529 lines
16 KiB
C
Executable File
529 lines
16 KiB
C
Executable File
/****************************************************************************
|
|
|
|
Copyright(c) 2019 by Aerospace C.Power (Chongqing) Microelectronics. ALL RIGHTS RESERVED.
|
|
|
|
This Information is proprietary to Aerospace C.Power (Chongqing) Microelectronics and MAY NOT
|
|
be copied by any method or incorporated into another program without
|
|
the express written consent of Aerospace C.Power. This Information or any portion
|
|
thereof remains the property of Aerospace C.Power. The Information contained herein
|
|
is believed to be accurate and Aerospace C.Power assumes no responsibility or
|
|
liability for its use in any way and conveys no license or title under
|
|
any patent or copyright and makes no representation or warranty that this
|
|
Information is free from patent or copyright infringement.
|
|
|
|
****************************************************************************/
|
|
|
|
/* os shim includes */
|
|
#include "iot_config.h"
|
|
#include "os_types.h"
|
|
#include "os_utils.h"
|
|
#include "hw_reg_api.h"
|
|
#include "iot_errno_api.h"
|
|
#include "iot_mem.h"
|
|
|
|
/* driver includes */
|
|
#include "phy_nf.h"
|
|
#include "phy_bb.h"
|
|
#include "os_timer_api.h"
|
|
#include "phy_rxtd_reg.h"
|
|
#include "mac_sys_reg.h"
|
|
#include "iot_io.h"
|
|
#include "hw_phy_api.h"
|
|
#include "iot_system.h"
|
|
#include "phy_ana.h"
|
|
#include "granite_reg.h"
|
|
#include "phy_status.h"
|
|
#include "iot_adc.h"
|
|
#include "phy_phase.h"
|
|
#include "os_utils_api.h"
|
|
|
|
#define CAL_NF_INVAILD_PHASE (PLC_PHASE_C + 1)
|
|
|
|
typedef enum{
|
|
CAL_NF_PHASE_STATE_IDLE = 0,
|
|
CAL_NF_PHASE_STATE_ON_GOING = 1,
|
|
CAL_NF_PHASE_STATE_COMPLETED = 2,
|
|
CAL_NF_PHASE_STATE_FAIL = 3,
|
|
} CAL_NF_PHASE_STATE;
|
|
|
|
/* callback for phy call mac dsr function */
|
|
phy_call_mac_dsr_cb_t phy_call_mac_dsr_cb = NULL;
|
|
|
|
/* callback for phy call mac spur function */
|
|
phy_call_mac_spur_cb_t phy_call_mac_spur_cb = NULL;
|
|
|
|
/* callback for phy call mac scan band function */
|
|
phy_call_mac_scan_band_cb_t phy_call_mac_scan_band_cb = NULL;
|
|
|
|
void register_phy_call_mac_dsr_cb(phy_call_mac_dsr_cb_t cb)
|
|
{
|
|
phy_call_mac_dsr_cb = cb;
|
|
}
|
|
|
|
void register_phy_call_mac_spur_cb(phy_call_mac_spur_cb_t cb)
|
|
{
|
|
phy_call_mac_spur_cb = cb;
|
|
}
|
|
|
|
void register_phy_call_mac_scan_band_cb(phy_call_mac_scan_band_cb_t cb)
|
|
{
|
|
phy_call_mac_scan_band_cb = cb;
|
|
}
|
|
|
|
uint8_t IRAM_ATTR phy_agc_acc_dly_get(void)
|
|
{
|
|
uint32_t tmp = 0;
|
|
uint8_t dly_exp = 0;
|
|
|
|
/*
|
|
* get 20ms dly for different acc step
|
|
* 192/ 384/ 768/ 1536/ 3072/ 6144/
|
|
*/
|
|
tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_ACC_STEP_ADDR);
|
|
uint32_t acc_step = REG_FIELD_GET(SW_AGC_ACC_STEP_HS, tmp);
|
|
if (acc_step == 0) {
|
|
dly_exp = 13;
|
|
} else if (acc_step == 1) {
|
|
dly_exp = 12;
|
|
} else if (acc_step == 2) {
|
|
dly_exp = 11;
|
|
} else if (acc_step == 3) {
|
|
dly_exp = 10;
|
|
} else if (acc_step == 4) {
|
|
dly_exp = 9;
|
|
} else if (acc_step == 4) {
|
|
dly_exp = 8;
|
|
} else {
|
|
dly_exp = 10;
|
|
}
|
|
|
|
return dly_exp;
|
|
}
|
|
|
|
#if PLC_SUPPORT_3PHASE_NF
|
|
|
|
static void IRAM_ATTR phy_cal_nf_start()
|
|
{
|
|
/* get dly depend on ACC_STEP */
|
|
uint8_t dly_exp = phy_agc_acc_dly_get();
|
|
|
|
uint32_t tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_NOISE_CAL_ADDR);
|
|
/* config dly */
|
|
REG_FIELD_SET(SW_CAL_NOISE_DLY_EXP, tmp, dly_exp);
|
|
/* trig again */
|
|
REG_FIELD_SET(SW_CAL_NOISE_START, tmp, 1);
|
|
PHY_RXTD_WRITE_REG(CFG_BB_AGC_NOISE_CAL_ADDR, tmp);
|
|
|
|
/* clear cal nf cnt */
|
|
g_phy_ctxt.dep.cal_nf_cnt = 0;
|
|
}
|
|
|
|
static uint32_t IRAM_ATTR phy_cal_nf_get_nf()
|
|
{
|
|
uint32_t tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_NOISE_CAL_ADDR);
|
|
return REG_FIELD_GET(SW_CAL_NOISE_PWR, tmp);
|
|
}
|
|
|
|
static uint32_t IRAM_ATTR phy_cal_nf_check_done()
|
|
{
|
|
uint32_t tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_NOISE_CAL_ADDR);
|
|
return REG_FIELD_GET(SW_CAL_NOISE_DONE, tmp);
|
|
}
|
|
|
|
static uint32_t IRAM_ATTR phy_cal_nf_get_phase()
|
|
{
|
|
uint32_t tmp = RGF_MAC_READ_REG(CFG_RD_MACPHY_INTF_0_ADDR);
|
|
return REG_FIELD_GET(PHY_RX_PHASE_SEL, tmp);
|
|
}
|
|
|
|
void phy_cal_nf_systick_stop()
|
|
{
|
|
#define PHY_CAL_NF_REQUIRE_TIMEOUT 50
|
|
|
|
if (!g_phy_cpu_share_ctxt.cal_3phase_nf_init) {
|
|
return;
|
|
}
|
|
|
|
g_phy_ctxt.dep.cal_nf_stop = 1;
|
|
|
|
uint32_t start_ms = os_boot_time32();
|
|
uint32_t span = 0;
|
|
|
|
do {
|
|
span = os_boot_time32() - start_ms;
|
|
} while (g_phy_ctxt.dep.cal_nf_stop != 0 &&
|
|
span < PHY_CAL_NF_REQUIRE_TIMEOUT);
|
|
|
|
if (g_phy_ctxt.dep.cal_nf_stop) {
|
|
IOT_ASSERT(0);
|
|
}
|
|
}
|
|
|
|
void phy_cal_nf_systick_start()
|
|
{
|
|
g_phy_ctxt.dep.cal_nf_triger = 1;
|
|
}
|
|
|
|
void phy_cal_nf_init()
|
|
{
|
|
g_phy_cpu_share_ctxt.cal_3phase_nf_init = 1;
|
|
g_phy_ctxt.dep.cal_nf_stop = 0;
|
|
g_phy_ctxt.dep.cal_nf_triger = 0;
|
|
g_phy_ctxt.dep.cal_nf_running = 0;
|
|
g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_A] = 0;
|
|
g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_B] = 0;
|
|
g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_C] = 0;
|
|
g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_A] = 0;
|
|
g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_B] = 0;
|
|
g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_C] = 0;
