2019-09-09 13:38:10 -04:00
/*
* The MIT License ( MIT )
*
* Copyright ( c ) 2019 Nathan Conrad
*
* Portions :
* Copyright ( c ) 2016 STMicroelectronics
* Copyright ( c ) 2019 Ha Thach ( tinyusb . org )
*
* Permission is hereby granted , free of charge , to any person obtaining a copy
* of this software and associated documentation files ( the " Software " ) , to deal
* in the Software without restriction , including without limitation the rights
* to use , copy , modify , merge , publish , distribute , sublicense , and / or sell
* copies of the Software , and to permit persons to whom the Software is
* furnished to do so , subject to the following conditions :
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software .
*
* THE SOFTWARE IS PROVIDED " AS IS " , WITHOUT WARRANTY OF ANY KIND , EXPRESS OR
* IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT . IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER
* LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM ,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE .
*
* This file is part of the TinyUSB stack .
*/
/**********************************************
2019-09-10 01:03:24 -04:00
* This driver has been tested with the following MCUs :
2019-12-12 09:40:06 +10:00
* - F070 , F072 , L053 , F042F6
2019-09-10 01:03:24 -04:00
*
2019-09-10 12:13:36 -04:00
* It also should work with minimal changes for any ST MCU with an " USB A " / " PCD " / " HCD " peripheral . This
2019-09-11 09:44:25 -04:00
* covers :
2019-09-09 13:38:10 -04:00
*
* F04x , F072 , F078 , 070 x6 / B 1024 byte buffer
2019-09-10 01:03:24 -04:00
* F102 , F103 512 byte buffer ; no internal D + pull - up ( maybe many more changes ? )
2019-09-09 13:38:10 -04:00
* F302xB / C , F303xB / C , F373 512 byte buffer ; no internal D + pull - up
* F302x6 / 8 , F302xD / E2 , F303xD / E 1024 byte buffer ; no internal D + pull - up
* L0x2 , L0x3 1024 byte buffer
* L1 512 byte buffer
2019-09-10 12:13:36 -04:00
* L4x2 , L4x3 1024 byte buffer
2019-09-09 13:38:10 -04:00
*
2019-09-11 09:44:25 -04:00
* To use this driver , you must :
2019-12-12 09:40:06 +10:00
* - If you are using a device with crystal - less USB , set up the clock recovery system ( CRS )
* - Remap pins to be D + / D - on devices that they are shared ( for example : F042Fx )
* - This is different to the normal " alternate function " GPIO interface , needs to go through SYSCFG - > CFGRx register
2019-09-11 09:44:25 -04:00
* - Enable USB clock ; Perhaps use __HAL_RCC_USB_CLK_ENABLE ( ) ;
* - ( Optionally configure GPIO HAL to tell it the USB driver is using the USB pins )
* - call tusb_init ( ) ;
* - periodically call tusb_task ( ) ;
*
2019-09-09 13:38:10 -04:00
* Assumptions of the driver :
* - You are not using CAN ( it must share the packet buffer )
* - APB clock is > = 10 MHz
* - On some boards , series resistors are required , but not on others .
* - On some boards , D + pull up resistor ( 1.5 kohm ) is required , but not on others .
* - You don ' t have long - running interrupts ; some USB packets must be quickly responded to .
* - You have the ST CMSIS library linked into the project . HAL is not used .
*
* Current driver limitations ( i . e . , a list of features for you to add ) :
* - STALL handled , but not tested .
* - Does it work ? No clue .
2020-04-13 09:25:16 -04:00
* - All EP BTABLE buffers are created as fixed 64 bytes .
* - Smaller can be requested :
* - Must be a multiple of 8 bytes
* - All EP must have identical buffer size .
2019-09-09 13:38:10 -04:00
* - No isochronous endpoints
* - Endpoint index is the ID of the endpoint
* - This means that priority is given to endpoints with lower ID numbers
* - Code is mixing up EP IX with EP ID . Everywhere .
* - Packet buffer memory is copied in the interrupt .
* - This is better for performance , but means interrupts are disabled for longer
* - DMA may be the best choice , but it could also be pushed to the USBD task .
* - No double - buffering
* - No DMA
* - No provision to control the D + pull - up using GPIO on devices without an internal pull - up .
* - Minimal error handling
2019-09-11 09:44:25 -04:00
* - Perhaps error interrupts should be reported to the stack , or cause a device reset ?
2019-09-09 13:38:10 -04:00
* - Assumes a single USB peripheral ; I think that no hardware has multiple so this is fine .
2019-09-10 01:03:24 -04:00
* - Add a callback for enabling / disabling the D + PU on devices without an internal PU .
* - F3 models use three separate interrupts . I think we could only use the LP interrupt for
* everything ? However , the interrupts are configurable so the DisableInt and EnableInt
* below functions could be adjusting the wrong interrupts ( if they had been reconfigured )
* - LPM is not used correctly , or at all ?
2019-09-09 13:38:10 -04:00
*
* USB documentation and Reference implementations
* - STM32 Reference manuals
* - STM32 USB Hardware Guidelines AN4879
*
* - STM32 HAL ( much of this driver is based on this )
* - libopencm3 / lib / stm32 / common / st_usbfs_core . c
* - Keil USB Device http : //www.keil.com/pack/doc/mw/USB/html/group__usbd.html
*
* - YouTube OpenTechLab 011 ; https : //www.youtube.com/watch?v=4FOkJLp_PUw
*
* Advantages over HAL driver :
* - Tiny ( saves RAM , assumes a single USB peripheral )
*
* Notes :
* - The buffer table is allocated as endpoints are opened . The allocation is only
* cleared when the device is reset . This may be bad if the USB device needs
* to be reconfigured .
