502 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			502 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Armv8-A Cryptographic Extension support functions for Aarch64
 | |
|  *
 | |
|  *  Copyright The Mbed TLS Contributors
 | |
|  *  SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
|  *  not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  */
 | |
| 
 | |
| #if defined(__aarch64__) && !defined(__ARM_FEATURE_CRYPTO) && \
 | |
|     defined(__clang__) && __clang_major__ >= 4
 | |
| /* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
 | |
|  *
 | |
|  * The intrinsic declaration are guarded by predefined ACLE macros in clang:
 | |
|  * these are normally only enabled by the -march option on the command line.
 | |
|  * By defining the macros ourselves we gain access to those declarations without
 | |
|  * requiring -march on the command line.
 | |
|  *
 | |
|  * `arm_neon.h` could be included by any header file, so we put these defines
 | |
|  * at the top of this file, before any includes.
 | |
|  */
 | |
| #define __ARM_FEATURE_CRYPTO 1
 | |
| /* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions
 | |
|  *
 | |
|  * `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it
 | |
|  * for older compilers.
 | |
|  */
 | |
| #define __ARM_FEATURE_AES    1
 | |
| #define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG
 | |
| #endif
 | |
| 
 | |
| #include <string.h>
 | |
| #include "common.h"
 | |
| 
 | |
| #if defined(MBEDTLS_AESCE_C)
 | |
| 
 | |
| #include "aesce.h"
 | |
| 
 | |
| #if defined(MBEDTLS_HAVE_ARM64)
 | |
| 
 | |
| /* Compiler version checks. */
 | |
| #if defined(__clang__)
 | |
| #   if __clang_major__ < 4
 | |
| #       error "Minimum version of Clang for MBEDTLS_AESCE_C is 4.0."
 | |
| #   endif
 | |
| #elif defined(__GNUC__)
 | |
| #   if __GNUC__ < 6
 | |
| #       error "Minimum version of GCC for MBEDTLS_AESCE_C is 6.0."
 | |
| #   endif
 | |
| #elif defined(_MSC_VER)
 | |
| /* TODO: We haven't verified MSVC from 1920 to 1928. If someone verified that,
 | |
|  *       please update this and document of `MBEDTLS_AESCE_C` in
 | |
|  *       `mbedtls_config.h`. */
 | |
| #   if _MSC_VER < 1929
 | |
| #       error "Minimum version of MSVC for MBEDTLS_AESCE_C is 2019 version 16.11.2."
 | |
| #   endif
 | |
| #endif
 | |
| 
 | |
| #ifdef __ARM_NEON
 | |
| #include <arm_neon.h>
 | |
| #else
 | |
| #error "Target does not support NEON instructions"
 | |
| #endif
 | |
| 
 | |
| #if !(defined(__ARM_FEATURE_CRYPTO) || defined(__ARM_FEATURE_AES)) || \
 | |
|     defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG)
 | |
| #   if defined(__ARMCOMPILER_VERSION)
 | |
| #       if __ARMCOMPILER_VERSION <= 6090000
 | |
| #           error "Must use minimum -march=armv8-a+crypto for MBEDTLS_AESCE_C"
 | |
| #       else
 | |
| #           pragma clang attribute push (__attribute__((target("aes"))), apply_to=function)
 | |
| #           define MBEDTLS_POP_TARGET_PRAGMA
 | |
| #       endif
 | |
| #   elif defined(__clang__)
 | |
| #       pragma clang attribute push (__attribute__((target("aes"))), apply_to=function)
 | |
| #       define MBEDTLS_POP_TARGET_PRAGMA
 | |
| #   elif defined(__GNUC__)
 | |
| #       pragma GCC push_options
 | |
| #       pragma GCC target ("+crypto")
 | |
| #       define MBEDTLS_POP_TARGET_PRAGMA
 | |
| #   elif defined(_MSC_VER)
 | |
| #       error "Required feature(__ARM_FEATURE_AES) is not enabled."