|
|
g_phy_ctxt.dep.cal_nf_last_phase = CAL_NF_INVAILD_PHASE;
|
|
g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_A] = CAL_NF_PHASE_STATE_IDLE;
|
|
g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_B] = CAL_NF_PHASE_STATE_IDLE;
|
|
g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_C] = CAL_NF_PHASE_STATE_IDLE;
|
|
}
|
|
|
|
void IRAM_ATTR phy_cal_nf_fsm()
|
|
{
|
|
#define CAL_NF_TIMEOUT_MS 150
|
|
uint32_t cur_phase, last_phase;
|
|
uint8_t cal_nf = PHY_NF_RST_VAL;
|
|
|
|
if (g_phy_ctxt.dep.cal_nf_stop) {
|
|
g_phy_ctxt.dep.cal_nf_stop = 0;
|
|
/* reset fsm */
|
|
g_phy_ctxt.dep.cal_nf_triger = 0;
|
|
g_phy_ctxt.dep.cal_nf_running = 0;
|
|
return;
|
|
}
|
|
|
|
/* recalculate every second */
|
|
if (g_phy_ctxt.dep.cal_nf_triger) {
|
|
g_phy_ctxt.dep.cal_nf_triger = 0;
|
|
g_phy_ctxt.dep.cal_nf_running = 1;
|
|
g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_A] = 0;
|
|
g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_B] = 0;
|
|
g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_C] = 0;
|
|
g_phy_ctxt.dep.cal_nf_last_phase = CAL_NF_INVAILD_PHASE;
|
|
g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_A] = CAL_NF_PHASE_STATE_IDLE;
|
|
g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_B] = CAL_NF_PHASE_STATE_IDLE;
|
|
g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_C] = CAL_NF_PHASE_STATE_IDLE;
|
|
}
|
|
|
|
if (!g_phy_ctxt.dep.cal_nf_running) {
|
|
return;
|
|
}
|
|
|
|
cur_phase = phy_cal_nf_get_phase();
|
|
if (cur_phase == PLC_PHASE_ALL) {
|
|
cur_phase = PLC_PHASE_A;
|
|
}
|
|
|
|
if (cur_phase > PLC_PHASE_C) {
|
|
/* reset fsm */
|
|
g_phy_ctxt.dep.cal_nf_triger = 0;
|
|
g_phy_ctxt.dep.cal_nf_running = 0;
|
|
return;
|
|
}
|
|
|
|
last_phase = g_phy_ctxt.dep.cal_nf_last_phase;
|
|
if (CAL_NF_INVAILD_PHASE == last_phase) {
|
|
if (CAL_NF_PHASE_STATE_COMPLETED ==
|
|
g_phy_ctxt.dep.cal_nf_phase_fsm[cur_phase]) {
|
|
return;
|
|
}
|
|
/* restart cal nf */
|
|
phy_cal_nf_start();
|
|
g_phy_ctxt.dep.cal_nf_phase_fsm[cur_phase] =
|
|
CAL_NF_PHASE_STATE_ON_GOING;
|
|
g_phy_ctxt.dep.cal_nf_last_phase = cur_phase;
|
|
} else {
|
|
if (last_phase != cur_phase) {
|
|
g_phy_ctxt.dep.cal_nf_phase_fsm[last_phase] =
|
|
CAL_NF_PHASE_STATE_FAIL;
|
|
g_phy_ctxt.dep.cal_nf_last_phase = CAL_NF_INVAILD_PHASE;
|
|
} else {
|
|
if (phy_cal_nf_check_done()) {
|
|
cal_nf = phy_cal_nf_get_nf();
|
|
if (cal_nf != PHY_NF_RST_VAL) {
|
|
g_phy_cpu_share_ctxt.nf_phase[cur_phase] = cal_nf;
|
|
g_phy_ctxt.dep.nf_cal_ms[cur_phase] =
|
|
g_phy_ctxt.dep.cal_nf_cnt;
|
|
g_phy_ctxt.dep.cal_nf_phase_fsm[cur_phase] =
|
|
CAL_NF_PHASE_STATE_COMPLETED;
|
|
g_phy_ctxt.dep.cal_nf_last_phase = CAL_NF_INVAILD_PHASE;
|
|
if (g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_A] ==
|
|