*/
# include "tusb_option.h"
2019-09-27 00:15:43 +07:00
# if defined(STM32F102x6) || defined(STM32F102xB) || \
2019-09-20 13:49:33 +07:00
defined ( STM32F103x6 ) | | defined ( STM32F103xB ) | | \
2019-09-27 00:15:43 +07:00
defined ( STM32F103xE ) | | defined ( STM32F103xG )
# define STM32F1_FSDEV
# endif
2019-09-20 13:49:33 +07:00
2019-09-10 09:35:52 -04:00
# if (TUSB_OPT_DEVICE_ENABLED) && ( \
2019-09-27 00:15:43 +07:00
( CFG_TUSB_MCU = = OPT_MCU_STM32F0 ) | | \
( CFG_TUSB_MCU = = OPT_MCU_STM32F1 & & defined ( STM32F1_FSDEV ) ) | | \
( CFG_TUSB_MCU = = OPT_MCU_STM32F3 ) | | \
( CFG_TUSB_MCU = = OPT_MCU_STM32L0 ) \
2019-09-10 09:35:52 -04:00
)
2019-09-09 13:38:10 -04:00
// In order to reduce the dependance on HAL, we undefine this.
// Some definitions are copied to our private include file.
# undef USE_HAL_DRIVER
# include "device/dcd.h"
# include "portable/st/stm32_fsdev/dcd_stm32_fsdev_pvt_st.h"
/*****************************************************
* Configuration
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2020-04-13 09:25:16 -04:00
// HW supports max of 8 bidirectional endpoints, but this can be reduced to save RAM
// (8u here would mean 8 IN and 8 OUT)
2019-09-09 13:38:10 -04:00
# ifndef MAX_EP_COUNT
2020-04-13 09:25:16 -04:00
# if (PMA_LENGTH == 512U)
2020-04-13 13:11:45 -04:00
# define MAX_EP_COUNT 3U
2020-04-13 09:25:16 -04:00
# else
2020-04-13 13:11:45 -04:00
# define MAX_EP_COUNT 7U
2020-04-13 09:25:16 -04:00
# endif
2019-09-09 13:38:10 -04:00
# endif
// If sharing with CAN, one can set this to be non-zero to give CAN space where it wants it
// Both of these MUST be a multiple of 2, and are in byte units.
# ifndef DCD_STM32_BTABLE_BASE
2020-04-13 09:25:16 -04:00
# define DCD_STM32_BTABLE_BASE 0U
2019-09-09 13:38:10 -04:00
# endif
# ifndef DCD_STM32_BTABLE_LENGTH
2019-09-09 16:14:38 -04:00
# define DCD_STM32_BTABLE_LENGTH (PMA_LENGTH - DCD_STM32_BTABLE_BASE)
2019-09-09 13:38:10 -04:00
# endif
2020-04-13 09:25:16 -04:00
// Below is used by the static PMA allocator
2020-04-13 13:11:45 -04:00
# ifndef DCD_STM32_PMA_ALLOC_SIZE
# define DCD_STM32_PMA_ALLOC_SIZE 64U
# endif
2020-04-13 09:25:16 -04:00
2019-09-09 13:38:10 -04:00
/***************************************************
* Checks , structs , defines , function definitions , etc .
*/
2019-09-15 23:37:57 -04:00
TU_VERIFY_STATIC ( ( MAX_EP_COUNT ) < = STFSDEV_EP_COUNT , " Only 8 endpoints supported on the hardware " ) ;
2019-09-09 13:38:10 -04:00
2019-09-11 09:45:48 -04:00
TU_VERIFY_STATIC ( ( ( DCD_STM32_BTABLE_BASE ) + ( DCD_STM32_BTABLE_LENGTH ) ) < = ( PMA_LENGTH ) ,
" BTABLE does not fit in PMA RAM " ) ;
2019-09-09 13:38:10 -04:00
2019-09-11 09:45:48 -04:00
TU_VERIFY_STATIC ( ( ( DCD_STM32_BTABLE_BASE ) % 8 ) = = 0 , " BTABLE base must be aligned to 8 bytes " ) ;
2019-09-10 01:03:24 -04:00
2020-04-13 09:25:16 -04:00
// With static allocation of 64 bytes per endpoint, ensure there is enough packet buffer space
2020-04-13 13:11:45 -04:00
// 8 bytes are required for control data for each EP.
TU_VERIFY_STATIC ( ( ( MAX_EP_COUNT * 2u * DCD_STM32_PMA_ALLOC_SIZE + 8 * MAX_EP_COUNT ) < = DCD_STM32_BTABLE_LENGTH ) , " Packed buffer not long enough for count of endpoints " ) ;
2020-04-13 09:25:16 -04:00
TU_VERIFY_STATIC ( ( DCD_STM32_PMA_ALLOC_SIZE % 8 ) = = 0 , " Packet buffer allocation must be a multiple of 8 bytes " ) ;
2020-04-13 13:11:45 -04:00
TU_VERIFY_STATIC ( CFG_TUD_ENDPOINT0_SIZE < = DCD_STM32_PMA_ALLOC_SIZE , " EP0 size is more than PMA allocation size " ) ;
2019-09-09 13:38:10 -04:00
// One of these for every EP IN & OUT, uses a bit of RAM....
typedef struct
{
uint8_t * buffer ;
uint16_t total_len ;
uint16_t queued_len ;
2019-09-15 23:51:42 -04:00
uint16_t max_packet_size ;
2019-09-09 13:38:10 -04:00
} xfer_ctl_t ;
2019-09-15 23:37:57 -04:00
static xfer_ctl_t xfer_status [ MAX_EP_COUNT ] [ 2 ] ;
2019-09-20 13:49:33 +07:00
static inline xfer_ctl_t * xfer_ctl_ptr ( uint32_t epnum , uint32_t dir )
2019-09-15 23:37:57 -04:00
{
return & xfer_status [ epnum ] [ dir ] ;
}
2019-09-09 13:38:10 -04:00
static TU_ATTR_ALIGNED ( 4 ) uint32_t _setup_packet [ 6 ] ;
2019-09-19 09:51:40 -04:00
static uint8_t remoteWakeCountdown ; // When wake is requested
2019-09-09 13:38:10 -04:00
// EP Buffers assigned from end of memory location, to minimize their chance of crashing
// into the stack.
