able to response to scsi inquiry, but failed to response to test unit ready

This commit is contained in:
hathach
2019-12-21 19:33:41 +07:00
parent 24009cb689
commit 050fa2fd39
5 changed files with 125 additions and 55 deletions

View File

@@ -378,6 +378,9 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
TU_ASSERT( event == XFER_RESULT_SUCCESS && TU_ASSERT( event == XFER_RESULT_SUCCESS &&
xferred_bytes == sizeof(msc_cbw_t) && p_cbw->signature == MSC_CBW_SIGNATURE ); xferred_bytes == sizeof(msc_cbw_t) && p_cbw->signature == MSC_CBW_SIGNATURE );
TU_LOG2(" Command Block Wrapper\n");
TU_LOG2_MEM(p_cbw, xferred_bytes, 2);
p_csw->signature = MSC_CSW_SIGNATURE; p_csw->signature = MSC_CSW_SIGNATURE;
p_csw->tag = p_cbw->tag; p_csw->tag = p_cbw->tag;
p_csw->data_residue = 0; p_csw->data_residue = 0;
@@ -448,6 +451,9 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
break; break;
case MSC_STAGE_DATA: case MSC_STAGE_DATA:
//TU_LOG2(" SCSI Data\n");
//TU_LOG2_MEM(_mscd_buf, xferred_bytes, 2);
// OUT transfer, invoke callback if needed // OUT transfer, invoke callback if needed
if ( !tu_bit_test(p_cbw->dir, 7) ) if ( !tu_bit_test(p_cbw->dir, 7) )
{ {
@@ -538,6 +544,9 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
// Wait for the command status wrapper complete event // Wait for the command status wrapper complete event
if( (ep_addr == p_msc->ep_in) && (xferred_bytes == sizeof(msc_csw_t)) ) if( (ep_addr == p_msc->ep_in) && (xferred_bytes == sizeof(msc_csw_t)) )
{ {
TU_LOG2(" Command Status Wrapper\n");
TU_LOG2_MEM(p_csw, xferred_bytes, 2);
// Move to default CMD stage // Move to default CMD stage
p_msc->stage = MSC_STAGE_CMD; p_msc->stage = MSC_STAGE_CMD;

View File

@@ -213,7 +213,7 @@ static inline bool tu_bit_test (uint32_t value, uint8_t pos) { return (value
// 2 : print out log // 2 : print out log
#if CFG_TUSB_DEBUG #if CFG_TUSB_DEBUG
void tu_print_mem(void const *buf, uint8_t size, uint16_t count); void tu_print_mem(void const *buf, uint16_t count, uint8_t indent);
#ifndef tu_printf #ifndef tu_printf
#define tu_printf printf #define tu_printf printf

View File

@@ -376,8 +376,7 @@ void tud_task (void)
break; break;
case DCD_EVENT_SETUP_RECEIVED: case DCD_EVENT_SETUP_RECEIVED:
TU_LOG2(" "); TU_LOG2_MEM(&event.setup_received, 8, 2);
TU_LOG2_MEM(&event.setup_received, 1, 8);
// Mark as connected after receiving 1st setup packet. // Mark as connected after receiving 1st setup packet.
// But it is easier to set it every time instead of wasting time to check then set // But it is easier to set it every time instead of wasting time to check then set
@@ -949,6 +948,8 @@ bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
TU_VERIFY( dcd_edpt_xfer(rhport, ep_addr, buffer, total_bytes) ); TU_VERIFY( dcd_edpt_xfer(rhport, ep_addr, buffer, total_bytes) );
_usbd_dev.ep_status[epnum][dir].busy = true; _usbd_dev.ep_status[epnum][dir].busy = true;
TU_LOG2(" XFER Endpoint: 0x%02X, Bytes: %d\r\n", ep_addr, total_bytes);
return true; return true;
} }

