Files
python_tools/analysis/data_deal.py

108 lines
2.2 KiB
Python

import matplotlib
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
x=np.arange(0,np.pi,0.01)
y=np.sin(x)*0.5
# 添加方波
def add_line(x):
ret=[]
length=len(x)
num=length//10
index=0
for i in x:
t=(index//num)
if((t&1)!=0):
ret.append(0.1*t)
else:
ret.append(0)
index+=1
return ret
y=add_line(x)+y
# 添加噪声
def add_random(x):
ret=[]
length=len(x)
index_table=[]
for i in range(10):
index_table.append(int(np.random.random_sample()*10000%length))
# print(index_table)
for i in range(length):
if(i in index_table):
ret.append(x[i]+np.random.random_sample()-0.5)
else:
ret.append(x[i])
return ret
# 滤波
def my_filter(x):
ret=[]
sub=[]
temp=np.sum(x[0:10])/10
t=0
t_p=0
k=0.005
signal=False
for i in x:
t_p=t
# t=t*0.9+i*0.1
t=temp
temp=(temp*9+i)/10
t_p=t-t_p
if(t_p>k):
signal=True
elif(t_p<-k):
signal=False
if(signal):
ret.append(0.3)
else:
ret.append(0)
sub.append(t_p)
return ret,sub
# 卡尔曼
class kalman:
LastP=0.02 #上次估算的协方差
Now_P=0# 当前估算的协方差
out=0# 输出值
Kg=0#卡尔曼增益
Q=0.001# 过程噪声协方差
R=.0543# 观测噪声协方差
def calc(self,value:int):
self.Now_P=self.LastP+self.Q
self.Kg=self.Now_P/(self.Now_P+self.R)
self.out=self.out+self.Kg*(value-self.out)
self.LastP=(1-self.Kg)*self.Now_P
return self.out
def my_kalman(x):
ret=[]
k=kalman()
for i in x:
ret.append(k.calc(i))
return ret
y2=add_random(y)
y3,y4=my_filter(y)
def show_xy(xy_list:list):
figure = plt.figure(figsize=(14,7))
ax = figure.add_axes([0.1,0.1,0.8,0.8])
index=0
for xy in xy_list:
line,=ax.plot(xy[0],xy[1],)
line.set_label("index:{d}".format(d=index))
ax.legend()
index+=1
plt.show()
show_xy([(x,y),(x,y3),(x,y4)])