2019-09-09 16:14:38 -04:00
static void dcd_handle_bus_reset ( void ) ;
2019-09-11 09:45:48 -04:00
static bool dcd_write_packet_memory ( uint16_t dst , const void * __restrict src , size_t wNBytes ) ;
static bool dcd_read_packet_memory ( void * __restrict dst , uint16_t src , size_t wNBytes ) ;
2019-09-09 13:38:10 -04:00
static void dcd_transmit_packet ( xfer_ctl_t * xfer , uint16_t ep_ix ) ;
2020-03-22 14:19:31 -04:00
static void dcd_ep_ctr_handler ( void ) ;
2019-09-09 13:38:10 -04:00
2019-09-11 09:45:48 -04:00
// Using a function due to better type checks
// This seems better than having to do type casts everywhere else
static inline void reg16_clear_bits ( __IO uint16_t * reg , uint16_t mask ) {
* reg = ( uint16_t ) ( * reg & ~ mask ) ;
}
2019-09-09 13:38:10 -04:00
void dcd_init ( uint8_t rhport )
{
( void ) rhport ;
/* Clocks should already be enabled */
/* Use __HAL_RCC_USB_CLK_ENABLE(); to enable the clocks before calling this function */
/* The RM mentions to use a special ordering of PDWN and FRES, but this isn't done in HAL.
* Here , the RM is followed . */
2019-09-11 20:33:47 -04:00
for ( uint32_t i = 0 ; i < 200 ; i + + ) // should be a few us
2019-09-09 13:38:10 -04:00
{
asm ( " NOP " ) ;
}
// Perform USB peripheral reset
USB - > CNTR = USB_CNTR_FRES | USB_CNTR_PDWN ;
2019-09-11 20:33:47 -04:00
for ( uint32_t i = 0 ; i < 200 ; i + + ) // should be a few us
2019-09-09 13:38:10 -04:00
{
asm ( " NOP " ) ;
}
2019-09-11 09:45:48 -04:00
reg16_clear_bits ( & USB - > CNTR , USB_CNTR_PDWN ) ; // Remove powerdown
2019-09-09 13:38:10 -04:00
// Wait startup time, for F042 and F070, this is <= 1 us.
2019-09-11 20:33:47 -04:00
for ( uint32_t i = 0 ; i < 200 ; i + + ) // should be a few us
2019-09-09 13:38:10 -04:00
{
asm ( " NOP " ) ;
}
USB - > CNTR = 0 ; // Enable USB
USB - > BTABLE = DCD_STM32_BTABLE_BASE ;
2019-09-11 09:45:48 -04:00
reg16_clear_bits ( & USB - > ISTR , USB_ISTR_ALL_EVENTS ) ; // Clear pending interrupts
2019-09-09 13:38:10 -04:00
2019-09-11 09:43:57 -04:00
// Reset endpoints to disabled
2019-09-11 20:33:47 -04:00
for ( uint32_t i = 0 ; i < STFSDEV_EP_COUNT ; i + + )
2019-09-09 13:38:10 -04:00
{
2019-09-11 09:43:57 -04:00
// This doesn't clear all bits since some bits are "toggle", but does set the type to DISABLED.
2019-09-15 23:37:57 -04:00
pcd_set_endpoint ( USB , i , 0u ) ;
2019-09-09 13:38:10 -04:00
}
// Initialize the BTABLE for EP0 at this point (though setting up the EP0R is unneeded)
// This is actually not necessary, but helps debugging to start with a blank RAM area
2019-09-11 20:33:47 -04:00
for ( uint32_t i = 0 ; i < ( DCD_STM32_BTABLE_LENGTH > > 1 ) ; i + + )
2019-09-09 13:38:10 -04:00
{
2019-09-10 01:03:24 -04:00
pma [ PMA_STRIDE * ( DCD_STM32_BTABLE_BASE + i ) ] = 0u ;
2019-09-09 13:38:10 -04:00
}
2019-09-19 09:51:40 -04:00
USB - > CNTR | = USB_CNTR_RESETM | USB_CNTR_SOFM | USB_CNTR_ESOFM | USB_CNTR_CTRM | USB_CNTR_SUSPM | USB_CNTR_WKUPM ;
2019-09-09 13:38:10 -04:00
dcd_handle_bus_reset ( ) ;
2020-04-08 11:51:33 -04:00
// Data-line pull-up is left disconnected.
}
2019-09-10 01:03:24 -04:00
2020-04-10 10:23:56 -04:00
// Define only on MCU with internal pull-up. BSP can define on MCU without internal PU.
2019-09-09 13:38:10 -04:00
# if defined(USB_BCDR_DPPU)
2019-09-10 01:03:24 -04:00
2020-04-10 10:23:56 -04:00
// Disable internal D+ PU
2020-04-08 11:51:33 -04:00
void dcd_disconnect ( uint8_t rhport )
{
( void ) rhport ;
USB - > BCDR & = ~ ( USB_BCDR_DPPU ) ;
2019-09-09 13:38:10 -04:00
}
2020-04-10 10:23:56 -04:00
// Enable internal D+ PU
2020-04-08 11:51:33 -04:00
void dcd_connect ( uint8_t rhport )
{
( void ) rhport ;
USB - > BCDR | = USB_BCDR_DPPU ;
2019-09-09 13:38:10 -04:00
}
2020-04-08 11:51:33 -04:00
# endif
2019-09-09 13:38:10 -04:00
// Enable device interrupt
void dcd_int_enable ( uint8_t rhport )
{
( void ) rhport ;
2019-09-25 20:17:53 -04:00
// Member here forces write to RAM before allowing ISR to execute
__DSB ( ) ;
__ISB ( ) ;
2019-09-20 13:49:33 +07:00
# if CFG_TUSB_MCU == OPT_MCU_STM32F0 || CFG_TUSB_MCU == OPT_MCU_STM32L0
2019-09-09 13:38:10 -04:00
NVIC_EnableIRQ ( USB_IRQn ) ;
2019-09-20 13:49:33 +07:00
# elif CFG_TUSB_MCU == OPT_MCU_STM32F3
2019-09-09 16:14:38 -04:00
