Files
tinyUSB/src/portable/wch/dcd_ch32_usbhs.c

430 lines
14 KiB
C
Raw Normal View History

/*
* The MIT License (MIT)
*
* Copyright (c) 2022 Greg Davill
* Copyright (c) 2023 Denis Krasutski
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
// Note: CH32 can have both USB FS and HS, only use this driver if CFG_TUD_MAX_SPEED is high speed
#if CFG_TUD_ENABLED && defined(TUP_USBIP_WCH_USBHS) && (CFG_TUD_MAX_SPEED == OPT_MODE_HIGH_SPEED)
#include "ch32_usbhs_reg.h"
#include "device/dcd.h"
// Max number of bi-directional endpoints including EP0
#define EP_MAX 16
typedef struct {
uint8_t* buffer;
uint16_t total_len;
uint16_t queued_len;
uint16_t max_size;
bool is_last_packet;
bool is_iso;
} xfer_ctl_t;
typedef enum {
EP_RESPONSE_ACK,
EP_RESPONSE_NAK,
} ep_response_list_t;
#define XFER_CTL_BASE(_ep, _dir) &xfer_status[_ep][_dir]
static xfer_ctl_t xfer_status[EP_MAX][2];
#define EP_TX_LEN(ep) *(volatile uint16_t *)((volatile uint16_t *)&(USBHSD->UEP0_TX_LEN) + (ep) * 2)
#define EP_TX_CTRL(ep) *(volatile uint8_t *)((volatile uint8_t *)&(USBHSD->UEP0_TX_CTRL) + (ep) * 4)
#define EP_RX_CTRL(ep) *(volatile uint8_t *)((volatile uint8_t *)&(USBHSD->UEP0_RX_CTRL) + (ep) * 4)
#define EP_RX_MAX_LEN(ep) *(volatile uint16_t *)((volatile uint16_t *)&(USBHSD->UEP0_MAX_LEN) + (ep) * 2)
#define EP_TX_DMA_ADDR(ep) *(volatile uint32_t *)((volatile uint32_t *)&(USBHSD->UEP1_TX_DMA) + (ep - 1))
#define EP_RX_DMA_ADDR(ep) *(volatile uint32_t *)((volatile uint32_t *)&(USBHSD->UEP1_RX_DMA) + (ep - 1))
/* Endpoint Buffer */
TU_ATTR_ALIGNED(4) static uint8_t ep0_buffer[CFG_TUD_ENDPOINT0_SIZE];
static void ep_set_response_and_toggle(uint8_t ep_addr, ep_response_list_t response_type) {
uint8_t const ep_num = tu_edpt_number(ep_addr);
if (ep_addr & TUSB_DIR_IN_MASK) {
uint8_t response = (response_type == EP_RESPONSE_ACK) ? USBHS_EP_T_RES_ACK : USBHS_EP_T_RES_NAK;
if (ep_num == 0) {
if (response_type == EP_RESPONSE_ACK) {
if (EP_TX_LEN(ep_num) == 0) {
EP_TX_CTRL(ep_num) |= USBHS_EP_T_TOG_1;
} else {
EP_TX_CTRL(ep_num) ^= USBHS_EP_T_TOG_1;
}
}
}
if (xfer_status[ep_num][TUSB_DIR_IN].is_iso == true) {
EP_TX_CTRL(ep_num) = USBHS_EP_T_AUTOTOG;
} else {
EP_TX_CTRL(ep_num) = (EP_TX_CTRL(ep_num) & ~(USBHS_EP_T_RES_MASK)) | response;
}
} else {
uint8_t response = (response_type == EP_RESPONSE_ACK) ? USBHS_EP_R_RES_ACK : USBHS_EP_R_RES_NAK;
if (ep_num == 0) {
if (response_type == EP_RESPONSE_ACK) {
if (xfer_status[ep_num][TUSB_DIR_OUT].queued_len == 0) {
EP_RX_CTRL(ep_num) |= USBHS_EP_R_TOG_1;
}
} else {
EP_RX_CTRL(ep_num) ^= USBHS_EP_R_TOG_1;
}
}
EP_RX_CTRL(ep_num) = (EP_RX_CTRL(ep_num) & ~(USBHS_EP_R_RES_MASK)) | response;
}
}
static void xfer_data_packet(uint8_t ep_addr, xfer_ctl_t* xfer) {
uint8_t const ep_num = tu_edpt_number(ep_addr);
tusb_dir_t const dir = tu_edpt_dir(ep_addr);
if (dir == TUSB_DIR_IN) {
uint16_t remaining = xfer->total_len - xfer->queued_len;
uint16_t next_tx_size = TU_MIN(remaining, xfer->max_size);