View File

@@ -51,6 +51,11 @@ typedef struct
// Endpoint 0-5, each can only be either OUT or In // Endpoint 0-5, each can only be either OUT or In
xfer_desc_t _dcd_xfer[EP_COUNT]; xfer_desc_t _dcd_xfer[EP_COUNT];
void xfer_epsize_set(xfer_desc_t* xfer, uint16_t epsize)
{
xfer->epsize = epsize;
}
void xfer_begin(xfer_desc_t* xfer, uint8_t * buffer, uint16_t total_bytes) void xfer_begin(xfer_desc_t* xfer, uint8_t * buffer, uint16_t total_bytes)
{ {
xfer->buffer = buffer; xfer->buffer = buffer;
@@ -73,14 +78,23 @@ void xfer_packet_done(xfer_desc_t* xfer)
} }
//------------- Transaction helpers -------------// //------------- Transaction helpers -------------//
static uint16_t xact_in(uint8_t epnum, xfer_desc_t* xfer)
// Write data to EP FIFO, return number of written bytes
static void xact_ep_write(uint8_t epnum, uint8_t* buffer, uint16_t xact_len)
{ {
uint16_t const xact_len = xfer_packet_len(xfer); for(uint16_t i=0; i<xact_len; i++)
{
UDP->UDP_FDR[epnum] = (uint32_t) buffer[i];
}
}
// Write data to fifo // Read data from EP FIFO
for(uint16_t i=0; i<xact_len; i++) UDP->UDP_FDR[epnum] = (uint32_t) xfer->buffer[i]; static void xact_ep_read(uint8_t epnum, uint8_t* buffer, uint16_t xact_len)
{
return xact_len; for(uint16_t i=0; i<xact_len; i++)
{
buffer[i] = (uint8_t) UDP->UDP_FDR[epnum];
}
} }
/*------------------------------------------------------------------*/ /*------------------------------------------------------------------*/
@@ -92,7 +106,7 @@ static void bus_reset(void)
{ {
tu_memclr(_dcd_xfer, sizeof(_dcd_xfer)); tu_memclr(_dcd_xfer, sizeof(_dcd_xfer));
_dcd_xfer[0].epsize = CFG_TUD_ENDPOINT0_SIZE; xfer_epsize_set(&_dcd_xfer[0], CFG_TUD_ENDPOINT0_SIZE);
// Enable EP0 control // Enable EP0 control
UDP->UDP_CSR[0] = UDP_CSR_EPEDS_Msk; UDP->UDP_CSR[0] = UDP_CSR_EPEDS_Msk;
@@ -205,11 +219,13 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
// Must not already enabled // Must not already enabled
TU_ASSERT((UDP->UDP_CSR[epnum] & UDP_CSR_EPEDS_Msk) == 0); TU_ASSERT((UDP->UDP_CSR[epnum] & UDP_CSR_EPEDS_Msk) == 0);
xfer_epsize_set(&_dcd_xfer[epnum], ep_desc->wMaxPacketSize.size);
// Configure type and eanble EP // Configure type and eanble EP
UDP->UDP_CSR[epnum] = UDP_CSR_EPEDS_Msk | UDP_CSR_EPTYPE(ep_desc->bmAttributes.xfer + 4*dir); UDP->UDP_CSR[epnum] = UDP_CSR_EPEDS_Msk | UDP_CSR_EPTYPE(ep_desc->bmAttributes.xfer + 4*dir);
// Enable EP Interrupt // Enable EP Interrupt for IN
UDP->UDP_IER |= (1 << epnum); if (dir == TUSB_DIR_IN) UDP->UDP_IER |= (1 << epnum);
return true; return true;
} }
@@ -225,27 +241,47 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
xfer_desc_t* xfer = &_dcd_xfer[epnum]; xfer_desc_t* xfer = &_dcd_xfer[epnum];
xfer_begin(xfer, buffer, total_bytes); xfer_begin(xfer, buffer, total_bytes);
// Configure DIR bit for control endpoint
if ( epnum == 0 )
{
if (dir == TUSB_DIR_OUT)
{
// Clear DIR bit
UDP->UDP_CSR[0] &= ~UDP_CSR_DIR_Msk;
}else
{
// Set DIR bit
UDP->UDP_CSR[0] |= UDP_CSR_DIR_Msk;
}
}
if (dir == TUSB_DIR_IN) if (dir == TUSB_DIR_IN)
{ {
xact_in(epnum, xfer); // Set DIR bit for EP0
if ( epnum == 0 ) UDP->UDP_CSR[epnum] |= UDP_CSR_DIR_Msk;
xact_ep_write(epnum, xfer->buffer, xfer_packet_len(xfer));
// TX ready for transfer // TX ready for transfer
UDP->UDP_CSR[epnum] |= UDP_CSR_TXPKTRDY_Msk; UDP->UDP_CSR[epnum] |= UDP_CSR_TXPKTRDY_Msk;
} }
else
{
// Clear DIR bit for EP0
if ( epnum == 0 ) UDP->UDP_CSR[epnum] &= ~UDP_CSR_DIR_Msk;
// OUT Data may already received and acked by hardware
// Read it as 1st packet then continue with transfer if needed
// uint16_t const xact_len = (uint16_t) ((UDP->UDP_CSR[epnum] & UDP_CSR_RXBYTECNT_Msk) >> UDP_CSR_RXBYTECNT_Pos);
//
// if ( xact_len )
// {
// // Read from EP fifo
// xact_ep_read(epnum, xfer->buffer, xact_len);
// xfer_packet_done(xfer);
//