NVIC_EnableIRQ ( USB_HP_CAN_TX_IRQn ) ;
NVIC_EnableIRQ ( USB_LP_CAN_RX0_IRQn ) ;
NVIC_EnableIRQ ( USBWakeUp_IRQn ) ;
2019-10-02 12:01:34 +07:00
# elif CFG_TUSB_MCU == OPT_MCU_STM32F1
NVIC_EnableIRQ ( USB_HP_CAN1_TX_IRQn ) ;
NVIC_EnableIRQ ( USB_LP_CAN1_RX0_IRQn ) ;
NVIC_EnableIRQ ( USBWakeUp_IRQn ) ;
# else
# error Unknown arch in USB driver
2019-09-09 16:14:38 -04:00
# endif
2019-09-09 13:38:10 -04:00
}
// Disable device interrupt
void dcd_int_disable ( uint8_t rhport )
{
( void ) rhport ;
2019-09-20 13:49:33 +07:00
# if CFG_TUSB_MCU == OPT_MCU_STM32F0 || CFG_TUSB_MCU == OPT_MCU_STM32L0
2019-09-09 13:38:10 -04:00
NVIC_DisableIRQ ( USB_IRQn ) ;
2019-09-20 13:49:33 +07:00
# elif CFG_TUSB_MCU == OPT_MCU_STM32F3
2019-09-09 16:14:38 -04:00
NVIC_DisableIRQ ( USB_HP_CAN_TX_IRQn ) ;
NVIC_DisableIRQ ( USB_LP_CAN_RX0_IRQn ) ;
NVIC_DisableIRQ ( USBWakeUp_IRQn ) ;
2019-10-02 12:01:34 +07:00
# elif CFG_TUSB_MCU == OPT_MCU_STM32F1
NVIC_DisableIRQ ( USB_HP_CAN1_TX_IRQn ) ;
NVIC_DisableIRQ ( USB_LP_CAN1_RX0_IRQn ) ;
NVIC_DisableIRQ ( USBWakeUp_IRQn ) ;
2019-09-09 16:14:38 -04:00
# else
2019-09-20 13:49:33 +07:00
# error Unknown arch in USB driver
2019-09-09 16:14:38 -04:00
# endif
2019-10-02 12:01:34 +07:00
2019-09-25 20:17:53 -04:00
// CMSIS has a membar after disabling interrupts
2019-09-09 13:38:10 -04:00
}
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address ( uint8_t rhport , uint8_t dev_addr )
{
2019-12-09 18:49:38 +07:00
( void ) rhport ;
( void ) dev_addr ;
2019-11-28 11:46:36 +07:00
2019-09-09 13:38:10 -04:00
// Respond with status
dcd_edpt_xfer ( rhport , tu_edpt_addr ( 0 , TUSB_DIR_IN ) , NULL , 0 ) ;
2019-11-28 13:39:29 +07:00
// DCD can only set address after status for this request is complete.
// do it at dcd_edpt0_status_complete()
2019-09-09 13:38:10 -04:00
}
// Receive Set Config request
void dcd_set_config ( uint8_t rhport , uint8_t config_num )
{
( void ) rhport ;
( void ) config_num ;
// Nothing to do? Handled by stack.
}
void dcd_remote_wakeup ( uint8_t rhport )
{
( void ) rhport ;
2019-09-16 20:25:50 -04:00
2019-09-20 13:49:33 +07:00
USB - > CNTR | = ( uint16_t ) USB_CNTR_RESUME ;
2019-09-19 09:51:40 -04:00
remoteWakeCountdown = 4u ; // required to be 1 to 15 ms, ESOF should trigger every 1ms.
2019-09-09 13:38:10 -04:00
}
static const tusb_desc_endpoint_t ep0OUT_desc =
{
2020-03-08 16:28:21 +07:00
. bLength = sizeof ( tusb_desc_endpoint_t ) ,
. bDescriptorType = TUSB_DESC_ENDPOINT ,
. bEndpointAddress = 0x00 ,
. bmAttributes = { . xfer = TUSB_XFER_CONTROL } ,
. wMaxPacketSize = { . size = CFG_TUD_ENDPOINT0_SIZE } ,
. bInterval = 0
2019-09-09 13:38:10 -04:00
} ;
static const tusb_desc_endpoint_t ep0IN_desc =
{
2020-03-08 16:28:21 +07:00
. bLength = sizeof ( tusb_desc_endpoint_t ) ,
. bDescriptorType = TUSB_DESC_ENDPOINT ,
2019-09-09 13:38:10 -04:00
2020-03-08 16:28:21 +07:00
. bEndpointAddress = 0x80 ,
. bmAttributes = { . xfer = TUSB_XFER_CONTROL } ,
. wMaxPacketSize = { . size = CFG_TUD_ENDPOINT0_SIZE } ,
. bInterval = 0
} ;
2019-09-09 13:38:10 -04:00
2019-09-09 16:14:38 -04:00
static void dcd_handle_bus_reset ( void )
2019-09-09 13:38:10 -04:00
{
//__IO uint16_t * const epreg = &(EPREG(0));
USB - > DADDR = 0u ; // disable USB peripheral by clearing the EF flag
// Clear all EPREG (or maybe this is automatic? I'm not sure)
2019-09-11 20:33:47 -04:00
for ( uint32_t i = 0 ; i < STFSDEV_EP_COUNT ; i + + )
2019-09-09 13:38:10 -04:00
{
2019-09-15 23:37:57 -04:00
pcd_set_endpoint ( USB , i , 0u ) ;
2019-09-09 13:38:10 -04:00
}
dcd_edpt_open ( 0 , & ep0OUT_desc ) ;
dcd_edpt_open ( 0 , & ep0IN_desc ) ;
2019-11-28 13:39:29 +07:00
2019-09-09 13:38:10 -04:00
USB - > DADDR = USB_DADDR_EF ; // Set enable flag, and leaving the device address as zero.
}
2020-03-22 14:19:31 -04:00
// Handle CTR interrupt for the TX/IN direction
//
// Upon call, (wIstr & USB_ISTR_DIR) == 0U
static void dcd_ep_ctr_tx_handler ( uint32_t wIstr )
2019-09-09 13:38:10 -04:00
{
2020-03-22 14:19:31 -04:00
uint32_t EPindex = wIstr & USB_ISTR_EP_ID ;
uint32_t wEPRegVal = pcd_get_endpoint ( USB , EPindex ) ;
2019-09-09 13:38:10 -04:00
2020-03-22 14:19:31 -04:00
// Verify the CTR_TX bit is set. This was in the ST Micro code,
// but I'm not sure it's actually necessary?