 | |
| #   endif
 | |
| #endif /* !(__ARM_FEATURE_CRYPTO || __ARM_FEATURE_AES) ||
 | |
|           MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG */
 | |
| 
 | |
| #if defined(__linux__)
 | |
| #include <asm/hwcap.h>
 | |
| #include <sys/auxv.h>
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * AES instruction support detection routine
 | |
|  */
 | |
| int mbedtls_aesce_has_support(void)
 | |
| {
 | |
| #if defined(__linux__)
 | |
|     unsigned long auxval = getauxval(AT_HWCAP);
 | |
|     return (auxval & (HWCAP_ASIMD | HWCAP_AES)) ==
 | |
|            (HWCAP_ASIMD | HWCAP_AES);
 | |
| #else
 | |
|     /* Assume AES instructions are supported. */
 | |
|     return 1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Single round of AESCE encryption */
 | |
| #define AESCE_ENCRYPT_ROUND                   \
 | |
|     block = vaeseq_u8(block, vld1q_u8(keys)); \
 | |
|     block = vaesmcq_u8(block);                \
 | |
|     keys += 16
 | |
| /* Two rounds of AESCE encryption */
 | |
| #define AESCE_ENCRYPT_ROUND_X2        AESCE_ENCRYPT_ROUND; AESCE_ENCRYPT_ROUND
 | |
| 
 | |
| MBEDTLS_OPTIMIZE_FOR_PERFORMANCE
 | |
| static uint8x16_t aesce_encrypt_block(uint8x16_t block,
 | |
|                                       unsigned char *keys,
 | |
|                                       int rounds)
 | |
| {
 | |
|     /* 10, 12 or 14 rounds. Unroll loop. */
 | |
|     if (rounds == 10) {
 | |
|         goto rounds_10;
 | |
|     }
 | |
|     if (rounds == 12) {
 | |
|         goto rounds_12;
 | |
|     }
 | |
|     AESCE_ENCRYPT_ROUND_X2;
 | |
| rounds_12:
 | |
|     AESCE_ENCRYPT_ROUND_X2;
 | |
| rounds_10:
 | |
|     AESCE_ENCRYPT_ROUND_X2;
 | |
|     AESCE_ENCRYPT_ROUND_X2;
 | |
|     AESCE_ENCRYPT_ROUND_X2;
 | |
|     AESCE_ENCRYPT_ROUND_X2;
 | |
|     AESCE_ENCRYPT_ROUND;
 | |
| 
 | |
|     /* AES AddRoundKey for the previous round.
 | |
|      * SubBytes, ShiftRows for the final round.  */
 | |
|     block = vaeseq_u8(block, vld1q_u8(keys));
 | |
|     keys += 16;
 | |
| 
 | |
|     /* Final round: no MixColumns */
 | |
| 
 | |
|     /* Final AddRoundKey */
 | |
|     block = veorq_u8(block, vld1q_u8(keys));
 | |
| 
 | |
|     return block;
 | |
| }
 | |
| 
 | |
| /* Single round of AESCE decryption
 | |
|  *
 | |
|  * AES AddRoundKey, SubBytes, ShiftRows
 | |
|  *
 | |
|  *      block = vaesdq_u8(block, vld1q_u8(keys));
 | |
|  *
 | |
|  * AES inverse MixColumns for the next round.
 | |
|  *
 | |
|  * This means that we switch the order of the inverse AddRoundKey and
 | |
|  * inverse MixColumns operations. We have to do this as AddRoundKey is
 | |
|  * done in an atomic instruction together with the inverses of SubBytes
 | |
|  * and ShiftRows.
 | |
|  *
 | |
|  * It works because MixColumns is a linear operation over GF(2^8) and
 | |
|  * AddRoundKey is an exclusive or, which is equivalent to addition over
 | |
|  * GF(2^8). (The inverse of MixColumns needs to be applied to the
 | |
|  * affected round keys separately which has been done when the
 | |
|  * decryption round keys were calculated.)