if (ep_num == 0) {
memcpy(ep0_buffer, &xfer->buffer[xfer->queued_len], next_tx_size);
} else {
EP_TX_DMA_ADDR(ep_num) = (uint32_t) &xfer->buffer[xfer->queued_len];
}
EP_TX_LEN(ep_num) = next_tx_size;
xfer->queued_len += next_tx_size;
if (xfer->queued_len == xfer->total_len) {
xfer->is_last_packet = true;
}
if (xfer->is_iso == true) {
/* Enable EP to generate ISA_ACT interrupt */
USBHSD->ENDP_CONFIG |= (USBHS_EP0_T_EN << ep_num);
}
} else { /* TUSB_DIR_OUT */
uint16_t left_to_receive = xfer->total_len - xfer->queued_len;
uint16_t max_possible_rx_size = TU_MIN(xfer->max_size, left_to_receive);
if (max_possible_rx_size == left_to_receive) {
xfer->is_last_packet = true;
}
if (ep_num > 0) {
EP_RX_DMA_ADDR(ep_num) = (uint32_t) &xfer->buffer[xfer->queued_len];
EP_RX_MAX_LEN(ep_num) = max_possible_rx_size;
}
}
ep_set_response_and_toggle(ep_addr, USBHS_EP_R_RES_ACK);
}
void dcd_init(uint8_t rhport) {
(void) rhport;
memset(&xfer_status, 0, sizeof(xfer_status));
USBHSD->HOST_CTRL = 0x00;
USBHSD->HOST_CTRL = USBHS_PHY_SUSPENDM;
USBHSD->CONTROL = 0;
2022-03-23 00:00:06 +10:30
#if TUD_OPT_HIGH_SPEED
USBHSD->CONTROL = USBHS_DMA_EN | USBHS_INT_BUSY_EN | USBHS_HIGH_SPEED;
#else
#error OPT_MODE_FULL_SPEED not currently supported on CH32
USBHSD->CONTROL = USBHS_DMA_EN | USBHS_INT_BUSY_EN | USBHS_FULL_SPEED;
#endif
USBHSD->INT_EN = 0;
USBHSD->INT_EN = USBHS_SETUP_ACT_EN | USBHS_TRANSFER_EN | USBHS_DETECT_EN | USBHS_SUSPEND_EN | USBHS_ISO_ACT_EN;
USBHSD->ENDP_CONFIG = USBHS_EP0_T_EN | USBHS_EP0_R_EN;
USBHSD->ENDP_TYPE = 0x00;
USBHSD->BUF_MODE = 0x00;
for (int ep = 0; ep < EP_MAX; ep++) {
EP_TX_LEN(ep) = 0;
EP_TX_CTRL(ep) = USBHS_EP_T_AUTOTOG | USBHS_EP_T_RES_NAK;
EP_RX_CTRL(ep) = USBHS_EP_R_AUTOTOG | USBHS_EP_R_RES_NAK;
EP_RX_MAX_LEN(ep) = 0;
}
USBHSD->UEP0_DMA = (uint32_t) ep0_buffer;
USBHSD->UEP0_MAX_LEN = CFG_TUD_ENDPOINT0_SIZE;
xfer_status[0][TUSB_DIR_OUT].max_size = CFG_TUD_ENDPOINT0_SIZE;
xfer_status[0][TUSB_DIR_IN].max_size = CFG_TUD_ENDPOINT0_SIZE;
USBHSD->DEV_AD = 0;
USBHSD->CONTROL |= USBHS_DEV_PU_EN;
}
void dcd_int_enable(uint8_t rhport) {
(void) rhport;
NVIC_EnableIRQ(USBHS_IRQn);
}
void dcd_int_disable(uint8_t rhport) {
(void) rhport;
NVIC_DisableIRQ(USBHS_IRQn);
}
void dcd_edpt_close_all(uint8_t rhport) {
(void) rhport;
for (size_t ep = 1; ep < EP_MAX; ep++) {
EP_TX_LEN(ep) = 0;
EP_TX_CTRL(ep) = USBHS_EP_T_AUTOTOG | USBHS_EP_T_RES_NAK;
EP_RX_CTRL(ep) = USBHS_EP_R_AUTOTOG | USBHS_EP_R_RES_NAK;
EP_RX_MAX_LEN(ep) = 0;
}
USBHSD->ENDP_CONFIG = USBHS_EP0_T_EN | USBHS_EP0_R_EN;
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr) {
(void) dev_addr;
// Response with zlp status
dcd_edpt_xfer(rhport, 0x80, NULL, 0);
}
void dcd_remote_wakeup(uint8_t rhport) {
(void) rhport;
2023-01-12 15:26:48 +07:00
}
void dcd_sof_enable(uint8_t rhport, bool en) {
(void) rhport;
if (en) {
USBHSD->INT_EN |= USBHS_SOF_ACT_EN;
} else {
USBHSD->INT_EN &= ~(USBHS_SOF_ACT_EN);
}
}