if ( ( wEPRegVal & USB_EP_CTR_TX ) = = 0U )
{
return ;
}
/* clear int flag */
pcd_clear_tx_ep_ctr ( USB , EPindex ) ;
xfer_ctl_t * xfer = xfer_ctl_ptr ( EPindex , TUSB_DIR_IN ) ;
if ( ( xfer - > total_len ! = xfer - > queued_len ) ) /* TX not complete */
{
dcd_transmit_packet ( xfer , EPindex ) ;
}
else /* TX Complete */
{
dcd_event_xfer_complete ( 0 , ( uint8_t ) ( 0x80 + EPindex ) , xfer - > total_len , XFER_RESULT_SUCCESS , true ) ;
}
}
// Handle CTR interrupt for the RX/OUT direction
//
// Upon call, (wIstr & USB_ISTR_DIR) == 0U
static void dcd_ep_ctr_rx_handler ( uint32_t wIstr )
{
uint32_t EPindex = wIstr & USB_ISTR_EP_ID ;
uint32_t wEPRegVal = pcd_get_endpoint ( USB , EPindex ) ;
uint32_t count = pcd_get_ep_rx_cnt ( USB , EPindex ) ;
xfer_ctl_t * xfer = xfer_ctl_ptr ( EPindex , TUSB_DIR_OUT ) ;
// Verify the CTR_RX bit is set. This was in the ST Micro code,
// but I'm not sure it's actually necessary?
if ( ( wEPRegVal & USB_EP_CTR_RX ) = = 0U )
{
return ;
}
if ( ( EPindex = = 0U ) & & ( ( wEPRegVal & USB_EP_SETUP ) ! = 0U ) ) /* Setup packet */
{
// The setup_received function uses memcpy, so this must first copy the setup data into
// user memory, to allow for the 32-bit access that memcpy performs.
uint8_t userMemBuf [ 8 ] ;
/* Get SETUP Packet*/
if ( count = = 8 ) // Setup packet should always be 8 bytes. If not, ignore it, and try again.
{
// Must reset EP to NAK (in case it had been stalling) (though, maybe too late here)
pcd_set_ep_rx_status ( USB , 0u , USB_EP_RX_NAK ) ;
pcd_set_ep_tx_status ( USB , 0u , USB_EP_TX_NAK ) ;
dcd_read_packet_memory ( userMemBuf , * pcd_ep_rx_address_ptr ( USB , EPindex ) , 8 ) ;
dcd_event_setup_received ( 0 , ( uint8_t * ) userMemBuf , true ) ;
}
}
else
{
// Clear RX CTR interrupt flag
if ( EPindex ! = 0u )
{
pcd_clear_rx_ep_ctr ( USB , EPindex ) ;
}
if ( count ! = 0U )
{
dcd_read_packet_memory ( & ( xfer - > buffer [ xfer - > queued_len ] ) ,
* pcd_ep_rx_address_ptr ( USB , EPindex ) , count ) ;
xfer - > queued_len = ( uint16_t ) ( xfer - > queued_len + count ) ;
}
if ( ( count < xfer - > max_packet_size ) | | ( xfer - > queued_len = = xfer - > total_len ) )
{
/* RX COMPLETE */
dcd_event_xfer_complete ( 0 , EPindex , xfer - > queued_len , XFER_RESULT_SUCCESS , true ) ;
// Though the host could still send, we don't know.
// Does the bulk pipe need to be reset to valid to allow for a ZLP?
}
else
{
uint32_t remaining = ( uint32_t ) xfer - > total_len - ( uint32_t ) xfer - > queued_len ;
if ( remaining > = xfer - > max_packet_size ) {
pcd_set_ep_rx_cnt ( USB , EPindex , xfer - > max_packet_size ) ;
} else {
pcd_set_ep_rx_cnt ( USB , EPindex , remaining ) ;
}
pcd_set_ep_rx_status ( USB , EPindex , USB_EP_RX_VALID ) ;
}
}
// For EP0, prepare to receive another SETUP packet.
// Clear CTR last so that a new packet does not overwrite the packing being read.
// (Based on the docs, it seems SETUP will always be accepted after CTR is cleared)
if ( EPindex = = 0u )
{
// Always be prepared for a status packet...
pcd_set_ep_rx_cnt ( USB , EPindex , CFG_TUD_ENDPOINT0_SIZE ) ;
pcd_clear_rx_ep_ctr ( USB , EPindex ) ;
}
}
static void dcd_ep_ctr_handler ( void )
{
uint32_t wIstr ;
2019-09-09 13:38:10 -04:00
/* stay in loop while pending interrupts */
while ( ( ( wIstr = USB - > ISTR ) & USB_ISTR_CTR ) ! = 0U )
{
2020-03-22 14:19:31 -04:00
if ( ( wIstr & USB_ISTR_DIR ) = = 0U ) /* TX/IN */
2019-09-09 13:38:10 -04:00
{
2020-03-22 14:19:31 -04:00
dcd_ep_ctr_tx_handler ( wIstr ) ;
2019-09-09 13:38:10 -04:00
}
2020-03-22 14:19:31 -04:00
else /* RX/OUT*/
2019-09-09 13:38:10 -04:00
{
2020-03-22 14:19:31 -04:00
dcd_ep_ctr_rx_handler ( wIstr ) ;
2019-09-09 13:38:10 -04:00
}
}
}
2020-04-08 16:26:14 +07:00
void dcd_irq_handler ( uint8_t rhport ) {
( void ) rhport ;
2019-09-09 13:38:10 -04:00
2019-09-21 12:00:04 -04:00
uint32_t int_status = USB - > ISTR ;
//const uint32_t handled_ints = USB_ISTR_CTR | USB_ISTR_RESET | USB_ISTR_WKUP
// | USB_ISTR_SUSP | USB_ISTR_SOF | USB_ISTR_ESOF;
// unused IRQs: (USB_ISTR_PMAOVR | USB_ISTR_ERR | USB_ISTR_L1REQ )
// The ST driver loops here on the CTR bit, but that loop has been moved into the
// dcd_ep_ctr_handler(), so less need to loop here. The other interrupts shouldn't
// be triggered repeatedly.
if ( int_status & USB_ISTR_RESET ) {
// USBRST is start of reset.
reg16_clear_bits ( & USB - > ISTR , USB_ISTR_RESET ) ;
dcd_handle_bus_reset ( ) ;
dcd_event_bus_signal ( 0 , DCD_EVENT_BUS_RESET , true ) ;
return ; // Don't do the rest of the things here; perhaps they've been cleared?