CAL_NF_PHASE_STATE_COMPLETED &&
|
|
g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_B] ==
|
|
CAL_NF_PHASE_STATE_COMPLETED &&
|
|
g_phy_ctxt.dep.cal_nf_phase_fsm[PLC_PHASE_C] ==
|
|
CAL_NF_PHASE_STATE_COMPLETED) {
|
|
g_phy_ctxt.dep.cal_nf_running = 0;
|
|
}
|
|
} else {
|
|
/* restart cal nf */
|
|
phy_cal_nf_start();
|
|
}
|
|
} else {
|
|
g_phy_ctxt.dep.cal_nf_cnt++;
|
|
if (g_phy_ctxt.dep.cal_nf_cnt >= CAL_NF_TIMEOUT_MS) {
|
|
/* restart cal nf */
|
|
phy_cal_nf_start();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void phy_cal_nf_on_3phase()
|
|
{
|
|
uint32_t tmp;
|
|
uint8_t origin_hs, phase_idx, tmp_nf_192p;
|
|
uint8_t rx_phase_force_en, rx_phase_force;
|
|
|
|
/* save force value */
|
|
tmp = RGF_MAC_READ_REG(CFG_PHY_FORCE_0_ADDR);
|
|
rx_phase_force_en = REG_FIELD_GET(CFG_PHY_RX_PHASE_SEL_FORCE_EN, tmp);
|
|
rx_phase_force = REG_FIELD_GET(CFG_PHY_RX_PHASE_SEL, tmp);
|
|
|
|
/* 192 point */
|
|
tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_ACC_STEP_ADDR);
|
|
/* backup hs */
|
|
origin_hs = (uint8_t)REG_FIELD_GET(SW_AGC_ACC_STEP_HS, tmp);
|
|
REG_FIELD_SET(SW_AGC_ACC_STEP_HS, tmp, PHY_AGC_ACC_STEP_192P);
|
|
PHY_RXTD_WRITE_REG(CFG_BB_AGC_ACC_STEP_ADDR, tmp);
|
|
|
|
for (phase_idx = PLC_PHASE_A; phase_idx <= PLC_PHASE_C; phase_idx++) {
|
|
phy_rx_phase_force_set_on_dump(true, phase_idx);
|
|
tmp_nf_192p = phy_rx_nf_by_rxtd_get(phy_agc_acc_dly_get());
|
|
if (tmp_nf_192p != PHY_NF_RST_VAL) {
|
|
g_phy_cpu_share_ctxt.nf_phase[phase_idx] = tmp_nf_192p;
|
|
}
|
|
}
|
|
|
|
g_phy_ctxt.dep.nf =
|
|
max(g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_A],
|
|
max(g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_B],
|
|
g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_C]));
|
|
|
|
/* revert hs */
|
|
REG_FIELD_SET(SW_AGC_ACC_STEP_HS, tmp, origin_hs);
|
|
PHY_RXTD_WRITE_REG(CFG_BB_AGC_ACC_STEP_ADDR, tmp);
|
|
|
|
phy_rx_phase_force_set_on_dump(rx_phase_force_en, rx_phase_force);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
void phy_cal_nf_systick_stop()
|
|
{
|
|
}
|
|
|
|
void IRAM_ATTR phy_cal_nf_fsm()
|
|
{
|
|
}
|
|
|
|
void phy_cal_nf_init()
|
|
{
|
|
g_phy_cpu_share_ctxt.cal_3phase_nf_init = 0;
|
|
}
|
|
|
|
void phy_cal_nf_on_3phase()
|
|
{
|
|
}
|
|
|
|
void phy_cal_nf_systick_start()
|
|
{
|
|
}
|
|
|
|
#endif /* PLC_SUPPORT_3PHASE_NF */
|
|
|
|
void phy_snr_cal_timer_handler()
|
|
{
|
|
#if HW_PLATFORM >= HW_PLATFORM_FPGA
|
|
static uint8_t cnt = 0;
|
|
iot_phy_sts_info_t total_sts = {0};
|
|
uint8_t rodata = 0;
|
|
uint32_t phy_status = 0;
|
|
|
|
if (g_phy_cpu_share_ctxt.cal_3phase_nf_init) {
|
|
g_phy_ctxt.dep.nf =
|
|
max(g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_A],
|
|
max(g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_B],