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const* request) {
(void) rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS) {
USBHSD->DEV_AD = (uint8_t) request->wValue;
}
EP_TX_CTRL(0) = USBHS_EP_T_RES_NAK | USBHS_EP_T_TOG_0;
EP_RX_CTRL(0) = USBHS_EP_R_RES_NAK | USBHS_EP_R_TOG_0;
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const* desc_edpt) {
(void) rhport;
uint8_t const ep_num = tu_edpt_number(desc_edpt->bEndpointAddress);
tusb_dir_t const dir = tu_edpt_dir(desc_edpt->bEndpointAddress);
TU_ASSERT(ep_num < EP_MAX);
if (ep_num == 0) {
return true;
}
xfer_ctl_t* xfer = XFER_CTL_BASE(ep_num, dir);
xfer->max_size = tu_edpt_packet_size(desc_edpt);
xfer->is_iso = (desc_edpt->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS);
if (dir == TUSB_DIR_OUT) {
USBHSD->ENDP_CONFIG |= (USBHS_EP0_R_EN << ep_num);
EP_RX_CTRL(ep_num) = USBHS_EP_R_AUTOTOG | USBHS_EP_R_RES_NAK;
if (xfer->is_iso == true) {
USBHSD->ENDP_TYPE |= (USBHS_EP0_R_TYP << ep_num);
}
EP_RX_MAX_LEN(ep_num) = xfer->max_size;
} else {
if (xfer->is_iso == true) {
USBHSD->ENDP_TYPE |= (USBHS_EP0_T_TYP << ep_num);
} else {
/* Enable all types except Isochronous to avoid ISO_ACT interrupt generation */
USBHSD->ENDP_CONFIG |= (USBHS_EP0_T_EN << ep_num);
}
EP_TX_LEN(ep_num) = 0;
EP_TX_CTRL(ep_num) = USBHS_EP_T_AUTOTOG | USBHS_EP_T_RES_NAK | USBHS_EP_T_TOG_0;
}
return true;
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
uint8_t const ep_num = tu_edpt_number(ep_addr);
tusb_dir_t const dir = tu_edpt_dir(ep_addr);
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(ep_num) = USBHS_EP_R_AUTOTOG | USBHS_EP_R_RES_NAK;
EP_RX_MAX_LEN(ep_num) = 0;
USBHSD->ENDP_TYPE &= ~(USBHS_EP0_R_TYP << ep_num);
USBHSD->ENDP_CONFIG &= ~(USBHS_EP0_R_EN << ep_num);
} else { // TUSB_DIR_IN
EP_TX_CTRL(ep_num) = USBHS_EP_T_AUTOTOG | USBHS_EP_T_RES_NAK | USBHS_EP_T_TOG_0;
EP_TX_LEN(ep_num) = 0;
USBHSD->ENDP_TYPE &= ~(USBHS_EP0_T_TYP << ep_num);
USBHSD->ENDP_CONFIG &= ~(USBHS_EP0_T_EN << ep_num);
}
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
uint8_t const ep_num = tu_edpt_number(ep_addr);
tusb_dir_t const dir = tu_edpt_dir(ep_addr);
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(ep_num) = USBHS_EP_R_RES_STALL;
} else {
EP_TX_LEN(0) = 0;
EP_TX_CTRL(ep_num) = USBHS_EP_T_RES_STALL;
}
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
(void) rhport;
uint8_t const ep_num = tu_edpt_number(ep_addr);
tusb_dir_t const dir = tu_edpt_dir(ep_addr);
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(ep_num) = USBHS_EP_R_AUTOTOG | USBHS_EP_R_RES_NAK;
} else {
EP_TX_CTRL(ep_num) = USBHS_EP_T_AUTOTOG | USBHS_EP_R_RES_NAK;
}
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) {
(void) rhport;
uint8_t const ep_num = tu_edpt_number(ep_addr);
tusb_dir_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t* xfer = XFER_CTL_BASE(ep_num, dir);
xfer->buffer = buffer;
xfer->total_len = total_bytes;
xfer->queued_len = 0;