}
2019-09-09 13:38:10 -04:00
if ( int_status & USB_ISTR_CTR )
{
/* servicing of the endpoint correct transfer interrupt */
/* clear of the CTR flag into the sub */
dcd_ep_ctr_handler ( ) ;
2019-09-11 09:45:48 -04:00
reg16_clear_bits ( & USB - > ISTR , USB_ISTR_CTR ) ;
2019-09-09 13:38:10 -04:00
}
2019-09-21 12:00:04 -04:00
2019-09-09 13:38:10 -04:00
if ( int_status & USB_ISTR_WKUP )
{
2019-09-11 09:45:48 -04:00
reg16_clear_bits ( & USB - > CNTR , USB_CNTR_LPMODE ) ;
reg16_clear_bits ( & USB - > CNTR , USB_CNTR_FSUSP ) ;
reg16_clear_bits ( & USB - > ISTR , USB_ISTR_WKUP ) ;
2019-09-16 20:25:50 -04:00
dcd_event_bus_signal ( 0 , DCD_EVENT_RESUME , true ) ;
2019-09-09 13:38:10 -04:00
}
if ( int_status & USB_ISTR_SUSP )
{
2019-09-21 12:00:04 -04:00
/* Suspend is asserted for both suspend and unplug events. without Vbus monitoring,
* these events cannot be differentiated , so we only trigger suspend . */
2019-09-09 13:38:10 -04:00
/* Force low-power mode in the macrocell */
USB - > CNTR | = USB_CNTR_FSUSP ;
USB - > CNTR | = USB_CNTR_LPMODE ;
/* clear of the ISTR bit must be done after setting of CNTR_FSUSP */
2019-09-11 09:45:48 -04:00
reg16_clear_bits ( & USB - > ISTR , USB_ISTR_SUSP ) ;
2019-09-16 20:25:50 -04:00
dcd_event_bus_signal ( 0 , DCD_EVENT_SUSPEND , true ) ;
2019-09-09 13:38:10 -04:00
}
if ( int_status & USB_ISTR_SOF ) {
2019-09-11 09:45:48 -04:00
reg16_clear_bits ( & USB - > ISTR , USB_ISTR_SOF ) ;
2019-09-09 13:38:10 -04:00
dcd_event_bus_signal ( 0 , DCD_EVENT_SOF , true ) ;
}
2019-09-19 09:51:40 -04:00
if ( int_status & USB_ISTR_ESOF ) {
if ( remoteWakeCountdown = = 1u )
{
USB - > CNTR & = ( uint16_t ) ( ~ USB_CNTR_RESUME ) ;
}
if ( remoteWakeCountdown > 0u )
{
remoteWakeCountdown - - ;
}
reg16_clear_bits ( & USB - > ISTR , USB_ISTR_ESOF ) ;
}
2019-09-09 13:38:10 -04:00
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
2019-11-28 13:39:29 +07:00
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete ( uint8_t rhport , tusb_control_request_t const * request )
{
( void ) rhport ;
2019-12-09 23:20:21 +07:00
if ( request - > bmRequestType_bit . recipient = = TUSB_REQ_RCPT_DEVICE & &
request - > bmRequestType_bit . type = = TUSB_REQ_TYPE_STANDARD & &
request - > bRequest = = TUSB_REQ_SET_ADDRESS )
2019-11-28 13:39:29 +07:00
{
uint8_t const dev_addr = ( uint8_t ) request - > wValue ;
// Setting new address after the whole request is complete
reg16_clear_bits ( & USB - > DADDR , USB_DADDR_ADD ) ;
USB - > DADDR = ( uint16_t ) ( USB - > DADDR | dev_addr ) ; // leave the enable bit set
}
}
2020-04-13 09:25:16 -04:00
/***
* Allocate a section of PMA
* Currently statitically allocates 64 bytes for each EP .
*
* stm32fsdev have 512 or 1024 bytes of packet RAM , and support 16 EP ( 8 in and 8 out ) ,
* Static checks above have verified that there is enough packet memory space , so
* this should NEVER fail .
*/
2020-04-13 13:11:45 -04:00
static uint16_t dcd_pma_alloc ( uint8_t ep_addr , size_t length )
2020-04-13 09:25:16 -04:00
{
uint8_t const epnum = tu_edpt_number ( ep_addr ) ;
uint8_t const dir = tu_edpt_dir ( ep_addr ) ;
2020-04-13 13:11:45 -04:00
( void ) length ;
2020-04-13 09:25:16 -04:00
2020-04-13 13:11:45 -04:00
TU_ASSERT ( length < = DCD_STM32_PMA_ALLOC_SIZE ) ;
uint16_t addr = DCD_STM32_BTABLE_BASE + 8 * MAX_EP_COUNT ; // Each EP needs 8 bytes to store control data
addr + = ( ( 2 * epnum + dir ) * DCD_STM32_PMA_ALLOC_SIZE ) ;
return addr ;
2020-04-13 09:25:16 -04:00
}
2019-09-09 13:38:10 -04:00
// The STM32F0 doesn't seem to like |= or &= to manipulate the EP#R registers,
// so I'm using the #define from HAL here, instead.
bool dcd_edpt_open ( uint8_t rhport , tusb_desc_endpoint_t const * p_endpoint_desc )
{
( void ) rhport ;
uint8_t const epnum = tu_edpt_number ( p_endpoint_desc - > bEndpointAddress ) ;
uint8_t const dir = tu_edpt_dir ( p_endpoint_desc - > bEndpointAddress ) ;
2019-09-15 23:51:42 -04:00
const uint16_t epMaxPktSize = p_endpoint_desc - > wMaxPacketSize . size ;
2019-09-09 13:38:10 -04:00
// Isochronous not supported (yet), and some other driver assumptions.