|
|
g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_C]));
|
|
|
|
/* print current noise floor */
|
|
iot_printf("[PHY] a_nf:%d, t_ms:%lu, b_nf:%d, t_ms:%lu, "
|
|
"c_nf:%d, t_ms:%d\n",
|
|
g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_A],
|
|
g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_A],
|
|
g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_B],
|
|
g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_B],
|
|
g_phy_cpu_share_ctxt.nf_phase[PLC_PHASE_C],
|
|
g_phy_ctxt.dep.nf_cal_ms[PLC_PHASE_C]);
|
|
|
|
phy_cal_nf_systick_start();
|
|
} else {
|
|
/* check cal noise done */
|
|
uint32_t tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_NOISE_CAL_ADDR);
|
|
if(REG_FIELD_GET(SW_CAL_NOISE_DONE,tmp))
|
|
{
|
|
/*121 is reset value, not valid value*/
|
|
if(REG_FIELD_GET(SW_CAL_NOISE_PWR,tmp) != PHY_NF_RST_VAL){
|
|
g_phy_ctxt.dep.nf = REG_FIELD_GET(SW_CAL_NOISE_PWR,tmp);
|
|
}
|
|
}
|
|
|
|
/* update cpu share nf */
|
|
tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_ACC_STEP_ADDR);
|
|
switch(REG_FIELD_GET(SW_AGC_ACC_STEP_HS, tmp))
|
|
{
|
|
case 0:
|
|
g_phy_cpu_share_ctxt.nf_192p = g_phy_ctxt.dep.nf;
|
|
break;
|
|
case 1:
|
|
g_phy_cpu_share_ctxt.nf_384p = g_phy_ctxt.dep.nf;
|
|
break;
|
|
case 2:
|
|
g_phy_cpu_share_ctxt.nf_768p = g_phy_ctxt.dep.nf;
|
|
break;
|
|
case 3:
|
|
g_phy_cpu_share_ctxt.nf_1536p = g_phy_ctxt.dep.nf;
|
|
break;
|
|
case 4:
|
|
g_phy_cpu_share_ctxt.nf_3072p = g_phy_ctxt.dep.nf;
|
|
break;
|
|
case 5:
|
|
g_phy_cpu_share_ctxt.nf_6144p = g_phy_ctxt.dep.nf;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* get dly depend on ACC_STEP */
|
|
uint32_t dly_exp = phy_agc_acc_dly_get();
|
|
|
|
/* config dly */
|
|
tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_NOISE_CAL_ADDR);
|
|
REG_FIELD_SET(SW_CAL_NOISE_DLY_EXP, tmp, dly_exp);
|
|
PHY_RXTD_WRITE_REG(CFG_BB_AGC_NOISE_CAL_ADDR, tmp);
|
|
|
|
/* trig again */
|
|
tmp = PHY_RXTD_READ_REG(CFG_BB_AGC_NOISE_CAL_ADDR);
|
|
REG_FIELD_SET(SW_CAL_NOISE_START, tmp, 1);
|
|
PHY_RXTD_WRITE_REG(CFG_BB_AGC_NOISE_CAL_ADDR, tmp);
|
|
|
|
/* print current noise floor */
|
|
iot_printf("[PHY] nf:%d, rx_phase:%d\n", g_phy_ctxt.dep.nf,
|
|
(RGF_MAC_READ_REG(CFG_RD_MACPHY_INTF_0_ADDR) &
|
|
PHY_RX_PHASE_SEL_MASK) >> PHY_RX_PHASE_SEL_OFFSET);
|
|
}
|
|
|
|
/* print phy tx/rx cnt for each 4s */
|
|
if (phy_get_fw_mode() == MM_MODE && \
|
|
cnt >= 3) {
|
|
phy_sts_get(&total_sts);
|
|
iot_printf("mac tx ok:%d/4s, fc_ok:%d/4s, fc_err:%d/4s,", \
|
|
total_sts.mac_tx_ok_cnt, total_sts.fc_crc_ok_cnt, \
|
|
total_sts.fc_crc_fail_cnt);
|
|
|
|
iot_printf("pld_ok:%d/4s, pld fail:%d/4s, sync ok:%d/4s\r\n", \
|
|
total_sts.pld_crc_ok_cnt, total_sts.pld_crc_fail_cnt, \
|
|
total_sts.sync_ok_cnt);
|
|
|
|