xfer->is_last_packet = false;
xfer_data_packet(ep_addr, xfer);
return true;
}
void dcd_int_handler(uint8_t rhport) {
(void) rhport;
uint8_t int_flag = USBHSD->INT_FG;
uint8_t int_status = USBHSD->INT_ST;
if (int_flag & USBHS_ISO_ACT_FLAG) {
uint8_t ep_num = int_status & MASK_UIS_ENDP;
uint8_t rx_token = int_status & MASK_UIS_TOKEN;
uint8_t ep_addr = (rx_token == USBHS_TOKEN_PID_IN) ? (TUSB_DIR_IN_MASK | ep_num) : ep_num;
xfer_ctl_t* xfer = XFER_CTL_BASE(ep_num, tu_edpt_dir(ep_addr));
if (rx_token == USBHS_TOKEN_PID_OUT) {
uint16_t rx_len = USBHSD->RX_LEN;
xfer->queued_len += rx_len;
if (rx_len < xfer->max_size) {
xfer->is_last_packet = true;
}
} else if (rx_token == USBHS_TOKEN_PID_IN) {
if (xfer->is_last_packet == true) {
/* Disable EP to avoid ISO_ACT interrupt generation */
USBHSD->ENDP_CONFIG &= ~(USBHS_EP0_T_EN << ep_num);
}
}
if (xfer->is_last_packet == true) {
ep_set_response_and_toggle(ep_addr, EP_RESPONSE_NAK);
dcd_event_xfer_complete(0, ep_addr, xfer->queued_len, XFER_RESULT_SUCCESS, true);
} else {
/* prepare next part of packet to xref */
xfer_data_packet(ep_addr, xfer);
}
USBHSD->INT_FG = USBHS_ISO_ACT_FLAG; /* Clear flag */
} else if (int_flag & USBHS_TRANSFER_FLAG) {
uint8_t ep_num = int_status & MASK_UIS_ENDP;
uint8_t rx_token = int_status & MASK_UIS_TOKEN;
uint8_t ep_addr = (rx_token == USBHS_TOKEN_PID_IN) ? (TUSB_DIR_IN_MASK | ep_num) : ep_num;
xfer_ctl_t* xfer = XFER_CTL_BASE(ep_num, tu_edpt_dir(ep_addr));
if (xfer->is_iso == false) {
if (rx_token == USBHS_TOKEN_PID_OUT) {
uint16_t rx_len = USBHSD->RX_LEN;
if (ep_num == 0) {
memcpy(&xfer->buffer[xfer->queued_len], ep0_buffer, rx_len);
}
xfer->queued_len += rx_len;
if (rx_len < xfer->max_size) {
xfer->is_last_packet = true;
}
} else if (rx_token == USBHS_TOKEN_PID_IN) {
// Do nothing, no need to update xfer->is_last_packet, it is already updated in xfer_data_packet
// Common processing below
}
if (xfer->is_last_packet == true) {
ep_set_response_and_toggle(ep_addr, EP_RESPONSE_NAK);
dcd_event_xfer_complete(0, ep_addr, xfer->queued_len, XFER_RESULT_SUCCESS, true);
} else {
/* prepare next part of packet to xref */
xfer_data_packet(ep_addr, xfer);
}
}
USBHSD->INT_FG = USBHS_TRANSFER_FLAG; /* Clear flag */
} else if (int_flag & USBHS_SETUP_FLAG) {
ep_set_response_and_toggle(0x80, EP_RESPONSE_NAK);
ep_set_response_and_toggle(0x00, EP_RESPONSE_NAK);
dcd_event_setup_received(0, ep0_buffer, true);
USBHSD->INT_FG = USBHS_SETUP_FLAG; /* Clear flag */
} else if (int_flag & USBHS_DETECT_FLAG) {
dcd_event_bus_reset(0, TUSB_SPEED_HIGH, true);
USBHSD->DEV_AD = 0;
EP_RX_CTRL(0) = USBHS_EP_R_RES_ACK | USBHS_EP_R_TOG_0;
EP_TX_CTRL(0) = USBHS_EP_T_RES_NAK | USBHS_EP_T_TOG_0;
USBHSD->INT_FG = USBHS_DETECT_FLAG; /* Clear flag */
} else if (int_flag & USBHS_SUSPEND_FLAG) {
dcd_event_t event = {.rhport = rhport, .event_id = DCD_EVENT_SUSPEND};
dcd_event_handler(&event, true);
USBHSD->INT_FG = USBHS_SUSPEND_FLAG; /* Clear flag */
}
}
#endif