 | |
|  *
 | |
|  *      block = vaesimcq_u8(block);
 | |
|  */
 | |
| #define AESCE_DECRYPT_ROUND                   \
 | |
|     block = vaesdq_u8(block, vld1q_u8(keys)); \
 | |
|     block = vaesimcq_u8(block);               \
 | |
|     keys += 16
 | |
| /* Two rounds of AESCE decryption */
 | |
| #define AESCE_DECRYPT_ROUND_X2        AESCE_DECRYPT_ROUND; AESCE_DECRYPT_ROUND
 | |
| 
 | |
| static uint8x16_t aesce_decrypt_block(uint8x16_t block,
 | |
|                                       unsigned char *keys,
 | |
|                                       int rounds)
 | |
| {
 | |
|     /* 10, 12 or 14 rounds. Unroll loop. */
 | |
|     if (rounds == 10) {
 | |
|         goto rounds_10;
 | |
|     }
 | |
|     if (rounds == 12) {
 | |
|         goto rounds_12;
 | |
|     }
 | |
|     AESCE_DECRYPT_ROUND_X2;
 | |
| rounds_12:
 | |
|     AESCE_DECRYPT_ROUND_X2;
 | |
| rounds_10:
 | |
|     AESCE_DECRYPT_ROUND_X2;
 | |
|     AESCE_DECRYPT_ROUND_X2;
 | |
|     AESCE_DECRYPT_ROUND_X2;
 | |
|     AESCE_DECRYPT_ROUND_X2;
 | |
|     AESCE_DECRYPT_ROUND;
 | |
| 
 | |
|     /* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the
 | |
|      * last full round. */
 | |
|     block = vaesdq_u8(block, vld1q_u8(keys));
 | |
|     keys += 16;
 | |
| 
 | |
|     /* Inverse AddRoundKey for inverting the initial round key addition. */
 | |
|     block = veorq_u8(block, vld1q_u8(keys));
 | |
| 
 | |
|     return block;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-ECB block en(de)cryption
 | |
|  */
 | |
| int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
 | |
|                             int mode,
 | |
|                             const unsigned char input[16],
 | |
|                             unsigned char output[16])
 | |
| {
 | |
|     uint8x16_t block = vld1q_u8(&input[0]);
 | |
|     unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset);
 | |
| 
 | |
|     if (mode == MBEDTLS_AES_ENCRYPT) {
 | |
|         block = aesce_encrypt_block(block, keys, ctx->nr);
 | |
|     } else {
 | |
|         block = aesce_decrypt_block(block, keys, ctx->nr);
 | |
|     }
 | |
|     vst1q_u8(&output[0], block);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute decryption round keys from encryption round keys
 | |
|  */
 | |
| void mbedtls_aesce_inverse_key(unsigned char *invkey,
 | |
|                                const unsigned char *fwdkey,
 | |
|                                int nr)
 | |
| {
 | |
|     int i, j;
 | |
|     j = nr;
 | |
|     vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16));
 | |
|     for (i = 1, j--; j > 0; i++, j--) {
 | |
|         vst1q_u8(invkey + i * 16,
 | |
|                  vaesimcq_u8(vld1q_u8(fwdkey + j * 16)));
 | |
|     }
 | |
|     vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16));
 | |
| 
 | |
| }
 | |
| 
 | |
| static inline uint32_t aes_rot_word(uint32_t word)
 | |
| {
 | |
|     return (word << (32 - 8)) | (word >> 8);
 | |
| }
 | |
| 
 | |
| static inline uint32_t aes_sub_word(uint32_t in)
 | |
| {
 | |
|     uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in));
 | |
|     uint8x16_t zero = vdupq_n_u8(0);
 | |
| 
 | |
|     /* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields
 | |
|      * the correct result as ShiftRows doesn't change the first row. */
 | |
|     v = vaeseq_u8(zero, v);
 | |
|     return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Key expansion function
 | |
|  */
 | |
| static void aesce_setkey_enc(unsigned char *rk,
