122 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			122 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "math.h"
 | |
| 
 | |
| float iot_abs(float x) 
 | |
| {
 | |
|     if(x<0) x=0-x;
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| float iot_sin(float x) 
 | |
| {
 | |
|     const float B = 1.2732395447; 
 | |
|     const float C = -0.4052847346;
 | |
|     const float P = 0.2310792853;//0.225; 
 | |
|     float y = B * x + C * x * iot_abs(x);
 | |
|     y = P * (y * iot_abs(y) - y) + y;
 | |
|     return y;
 | |
|  }
 | |
| 
 | |
| float iot_cos(float x) 
 | |
| {
 | |
|     const float Q = 1.5707963268;
 | |
|     const float PI =3.1415926536;
 | |
|     x += Q; 
 | |
| 
 | |
|     if(x > PI) 
 | |
|         x -= 2 * PI; 
 | |
| 
 | |
|     return( iot_sin(x));
 | |
| }
 | |
| 
 | |
| float iot_sqrt(float a)
 | |
| {
 | |
|     double x,y;
 | |
|     x=0.0;
 | |
|     y=a/2;
 | |
|     while(x!=y)
 | |
|     {
 | |
|         x=y;
 | |
|         y=(x+a/x)/2;
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| float iot_pow(float a,int b)
 | |
| {
 | |
|     float r=a;
 | |
|     if(b>0)
 | |
|     {
 | |
|       while(--b)
 | |
|          r*=a;
 | |
| 
 | |
|     }
 | |
|     else if(b<0)
 | |
|     {
 | |
|         while(++b)     
 | |
|             r*=a;
 | |
|         r=1.0/r;
 | |
|     }
 | |
|     else r=0;
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| static double Sqrt(double x)
 | |
| {
 | |
|     if (x < 0)
 | |
|         return -1;
 | |
|     if (x == 0)
 | |
|         return 0;
 | |
|     double y = (double)iot_sqrt((double)x);
 | |
| 
 | |
|     return (y + x / y) / 2;
 | |
| }
 | |
| 
 | |
| static double NegativeLog(double q)
 | |
| {                           
 | |
|     int p;
 | |
|     double pi2 = 6.283185307179586476925286766559;
 | |
|     double eps2 = 0.00000000000001; // 1e-14
 | |
|     double eps1;    // 1e-28
 | |
|     double r = q, s = q, n = q, q2 = q * q, q1 = q2 * q;
 | |
| 
 | |
|     eps1 = eps2 * eps2;
 | |
| 
 | |
|     for (p = 1; (n *= q1) > eps1; s += n, q1 *= q2)
 | |
|         r += (p = !p) ? n : -n;
 | |
| 
 | |
|     double u = 1 - 2 * r, v = 1 + 2 * s, t = u / v;
 | |
|     double a = 1, b = Sqrt(1 - t * t * t * t);
 | |
| 
 | |
|     for (; a - b > eps2; b = Sqrt(a * b), a = t)
 | |
|         t = (a + b) / 2;
 | |
| 
 | |
|     return pi2 / (a + b) / v / v;
 | |
| }
 | |
| 
 | |
| static double Log(double x)
 | |
| {
 | |
|     int k = 0;
 | |
|     double ln10 = 2.30258509299404568401799145468;
 | |
| 
 | |
|     if (x <= 0)
 | |
|         return -1;
 | |
|     if (x == 1)
 | |
|         return 0;
 | |
| 
 | |
|     for (; x > 0.1; k++)
 | |
|         x /= 10;
 | |
|     for (; x <= 0.01; k--)
 | |
|         x *= 10;
 | |
| 
 | |
|     return k * ln10 - NegativeLog(x);
 | |
| }
 | |
| 
 | |
| double Log10(double x)
 | |
| {
 | |
|     double ln10 = 2.30258509299404568401799145468;
 | |
| 
 | |
|     return Log(x) / ln10;
 | |
| }
 | |
| 
 |