// // Clear DATA Bank0 bit
// UDP->UDP_CSR[epnum] &= ~UDP_CSR_RX_DATA_BK0_Msk;
//
// if ( 0 == xfer_packet_len(xfer) )
// {
// // Disable OUT EP interrupt when transfer is complete
// UDP->UDP_IER &= ~(1 << epnum);
//
// dcd_event_xfer_complete(rhport, epnum, xact_len, XFER_RESULT_SUCCESS, false);
// return true; // complete
// }
// }
// Enable interrupt when starting OUT transfer
UDP->UDP_IER |= (1 << epnum);
}
return true; return true;
} }
@@ -325,47 +361,67 @@ void dcd_isr(uint8_t rhport)
// Clear Setup bit // Clear Setup bit
UDP->UDP_CSR[0] &= ~UDP_CSR_RXSETUP_Msk; UDP->UDP_CSR[0] &= ~UDP_CSR_RXSETUP_Msk;
return;
} }
} }
for(uint8_t epnum = 0; epnum < EP_COUNT; epnum++) for(uint8_t epnum = 0; epnum < EP_COUNT; epnum++)
{ {
xfer_desc_t* xfer = &_dcd_xfer[epnum]; if ( intr_status & TU_BIT(epnum) )
// Endpoint IN
if (UDP->UDP_CSR[epnum] & UDP_CSR_TXCOMP_Msk)
{ {
xfer_packet_done(xfer); xfer_desc_t* xfer = &_dcd_xfer[epnum];
if ( xact_in(epnum, xfer) ) // Endpoint IN
if (UDP->UDP_CSR[epnum] & UDP_CSR_TXCOMP_Msk)
{ {
// TX ready for transfer xfer_packet_done(xfer);
UDP->UDP_CSR[epnum] |= UDP_CSR_TXPKTRDY_Msk;
}else uint16_t const xact_len = xfer_packet_len(xfer);
{
// xfer is complete if (xact_len)
dcd_event_xfer_complete(rhport, epnum | TUSB_DIR_IN_MASK, xfer->actual_len, XFER_RESULT_SUCCESS, true); {
// write to EP fifo
xact_ep_write(epnum, xfer->buffer, xact_len);
// TX ready for transfer
UDP->UDP_CSR[epnum] |= UDP_CSR_TXPKTRDY_Msk;
}else
{
// xfer is complete
dcd_event_xfer_complete(rhport, epnum | TUSB_DIR_IN_MASK, xfer->actual_len, XFER_RESULT_SUCCESS, true);
}
// Clear TX Complete bit
UDP->UDP_CSR[epnum] &= ~UDP_CSR_TXCOMP_Msk;
} }
// Clear TX Complete bit // Endpoint OUT
UDP->UDP_CSR[epnum] &= ~UDP_CSR_TXCOMP_Msk; if (UDP->UDP_CSR[epnum] & UDP_CSR_RX_DATA_BK0_Msk)
} {
uint16_t const xact_len = (uint16_t) ((UDP->UDP_CSR[epnum] & UDP_CSR_RXBYTECNT_Msk) >> UDP_CSR_RXBYTECNT_Pos);
// Endpoint OUT // Read from EP fifo
if (UDP->UDP_CSR[epnum] & UDP_CSR_RX_DATA_BK0_Msk) xact_ep_read(epnum, xfer->buffer, xact_len);
{ xfer_packet_done(xfer);
uint16_t const xact_len = (uint16_t) ((UDP->UDP_CSR[epnum] & UDP_CSR_RXBYTECNT_Msk) >> UDP_CSR_RXBYTECNT_Pos);
dcd_event_xfer_complete(rhport, epnum, xact_len, XFER_RESULT_SUCCESS, true); if ( 0 == xfer_packet_len(xfer) )
{
// Disable OUT EP interrupt when transfer is complete
UDP->UDP_IER &= ~(1 << epnum);
// Clear DATA Bank0 bit dcd_event_xfer_complete(rhport, epnum, xact_len, XFER_RESULT_SUCCESS, true);
UDP->UDP_CSR[epnum] &= ~UDP_CSR_RX_DATA_BK0_Msk; }
}
// Stall sent to host // Clear DATA Bank0 bit
if (UDP->UDP_CSR[epnum] & UDP_CSR_STALLSENT_Msk) UDP->UDP_CSR[epnum] &= ~UDP_CSR_RX_DATA_BK0_Msk;
{ }
UDP->UDP_CSR[epnum] &= ~UDP_CSR_STALLSENT_Msk;
// Stall sent to host
if (UDP->UDP_CSR[epnum] & UDP_CSR_STALLSENT_Msk)
{
UDP->UDP_CSR[epnum] &= ~UDP_CSR_STALLSENT_Msk;
}
} }
} }
} }

View File

@@ -81,8 +81,10 @@ static void dump_str_line(uint8_t const* buf, uint16_t count)
// size : item size in bytes // size : item size in bytes
// count : number of item // count : number of item
// print offet or not (handfy for dumping large memory) // print offet or not (handfy for dumping large memory)
void tu_print_mem(void const *buf, uint8_t size, uint16_t count) void tu_print_mem(void const *buf, uint16_t count, uint8_t indent)
{ {
uint8_t const size = 1; // fixed 1 byte for now
if ( !buf || !count ) if ( !buf || !count )
{ {
tu_printf("NULL\r\n"); tu_printf("NULL\r\n");
@@ -110,6 +112,8 @@ void tu_print_mem(void const *buf, uint8_t size, uint16_t count)
tu_printf("\r\n"); tu_printf("\r\n");
} }
for(uint8_t s=0; s < indent; s++) tu_printf(" ");
// print offset or absolute address // print offset or absolute address
tu_printf("%03lX: ", 16*i/item_per_line); tu_printf("%03lX: ", 16*i/item_per_line);
} }