 | |
|                              const unsigned char *key,
 | |
|                              const size_t key_bit_length)
 | |
| {
 | |
|     static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10,
 | |
|                                     0x20, 0x40, 0x80, 0x1b, 0x36 };
 | |
|     /* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
 | |
|      *   - Section 5, Nr = Nk + 6
 | |
|      *   - Section 5.2, the length of round keys is Nb*(Nr+1)
 | |
|      */
 | |
|     const uint32_t key_len_in_words = key_bit_length / 32;  /* Nk */
 | |
|     const size_t round_key_len_in_words = 4;                /* Nb */
 | |
|     const size_t rounds_needed = key_len_in_words + 6;      /* Nr */
 | |
|     const size_t round_keys_len_in_words =
 | |
|         round_key_len_in_words * (rounds_needed + 1);       /* Nb*(Nr+1) */
 | |
|     const uint32_t *rko_end = (uint32_t *) rk + round_keys_len_in_words;
 | |
| 
 | |
|     memcpy(rk, key, key_len_in_words * 4);
 | |
| 
 | |
|     for (uint32_t *rki = (uint32_t *) rk;
 | |
|          rki + key_len_in_words < rko_end;
 | |
|          rki += key_len_in_words) {
 | |
| 
 | |
|         size_t iteration = (rki - (uint32_t *) rk) / key_len_in_words;
 | |
|         uint32_t *rko;
 | |
|         rko = rki + key_len_in_words;
 | |
|         rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1]));
 | |
|         rko[0] ^= rcon[iteration] ^ rki[0];
 | |
|         rko[1] = rko[0] ^ rki[1];
 | |
|         rko[2] = rko[1] ^ rki[2];
 | |
|         rko[3] = rko[2] ^ rki[3];
 | |
|         if (rko + key_len_in_words > rko_end) {
 | |
|             /* Do not write overflow words.*/
 | |
|             continue;
 | |
|         }
 | |
| #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
 | |
|         switch (key_bit_length) {
 | |
|             case 128:
 | |
|                 break;
 | |
|             case 192:
 | |
|                 rko[4] = rko[3] ^ rki[4];
 | |
|                 rko[5] = rko[4] ^ rki[5];
 | |
|                 break;
 | |
|             case 256:
 | |
|                 rko[4] = aes_sub_word(rko[3]) ^ rki[4];
 | |
|                 rko[5] = rko[4] ^ rki[5];
 | |
|                 rko[6] = rko[5] ^ rki[6];
 | |
|                 rko[7] = rko[6] ^ rki[7];
 | |
|                 break;
 | |
|         }
 | |
| #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Key expansion, wrapper
 | |
|  */
 | |
| int mbedtls_aesce_setkey_enc(unsigned char *rk,
 | |
|                              const unsigned char *key,
 | |
|                              size_t bits)
 | |
| {
 | |
|     switch (bits) {
 | |
|         case 128:
 | |
|         case 192:
 | |
|         case 256:
 | |
|             aesce_setkey_enc(rk, key, bits);
 | |
|             break;
 | |
|         default:
 | |
|             return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_GCM_C)
 | |
| 
 | |
| #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 5
 | |
| /* Some intrinsics are not available for GCC 5.X. */
 | |
| #define vreinterpretq_p64_u8(a) ((poly64x2_t) a)
 | |
| #define vreinterpretq_u8_p128(a) ((uint8x16_t) a)
 | |
| static inline poly64_t vget_low_p64(poly64x2_t __a)
 | |
| {
 | |
|     uint64x2_t tmp = (uint64x2_t) (__a);
 | |
|     uint64x1_t lo = vcreate_u64(vgetq_lane_u64(tmp, 0));
 | |
|     return (poly64_t) (lo);
 | |
| }
 | |
| #endif /* !__clang__ && __GNUC__ && __GNUC__ == 5*/
 | |
| 
 | |
| /* vmull_p64/vmull_high_p64 wrappers.
