Files
kunlun/import/wq_vtb/inc/field.h
2024-09-28 14:24:04 +08:00

168 lines
6.7 KiB
C

#ifndef CORRECT_REED_SOLOMON_FIELD
#define CORRECT_REED_SOLOMON_FIELD
#include "rs_common.h"
/*
field_t field_create(field_operation_t primitive_poly);
void field_destroy(field_t field);
field_element_t field_add(field_t field, field_element_t l, field_element_t r);
field_element_t field_sub(field_t field, field_element_t l, field_element_t r);
field_element_t field_sum(field_t field, field_element_t elem, uint16_t n);
field_element_t field_mul(field_t field, field_element_t l, field_element_t r);
field_element_t field_div(field_t field, field_element_t l, field_element_t r);
field_logarithm_t field_mul_log(field_t field, field_logarithm_t l, field_logarithm_t r);
field_logarithm_t field_div_log(field_t field, field_logarithm_t l, field_logarithm_t r);
field_element_t field_mul_log_element(field_t field, field_logarithm_t l, field_logarithm_t r);
field_element_t field_pow(field_t field, field_element_t elem, int pow);
*/
static inline field_element_t field_mul_log_element(field_t field, field_logarithm_t l, field_logarithm_t r) {
// like field_mul_log, but returns a field_element_t
// because we are doing lookup here, we can safely skip the wrapover check
field_operation_t res = (field_operation_t)l + (field_operation_t)r;
return field.exp[res];
}
static inline field_t field_create(field_operation_t primitive_poly) {
// in GF(2^8)
// log and exp
// bits are in GF(2), compute alpha^val in GF(2^8)
// exp should be of size 512 so that it can hold a "wraparound" which prevents some modulo ops
// log should be of size 256. no wraparound here, the indices into this table are field elements
field_element_t *exp = os_mem_malloc(IOT_WQ_VTB_MID, 512 * sizeof(field_element_t));
field_logarithm_t *log = os_mem_malloc(IOT_WQ_VTB_MID, 256 * sizeof(field_logarithm_t));
// assume alpha is a primitive element, p(x) (primitive_poly) irreducible in GF(2^8)
// addition is xor
// subtraction is addition (also xor)
// e.g. x^5 + x^4 + x^4 + x^2 + 1 = x^5 + x^2 + 1
// each row of exp contains the field element found by exponentiating
// alpha by the row index
// each row of log contains the coefficients of
// alpha^7 + alpha^6 + alpha^5 + alpha^4 + alpha^3 + alpha^2 + alpha + 1
// as 8 bits packed into one byte
field_operation_t element = 1;
exp[0] = (field_element_t)element;
log[0] = (field_logarithm_t)0; // really, it's undefined. we shouldn't ever access this
for (field_operation_t i = 1; i < 512; i++) {
element = element * 2;
element = (element > 255) ? (element ^ primitive_poly) : element;
exp[i] = (field_element_t)element;
if (i < 256) {
log[element] = (field_logarithm_t)i;
}
}
field_t field;
*(field_element_t **)&field.exp = exp;
*(field_logarithm_t **)&field.log = log;
return field;
}
static inline void field_destroy(field_t field) {
os_mem_free(*(field_element_t **)&field.exp);
os_mem_free(*(field_element_t **)&field.log);
}
static inline field_element_t field_add(field_t field, field_element_t l, field_element_t r) {
return l ^ r;
}
static inline field_element_t field_sub(field_t field, field_element_t l, field_element_t r) {
return l ^ r;
}
static inline field_element_t field_sum(field_t field, field_element_t elem, uint16_t n) {
// we'll do a closed-form expression of the sum, although we could also
// choose to call field_add n times
// since the sum is actually the bytewise XOR operator, this suggests two
// kinds of values: n odd, and n even
// if you sum once, you have coeff
// if you sum twice, you have coeff XOR coeff = 0
// if you sum thrice, you are back at coeff
// an even number of XORs puts you at 0
// an odd number of XORs puts you back at your value
// so, just throw away all the even n
return (n % 2) ? elem : 0;
}
static inline field_element_t field_mul(field_t field, field_element_t l, field_element_t r) {
if (l == 0 || r == 0) {
return 0;
}
// multiply two field elements by adding their logarithms.
// yep, get your slide rules out
field_operation_t res = (field_operation_t)field.log[l] + (field_operation_t)field.log[r];
// if coeff exceeds 255, we would normally have to wrap it back around
// alpha^255 = 1; alpha^256 = alpha^255 * alpha^1 = alpha^1
// however, we've constructed exponentiation table so that
// we can just directly lookup this result
// the result must be clamped to [0, 511]
// the greatest we can see at this step is alpha^255 * alpha^255
// = alpha^510
return field.exp[res];
}
static inline field_element_t field_div(field_t field, field_element_t l, field_element_t r) {
if (l == 0) {
return 0;
}
if (r == 0) {
// XXX ???
return 0;
}
// division as subtraction of logarithms
// if rcoeff is larger, then log[l] - log[r] wraps under
// so, instead, always add 255. in some cases, we'll wrap over, but
// that's ok because the exp table runs up to 511.
field_operation_t res = (field_operation_t)255 + (field_operation_t)field.log[l] - (field_operation_t)field.log[r];
return field.exp[res];
}
static inline field_logarithm_t field_mul_log(field_t field, field_logarithm_t l, field_logarithm_t r) {
// this function performs the equivalent of field_mul on two logarithms
// we save a little time by skipping the lookup step at the beginning
field_operation_t res = (field_operation_t)l + (field_operation_t)r;
// because we arent using the table, the value we return must be a valid logarithm
// which we have decided must live in [0, 255] (they are 8-bit values)
// ensuring this makes it so that multiple muls will not reach past the end of the
// exp table whenever we finally convert back to an element
if (res > 255) {
return (field_logarithm_t)(res - 255);
}
return (field_logarithm_t)res;
}
static inline field_logarithm_t field_div_log(field_t field, field_logarithm_t l, field_logarithm_t r) {
// like field_mul_log, this performs field_div without going through a field_element_t
field_operation_t res = (field_operation_t)255 + (field_operation_t)l - (field_operation_t)r;
if (res > 255) {
return (field_logarithm_t)(res - 255);
}
return (field_logarithm_t)res;
}
static inline field_element_t field_pow(field_t field, field_element_t elem, int pow) {
// take the logarithm, multiply, and then "exponentiate"
// n.b. the exp table only considers powers of alpha, the primitive element
// but here we have an arbitrary coeff
field_logarithm_t log = field.log[elem];
int res_log = log * pow;
int mod = res_log % 255;
if (mod < 0) {
mod += 255;
}
return field.exp[mod];
}
#endif