
|         iot_printf("F_0:%x F_1:%x F_2:%x ",\
 | |
|             RGF_MAC_READ_REG(CFG_PHY_FORCE_0_ADDR), \
 | |
|             RGF_MAC_READ_REG(CFG_PHY_FORCE_1_ADDR), \
 | |
|             RGF_MAC_READ_REG(CFG_PHY_FORCE_2_ADDR));
 | |
| 
 | |
|         extern uint32_t mac_get_tx_rifs();
 | |
|         iot_printf("INTF_0:%x INTF_1:%x, agc_level:0x%x, rifs:%lu\r\n", \
 | |
|             RGF_MAC_READ_REG(CFG_RD_MACPHY_INTF_0_ADDR),\
 | |
|             RGF_MAC_READ_REG(CFG_RD_MACPHY_INTF_1_ADDR),\
 | |
|             PHY_RXTD_READ_REG(CFG_BB_AGC_GAIN_LEVEL_ADDR),
 | |
|             mac_get_tx_rifs());
 | |
| 
 | |
|         phy_get_granite_reg();
 | |
| 
 | |
| #if IOT_SMART_CONFIG
 | |
|         /* just open update tempeerature on IOT preject */
 | |
|         iot_adc_temperature_val_update();
 | |
| #endif
 | |
| 
 | |
|         /* update log cnt */
 | |
|         g_phy_ctxt.dep.phy_status.phy_rx_cnt.phy_rx_fc_ok_cnt += \
 | |
|             total_sts.fc_crc_ok_cnt;
 | |
|         g_phy_ctxt.dep.phy_status.phy_rx_cnt.phy_rx_fc_fail_cnt += \
 | |
|             total_sts.fc_crc_fail_cnt;
 | |
|         g_phy_ctxt.dep.phy_status.phy_rx_cnt.phy_rx_fc_fail_cnt_clr = \
 | |
|             total_sts.fc_crc_fail_cnt;
 | |
|         g_phy_ctxt.dep.phy_status.phy_rx_cnt.phy_rx_pld_ok_cnt += \
 | |
|             total_sts.pld_crc_ok_cnt;
 | |
|         g_phy_ctxt.dep.phy_status.phy_rx_cnt.phy_rx_pld_fail_cnt += \
 | |
|             total_sts.pld_crc_fail_cnt;
 | |
|         g_phy_ctxt.dep.phy_status.phy_rx_cnt.phy_rx_pkt_cnt += \
 | |
|             total_sts.sync_ok_cnt;
 | |
|         g_phy_ctxt.dep.phy_status.phy_tx_pkt_cnt += total_sts.mac_tx_ok_cnt;
 | |
|         g_phy_ctxt.dep.phy_status.phy_tx_pkt_cnt_clr = total_sts.mac_tx_ok_cnt;
 | |
| 
 | |
|         cnt = 0;
 | |
|     } else {
 | |
|         cnt++;
 | |
|     }
 | |
| 
 | |
|     /* overstress handle */
 | |
|     phy_overstress_timer_handler();
 | |
| 
 | |
|     if (phy_call_mac_scan_band_cb) {
 | |
|         phy_call_mac_scan_band_cb();
 | |
|     }
 | |
| 
 | |
|     if (phy_call_mac_spur_cb) {
 | |
|         phy_call_mac_spur_cb();
 | |
|     }
 | |
| 
 | |
|     if (os_boot_time32() > 60000) {
 | |
|         g_phy_cpu_share_ctxt.sym_num_fix_dis = 1;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void phy_timer_handle()
 | |
| {
 | |
|     if (phy_call_mac_dsr_cb) {
 | |
|        phy_call_mac_dsr_cb();
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t phy_nf_timer_start()
 | |
| {
 | |
|     uint32_t ret = ERR_FAIL;
 | |
| 
 | |
| #if HW_PLATFORM >= HW_PLATFORM_FPGA
 | |
|     if (g_phy_ctxt.dep.phy_snr_cal_timer == 0) {
 | |
| #if IOT_DTEST_ONLY_SUPPORT == 0
 | |
|         g_phy_ctxt.dep.phy_snr_cal_timer = \
 | |
|             os_create_timer(PLC_PHY_COMMON_MID, true,
 | |
|             phy_timer_handle, NULL);
 | |
| #else
 | |
|         g_phy_ctxt.dep.phy_snr_cal_timer = \
 | |
|             os_create_timer(PLC_PHY_COMMON_MID, true,
 | |
|             phy_snr_cal_timer_handler, NULL);
 | |
| #endif
 | |
|         os_start_timer( \
 | |
|             g_phy_ctxt.dep.phy_snr_cal_timer, \
 | |
|             PHY_SNR_CAL_TIMER_PERIOD);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 |