2019-09-19 09:24:52 -04:00
2019-09-09 13:38:10 -04:00
TU_ASSERT ( p_endpoint_desc - > bmAttributes . xfer ! = TUSB_XFER_ISOCHRONOUS ) ;
TU_ASSERT ( epnum < MAX_EP_COUNT ) ;
// Set type
switch ( p_endpoint_desc - > bmAttributes . xfer ) {
case TUSB_XFER_CONTROL :
2019-09-15 23:37:57 -04:00
pcd_set_eptype ( USB , epnum , USB_EP_CONTROL ) ;
break ;
# if (0)
case TUSB_XFER_ISOCHRONOUS : // FIXME: Not yet supported
pcd_set_eptype ( USB , epnum , USB_EP_ISOCHRONOUS ) ; break ;
break ;
# endif
2019-09-09 13:38:10 -04:00
case TUSB_XFER_BULK :
2019-09-15 23:37:57 -04:00
pcd_set_eptype ( USB , epnum , USB_EP_BULK ) ;
break ;
2019-09-09 13:38:10 -04:00
case TUSB_XFER_INTERRUPT :
2019-09-15 23:37:57 -04:00
pcd_set_eptype ( USB , epnum , USB_EP_INTERRUPT ) ;
break ;
2019-09-09 13:38:10 -04:00
default :
TU_ASSERT ( false ) ;
2019-09-15 23:37:57 -04:00
return false ;
2019-09-09 13:38:10 -04:00
}
2019-09-15 23:37:57 -04:00
pcd_set_ep_address ( USB , epnum , epnum ) ;
2019-09-25 20:17:53 -04:00
// Be normal, for now, instead of only accepting zero-byte packets (on control endpoint)
// or being double-buffered (bulk endpoints)
pcd_clear_ep_kind ( USB , 0 ) ;
2019-09-09 13:38:10 -04:00
if ( dir = = TUSB_DIR_IN )
{
2020-04-13 13:11:45 -04:00
* pcd_ep_tx_address_ptr ( USB , epnum ) = dcd_pma_alloc ( p_endpoint_desc - > bEndpointAddress , p_endpoint_desc - > wMaxPacketSize . size ) ;
2019-09-15 23:37:57 -04:00
pcd_set_ep_tx_cnt ( USB , epnum , p_endpoint_desc - > wMaxPacketSize . size ) ;
pcd_clear_tx_dtog ( USB , epnum ) ;
pcd_set_ep_tx_status ( USB , epnum , USB_EP_TX_NAK ) ;
2019-09-09 13:38:10 -04:00
}
else
{
2020-04-13 13:11:45 -04:00
* pcd_ep_rx_address_ptr ( USB , epnum ) = dcd_pma_alloc ( p_endpoint_desc - > bEndpointAddress , p_endpoint_desc - > wMaxPacketSize . size ) ;
2019-09-15 23:37:57 -04:00
pcd_set_ep_rx_cnt ( USB , epnum , p_endpoint_desc - > wMaxPacketSize . size ) ;
pcd_clear_rx_dtog ( USB , epnum ) ;
pcd_set_ep_rx_status ( USB , epnum , USB_EP_RX_NAK ) ;
2019-09-09 13:38:10 -04:00
}
2019-09-15 23:51:42 -04:00
xfer_ctl_ptr ( epnum , dir ) - > max_packet_size = epMaxPktSize ;
2019-09-09 13:38:10 -04:00
return true ;
}
2020-04-12 21:07:17 -04:00
/**
* Close an endpoint .
*
2020-04-13 09:25:16 -04:00
* This function may be called with interrupts enabled or disabled .
*
2020-04-12 21:07:17 -04:00
* This also clears transfers in progress , should there be any .
*/
void dcd_edpt_close ( uint8_t rhport , uint8_t ep_addr )
{
( void ) rhport ;
uint32_t const epnum = tu_edpt_number ( ep_addr ) ;
uint32_t const dir = tu_edpt_dir ( ep_addr ) ;
# ifndef NDEBUG
TU_ASSERT ( epnum < MAX_EP_COUNT , /**/ ) ;
# endif
if ( dir = = TUSB_DIR_IN )
{
pcd_set_ep_tx_status ( USB , epnum , USB_EP_TX_DIS ) ;
}
else
{
pcd_set_ep_rx_status ( USB , epnum , USB_EP_RX_DIS ) ;
}
}
2019-09-09 13:38:10 -04:00
// Currently, single-buffered, and only 64 bytes at a time (max)
static void dcd_transmit_packet ( xfer_ctl_t * xfer , uint16_t ep_ix )
{
uint16_t len = ( uint16_t ) ( xfer - > total_len - xfer - > queued_len ) ;
2019-09-15 23:51:42 -04:00
if ( len > xfer - > max_packet_size ) // max packet size for FS transfer
2019-09-09 13:38:10 -04:00
{
2019-09-15 23:51:42 -04:00
len = xfer - > max_packet_size ;
2019-09-09 13:38:10 -04:00
}
2019-09-15 23:51:42 -04:00
uint16_t oldAddr = * pcd_ep_tx_address_ptr ( USB , ep_ix ) ;
dcd_write_packet_memory ( oldAddr , & ( xfer - > buffer [ xfer - > queued_len ] ) , len ) ;
2019-09-09 13:38:10 -04:00
xfer - > queued_len = ( uint16_t ) ( xfer - > queued_len + len ) ;
2019-09-15 23:37:57 -04:00
pcd_set_ep_tx_cnt ( USB , ep_ix , len ) ;
pcd_set_ep_tx_status ( USB , ep_ix , USB_EP_TX_VALID ) ;
2019-09-09 13:38:10 -04:00
}
bool dcd_edpt_xfer ( uint8_t rhport , uint8_t ep_addr , uint8_t * buffer , uint16_t total_bytes )
{
( void ) rhport ;
uint8_t const epnum = tu_edpt_number ( ep_addr ) ;
uint8_t const dir = tu_edpt_dir ( ep_addr ) ;
2019-09-15 23:37:57 -04:00
xfer_ctl_t * xfer = xfer_ctl_ptr ( epnum , dir ) ;
2019-09-09 13:38:10 -04:00
xfer - > buffer = buffer ;
xfer - > total_len = total_bytes ;
xfer - > queued_len = 0 ;
if ( dir = = TUSB_DIR_OUT )
{
// A setup token can occur immediately after an OUT STATUS packet so make sure we have a valid
// buffer for the control endpoint.