 | |
|  *
 | |
|  * Older compilers miss some intrinsic functions for `poly*_t`. We use
 | |
|  * uint8x16_t and uint8x16x3_t as input/output parameters.
 | |
|  */
 | |
| #if defined(__GNUC__) && !defined(__clang__)
 | |
| /* GCC reports incompatible type error without cast. GCC think poly64_t and
 | |
|  * poly64x1_t are different, that is different with MSVC and Clang. */
 | |
| #define MBEDTLS_VMULL_P64(a, b) vmull_p64((poly64_t) a, (poly64_t) b)
 | |
| #else
 | |
| /* MSVC reports `error C2440: 'type cast'` with cast. Clang does not report
 | |
|  * error with/without cast. And I think poly64_t and poly64x1_t are same, no
 | |
|  * cast for clang also. */
 | |
| #define MBEDTLS_VMULL_P64(a, b) vmull_p64(a, b)
 | |
| #endif
 | |
| static inline uint8x16_t pmull_low(uint8x16_t a, uint8x16_t b)
 | |
| {
 | |
| 
 | |
|     return vreinterpretq_u8_p128(
 | |
|         MBEDTLS_VMULL_P64(
 | |
|             vget_low_p64(vreinterpretq_p64_u8(a)),
 | |
|             vget_low_p64(vreinterpretq_p64_u8(b))
 | |
|             ));
 | |
| }
 | |
| 
 | |
| static inline uint8x16_t pmull_high(uint8x16_t a, uint8x16_t b)
 | |
| {
 | |
|     return vreinterpretq_u8_p128(
 | |
|         vmull_high_p64(vreinterpretq_p64_u8(a),
 | |
|                        vreinterpretq_p64_u8(b)));
 | |
| }
 | |
| 
 | |
| /* GHASH does 128b polynomial multiplication on block in GF(2^128) defined by
 | |
|  * `x^128 + x^7 + x^2 + x + 1`.
 | |
|  *
 | |
|  * Arm64 only has 64b->128b polynomial multipliers, we need to do 4 64b
 | |
|  * multiplies to generate a 128b.
 | |
|  *
 | |
|  * `poly_mult_128` executes polynomial multiplication and outputs 256b that
 | |
|  * represented by 3 128b due to code size optimization.
 | |
|  *
 | |
|  * Output layout:
 | |
|  * |            |             |             |
 | |
|  * |------------|-------------|-------------|
 | |
|  * | ret.val[0] | h3:h2:00:00 | high   128b |
 | |
|  * | ret.val[1] |   :m2:m1:00 | middle 128b |
 | |
|  * | ret.val[2] |   :  :l1:l0 | low    128b |
 | |
|  */
 | |
| static inline uint8x16x3_t poly_mult_128(uint8x16_t a, uint8x16_t b)
 | |
| {
 | |
|     uint8x16x3_t ret;
 | |
|     uint8x16_t h, m, l; /* retval high/middle/low */
 | |
|     uint8x16_t c, d, e;
 | |
| 
 | |
|     h = pmull_high(a, b);                       /* h3:h2:00:00 = a1*b1 */
 | |
|     l = pmull_low(a, b);                        /*   :  :l1:l0 = a0*b0 */
 | |
|     c = vextq_u8(b, b, 8);                      /*      :c1:c0 = b0:b1 */
 | |
|     d = pmull_high(a, c);                       /*   :d2:d1:00 = a1*b0 */
 | |
|     e = pmull_low(a, c);                        /*   :e2:e1:00 = a0*b1 */
 | |
|     m = veorq_u8(d, e);                         /*   :m2:m1:00 = d + e */
 | |
| 
 | |
|     ret.val[0] = h;
 | |
|     ret.val[1] = m;
 | |
|     ret.val[2] = l;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Modulo reduction.