uint8_t thd0_dft, thd1_dft;
|
|
phy_rxfd_pkt_det_thd_get(&thd0_dft, &thd1_dft);
|
|
iot_printf("rxfd_thd0:%d, rxfd_thd1:%d,", thd0_dft, thd1_dft);
|
|
|
|
phy_ana_i2c_read(CFG_ANA_TOP_REG_ADDR, &phy_status, &rodata);
|
|
iot_printf("ANA_TOP:%x ",phy_status);
|
|
|
|
iot_printf("F_0:%x F_1:%x F_2:%x ",\
|
|
RGF_MAC_READ_REG(CFG_PHY_FORCE_0_ADDR), \
|
|
RGF_MAC_READ_REG(CFG_PHY_FORCE_1_ADDR), \
|
|
RGF_MAC_READ_REG(CFG_PHY_FORCE_2_ADDR));
|
|
|
|
extern uint32_t mac_get_tx_rifs();
|
|
iot_printf("INTF_0:%x INTF_1:%x, agc_level:0x%x, rifs:%lu\r\n", \
|
|
RGF_MAC_READ_REG(CFG_RD_MACPHY_INTF_0_ADDR),\
|
|
RGF_MAC_READ_REG(CFG_RD_MACPHY_INTF_1_ADDR),\
|
|
PHY_RXTD_READ_REG(CFG_BB_AGC_GAIN_LEVEL_ADDR),
|
|
mac_get_tx_rifs());
|
|
|
|
phy_get_granite_reg();
|
|
|
|
#if IOT_SMART_CONFIG
|
|
/* just open update tempeerature on IOT preject */
|
|
iot_adc_temperature_val_update();
|
|
#endif
|
|
|
|
/* update log cnt */
|
|
g_phy_ctxt.dep.phy_status.phy_rx_cnt.phy_rx_fc_ok_cnt += \
|
|
total_sts.fc_crc_ok_cnt;
|
|
g_phy_ctxt.dep.phy_status.phy_rx_cnt.phy_rx_fc_fail_cnt += \
|
|
total_sts.fc_crc_fail_cnt;
|
|
g_phy_ctxt.dep.phy_status.phy_rx_cnt.phy_rx_fc_fail_cnt_clr = \
|
|
total_sts.fc_crc_fail_cnt;
|
|
g_phy_ctxt.dep.phy_status.phy_rx_cnt.phy_rx_pld_ok_cnt += \
|
|
total_sts.pld_crc_ok_cnt;
|
|
g_phy_ctxt.dep.phy_status.phy_rx_cnt.phy_rx_pld_fail_cnt += \
|
|
total_sts.pld_crc_fail_cnt;
|
|
g_phy_ctxt.dep.phy_status.phy_rx_cnt.phy_rx_pkt_cnt += \
|
|
total_sts.sync_ok_cnt;
|
|
g_phy_ctxt.dep.phy_status.phy_tx_pkt_cnt += total_sts.mac_tx_ok_cnt;
|
|
g_phy_ctxt.dep.phy_status.phy_tx_pkt_cnt_clr = total_sts.mac_tx_ok_cnt;
|
|
|
|
cnt = 0;
|
|
} else {
|
|
cnt++;
|
|
}
|
|
|
|
/* overstress handle */
|
|
phy_overstress_timer_handler();
|
|
|
|
if (phy_call_mac_scan_band_cb) {
|
|
phy_call_mac_scan_band_cb();
|
|
}
|
|
|
|
if (phy_call_mac_spur_cb) {
|
|
phy_call_mac_spur_cb();
|
|
}
|
|
|
|
if (os_boot_time32() > 60000) {
|
|
g_phy_cpu_share_ctxt.sym_num_fix_dis = 1;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void phy_timer_handle()
|
|
{
|
|
if (phy_call_mac_dsr_cb) {
|
|
phy_call_mac_dsr_cb();
|
|
}
|
|
}
|
|
|
|
uint32_t phy_nf_timer_start()
|
|
{
|
|
uint32_t ret = ERR_FAIL;
|
|
|
|
#if HW_PLATFORM >= HW_PLATFORM_FPGA
|
|
if (g_phy_ctxt.dep.phy_snr_cal_timer == 0) {
|
|
#if IOT_DTEST_ONLY_SUPPORT == 0
|
|
g_phy_ctxt.dep.phy_snr_cal_timer = \
|
|
os_create_timer(PLC_PHY_COMMON_MID, true,
|
|
phy_timer_handle, NULL);
|
|
#else
|
|
g_phy_ctxt.dep.phy_snr_cal_timer = \
|
|
os_create_timer(PLC_PHY_COMMON_MID, true,
|
|
phy_snr_cal_timer_handler, NULL);
|
|
#endif
|
|
os_start_timer( \
|
|
g_phy_ctxt.dep.phy_snr_cal_timer, \
|
|
PHY_SNR_CAL_TIMER_PERIOD);
|
|
}
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|