if ( epnum = = 0 & & buffer = = NULL )
{
xfer - > buffer = ( uint8_t * ) _setup_packet ;
}
2019-09-15 23:51:42 -04:00
if ( total_bytes > xfer - > max_packet_size )
2019-09-09 13:38:10 -04:00
{
2019-09-15 23:51:42 -04:00
pcd_set_ep_rx_cnt ( USB , epnum , xfer - > max_packet_size ) ;
2019-09-09 13:38:10 -04:00
} else {
2019-09-15 23:37:57 -04:00
pcd_set_ep_rx_cnt ( USB , epnum , total_bytes ) ;
2019-09-09 13:38:10 -04:00
}
2019-09-15 23:37:57 -04:00
pcd_set_ep_rx_status ( USB , epnum , USB_EP_RX_VALID ) ;
2019-09-09 13:38:10 -04:00
}
else // IN
{
dcd_transmit_packet ( xfer , epnum ) ;
}
return true ;
}
void dcd_edpt_stall ( uint8_t rhport , uint8_t ep_addr )
{
( void ) rhport ;
2019-09-21 12:00:04 -04:00
if ( ep_addr & 0x80 )
{ // IN
pcd_set_ep_tx_status ( USB , ep_addr & 0x7F , USB_EP_TX_STALL ) ;
2019-09-09 13:38:10 -04:00
}
2019-09-21 12:00:04 -04:00
else
{ // OUT
pcd_set_ep_rx_status ( USB , ep_addr , USB_EP_RX_STALL ) ;
2019-09-09 13:38:10 -04:00
}
}
void dcd_edpt_clear_stall ( uint8_t rhport , uint8_t ep_addr )
{
( void ) rhport ;
if ( ep_addr & 0x80 )
{ // IN
ep_addr & = 0x7F ;
2019-09-15 23:37:57 -04:00
pcd_set_ep_tx_status ( USB , ep_addr , USB_EP_TX_NAK ) ;
2019-09-09 13:38:10 -04:00
/* Reset to DATA0 if clearing stall condition. */
2019-09-15 23:37:57 -04:00
pcd_clear_tx_dtog ( USB , ep_addr ) ;
2019-09-09 13:38:10 -04:00
}
else
{ // OUT
/* Reset to DATA0 if clearing stall condition. */
2019-09-15 23:37:57 -04:00
pcd_clear_rx_dtog ( USB , ep_addr ) ;
2019-09-09 13:38:10 -04:00
2019-09-21 12:00:04 -04:00
pcd_set_ep_rx_status ( USB , ep_addr , USB_EP_RX_NAK ) ;
2019-09-09 13:38:10 -04:00
}
}
// Packet buffer access can only be 8- or 16-bit.
/**
* @ brief Copy a buffer from user memory area to packet memory area ( PMA ) .
* This uses byte - access for user memory ( so support non - aligned buffers )
* and 16 - bit access for packet memory .
2019-09-10 01:03:24 -04:00
* @ param dst , byte address in PMA ; must be 16 - bit aligned
* @ param src pointer to user memory area .
2019-09-09 13:38:10 -04:00
* @ param wPMABufAddr address into PMA .
* @ param wNBytes no . of bytes to be copied .
* @ retval None
*/
2019-09-11 09:45:48 -04:00
static bool dcd_write_packet_memory ( uint16_t dst , const void * __restrict src , size_t wNBytes )
2019-09-09 13:38:10 -04:00
{
2019-09-15 23:51:42 -04:00
uint32_t n = ( ( uint32_t ) wNBytes + 1U ) > > 1U ;
2019-09-11 20:33:47 -04:00
uint32_t i ;
2019-09-09 13:38:10 -04:00
uint16_t temp1 , temp2 ;
const uint8_t * srcVal ;
2019-09-10 01:03:24 -04:00
2019-09-09 13:38:10 -04:00
// The GCC optimizer will combine access to 32-bit sizes if we let it. Force
// it volatile so that it won't do that.
__IO uint16_t * pdwVal ;
srcVal = src ;
2019-09-10 01:03:24 -04:00
pdwVal = & pma [ PMA_STRIDE * ( dst > > 1 ) ] ;
2019-09-09 13:38:10 -04:00
for ( i = n ; i ! = 0 ; i - - )
{
temp1 = ( uint16_t ) * srcVal ;
srcVal + + ;
temp2 = temp1 | ( ( uint16_t ) ( ( uint16_t ) ( ( * srcVal ) < < 8U ) ) ) ;
2019-09-10 01:03:24 -04:00
* pdwVal = temp2 ;
pdwVal + = PMA_STRIDE ;
2019-09-09 13:38:10 -04:00
srcVal + + ;
}
2019-09-11 09:45:48 -04:00
return true ;
2019-09-09 13:38:10 -04:00
}
/**
* @ brief Copy a buffer from user memory area to packet memory area ( PMA ) .
* Uses byte - access of system memory and 16 - bit access of packet memory
* @ param wNBytes no . of bytes to be copied .
* @ retval None
*/
2019-09-11 09:45:48 -04:00
static bool dcd_read_packet_memory ( void * __restrict dst , uint16_t src , size_t wNBytes )
2019-09-09 13:38:10 -04:00
{
2019-09-11 20:33:47 -04:00
uint32_t n = ( uint32_t ) wNBytes > > 1U ;
uint32_t i ;
2019-09-09 13:38:10 -04:00
// The GCC optimizer will combine access to 32-bit sizes if we let it. Force
// it volatile so that it won't do that.
__IO const uint16_t * pdwVal ;
uint32_t temp ;
2019-09-10 01:03:24 -04:00
pdwVal = & pma [ PMA_STRIDE * ( src > > 1 ) ] ;
2019-09-09 13:38:10 -04:00
uint8_t * dstVal = ( uint8_t * ) dst ;
for ( i = n ; i ! = 0U ; i - - )
{
2019-09-10 01:03:24 -04:00
temp = * pdwVal ;
pdwVal + = PMA_STRIDE ;
2019-09-09 13:38:10 -04:00
* dstVal + + = ( ( temp > > 0 ) & 0xFF ) ;
* dstVal + + = ( ( temp > > 8 ) & 0xFF ) ;
}
if ( wNBytes % 2 )
{
2019-09-10 01:03:24 -04:00
temp = * pdwVal ;
pdwVal + = PMA_STRIDE ;
2019-09-09 13:38:10 -04:00
* dstVal + + = ( ( temp > > 0 ) & 0xFF ) ;
}
2019-09-11 09:45:48 -04:00
return true ;
2019-09-09 13:38:10 -04:00
}
# endif