 | |
|  *
 | |
|  * See: https://www.researchgate.net/publication/285612706_Implementing_GCM_on_ARMv8
 | |
|  *
 | |
|  * Section 4.3
 | |
|  *
 | |
|  * Modular reduction is slightly more complex. Write the GCM modulus as f(z) =
 | |
|  * z^128 +r(z), where r(z) = z^7+z^2+z+ 1. The well known approach is to
 | |
|  * consider that z^128 ≡r(z) (mod z^128 +r(z)), allowing us to write the 256-bit
 | |
|  * operand to be reduced as a(z) = h(z)z^128 +l(z)≡h(z)r(z) + l(z). That is, we
 | |
|  * simply multiply the higher part of the operand by r(z) and add it to l(z). If
 | |
|  * the result is still larger than 128 bits, we reduce again.
 | |
|  */
 | |
| static inline uint8x16_t poly_mult_reduce(uint8x16x3_t input)
 | |
| {
 | |
|     uint8x16_t const ZERO = vdupq_n_u8(0);
 | |
| 
 | |
|     uint64x2_t r = vreinterpretq_u64_u8(vdupq_n_u8(0x87));
 | |
| #if defined(__GNUC__)
 | |
|     /* use 'asm' as an optimisation barrier to prevent loading MODULO from
 | |
|      * memory. It is for GNUC compatible compilers.
 | |
|      */
 | |
|     asm ("" : "+w" (r));
 | |
| #endif
 | |
|     uint8x16_t const MODULO = vreinterpretq_u8_u64(vshrq_n_u64(r, 64 - 8));
 | |
|     uint8x16_t h, m, l; /* input high/middle/low 128b */
 | |
|     uint8x16_t c, d, e, f, g, n, o;
 | |
|     h = input.val[0];            /* h3:h2:00:00                          */
 | |
|     m = input.val[1];            /*   :m2:m1:00                          */
 | |
|     l = input.val[2];            /*   :  :l1:l0                          */
 | |
|     c = pmull_high(h, MODULO);   /*   :c2:c1:00 = reduction of h3        */
 | |
|     d = pmull_low(h, MODULO);    /*   :  :d1:d0 = reduction of h2        */
 | |
|     e = veorq_u8(c, m);          /*   :e2:e1:00 = m2:m1:00 + c2:c1:00    */
 | |
|     f = pmull_high(e, MODULO);   /*   :  :f1:f0 = reduction of e2        */
 | |
|     g = vextq_u8(ZERO, e, 8);    /*   :  :g1:00 = e1:00                  */
 | |
|     n = veorq_u8(d, l);          /*   :  :n1:n0 = d1:d0 + l1:l0          */
 | |
|     o = veorq_u8(n, f);          /*       o1:o0 = f1:f0 + n1:n0          */
 | |
|     return veorq_u8(o, g);       /*             = o1:o0 + g1:00          */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * GCM multiplication: c = a times b in GF(2^128)
 | |
|  */
 | |
| void mbedtls_aesce_gcm_mult(unsigned char c[16],
 | |
|                             const unsigned char a[16],
 | |
|                             const unsigned char b[16])
 | |
| {
 | |
|     uint8x16_t va, vb, vc;
 | |
|     va = vrbitq_u8(vld1q_u8(&a[0]));
 | |
|     vb = vrbitq_u8(vld1q_u8(&b[0]));
 | |
|     vc = vrbitq_u8(poly_mult_reduce(poly_mult_128(va, vb)));
 | |
|     vst1q_u8(&c[0], vc);
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_GCM_C */
 | |
| 
 | |
| #if defined(MBEDTLS_POP_TARGET_PRAGMA)
 | |
| #if defined(__clang__)
 | |
| #pragma clang attribute pop
 | |
| #elif defined(__GNUC__)
 | |
| #pragma GCC pop_options
 | |
| #endif
 | |
| #undef MBEDTLS_POP_TARGET_PRAGMA
 | |
| #endif
 | |
| 
 | |
| #endif /* MBEDTLS_HAVE_ARM64 */
 | |
| 
 | |
| #endif /* MBEDTLS_AESCE_C */
 |