120 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "math.h"
 | ||
| #include "fft.h"   
 | ||
|   
 | ||
| void conjugate_complex(int n,complex in[],complex out[])  
 | ||
| {  
 | ||
|   int i = 0;  
 | ||
|   for(i=0;i<n;i++)  
 | ||
|   {  
 | ||
|     out[i].imag = -in[i].imag;  
 | ||
|     out[i].real = in[i].real;  
 | ||
|   }   
 | ||
| }  
 | ||
|   
 | ||
| void c_abs(complex f[],float out[],int n)  
 | ||
| {  
 | ||
|   int i = 0;  
 | ||
|   float t;  
 | ||
|   for(i=0;i<n;i++)  
 | ||
|   {  
 | ||
|     t = f[i].real * f[i].real + f[i].imag * f[i].imag;  
 | ||
|     out[i] = iot_sqrt(t);  
 | ||
|   }   
 | ||
| }  
 | ||
|   
 | ||
| void c_plus(complex a,complex b,complex *c)  
 | ||
| {  
 | ||
|   c->real = a.real + b.real;  
 | ||
|   c->imag = a.imag + b.imag;  
 | ||
| }  
 | ||
|   
 | ||
| void c_sub(complex a,complex b,complex *c)  
 | ||
| {  
 | ||
|   c->real = a.real - b.real;  
 | ||
|   c->imag = a.imag - b.imag;   
 | ||
| }  
 | ||
|   
 | ||
| void c_mul(complex a,complex b,complex *c)  
 | ||
| {  
 | ||
|   c->real = a.real * b.real - a.imag * b.imag;  
 | ||
|   c->imag = a.real * b.imag + a.imag * b.real;     
 | ||
| }  
 | ||
|   
 | ||
| void c_div(complex a,complex b,complex *c)  
 | ||
| {  
 | ||
|   c->real = (a.real * b.real + a.imag * b.imag)/(b.real * b.real +b.imag * b.imag);  
 | ||
|   c->imag = (a.imag * b.real - a.real * b.imag)/(b.real * b.real +b.imag * b.imag);  
 | ||
| }  
 | ||
|   
 | ||
| #define SWAP(a,b)  tempr=(a);(a)=(b);(b)=tempr  
 | ||
|   
 | ||
| void Wn_i(int n,int i,complex *Wn,char flag)  
 | ||
| {  
 | ||
|   Wn->real = iot_cos(2*PI*i/n);
 | ||
|   
 | ||
|   if(flag == 1)
 | ||
|     Wn->imag = -iot_sin(2*PI*i/n);
 | ||
|   else if(flag == 0)
 | ||
|     Wn->imag = -iot_sin(2*PI*i/n);
 | ||
| }  
 | ||
|     
 | ||
| void fft(int N,complex f[])  
 | ||
| {  
 | ||
|   complex t,wn;
 | ||
|   int i,j,k,m,n,l,r,M;  
 | ||
|   int la,lb,lc;  
 | ||
|   /*----M=log2(N)----*/  
 | ||
|   for(i=N,M=1;(i=i/2)!=1;M++);   
 | ||
|     
 | ||
|   for(i=1,j=N/2;i<=N-2;i++)  
 | ||
|   {  
 | ||
|     if(i<j)  
 | ||
|     {  
 | ||
|       t=f[j];  
 | ||
|       f[j]=f[i];  
 | ||
|       f[i]=t;  
 | ||
|     }  
 | ||
|     k=N/2;  
 | ||
|     while(k<=j)  
 | ||
|     {  
 | ||
|       j=j-k;  
 | ||
|       k=k/2;  
 | ||
|     }  
 | ||
|     j=j+k;  
 | ||
|   }  
 | ||
|   
 | ||
|   /*----FFT----*/  
 | ||
|   for(m=1;m<=M;m++)  
 | ||
|   {  
 | ||
|     la=iot_pow(2,m); //la=2^m代表第m级每个分组所含节点数       
 | ||
|     lb=la/2;    //lb代表第m级每个分组所含碟形单元数  
 | ||
|                  //同时它也表示每个碟形单元上下节点之间的距离  
 | ||
|     /*----碟形运算----*/  
 | ||
|     for(l=1;l<=lb;l++)  
 | ||
|     {  
 | ||
|       r=(l-1)*iot_pow(2,M-m);     
 | ||
|       for(n=l-1;n<N-1;n=n+la) //遍历每个分组,分组总数为N/la  
 | ||
|       {  
 | ||
|         lc=n+lb;  //n,lc分别代表一个碟形单元的上、下节点编号       
 | ||
|         Wn_i(N,r,&wn,1);//wn=Wnr  
 | ||
|         c_mul(f[lc],wn,&t);//t = f[lc] * wn复数运算  
 | ||
|         c_sub(f[n],t,&(f[lc]));//f[lc] = f[n] - f[lc] * Wnr  
 | ||
|         c_plus(f[n],t,&(f[n]));//f[n] = f[n] + f[lc] * Wnr  
 | ||
|       }  
 | ||
|     }  
 | ||
|   }  
 | ||
| }  
 | ||
|   
 | ||
| //傅里叶逆变换  
 | ||
| void ifft(int N,complex f[])  
 | ||
| {  
 | ||
|   int i=0;  
 | ||
|   conjugate_complex(N,f,f);  
 | ||
|   fft(N,f);  
 | ||
|   conjugate_complex(N,f,f);  
 | ||
|   for(i=0;i<N;i++)  
 | ||
|   {  
 | ||
|     f[i].imag = (f[i].imag)/N;  
 | ||
|     f[i].real = (f[i].real)/N;  
 | ||
|   }  
 | ||
| } |