Initial Commit for MAX32 Support

Initial commit for the port of TUSB to MAX32xxx parts, staring with MAX32690
 - Added dcd_max32.c (based on dcd_musb.c) for interfacing with the peripheral
 - Added MAX32690 part family support
 - Added max32690evkit board support
 - Updated examples for unique EP number requirement
 - Updated get_deps.py to fetch the MSDK

Known Issues / Additional Testing Required
 - msc_dual_lun only shown 1 volume on Windows
 - USBTMC does not have a valid Windowsdriver
 - DFU does not have a valid Windows driver
 - WebUSB is "Device not Recognized"
 - Need to test build scripts with IAR and Clang
This commit is contained in:
Brent Kowal
2024-06-28 16:55:27 -04:00
parent ba2f2299c3
commit 0f288326cc
23 changed files with 1720 additions and 0 deletions

View File

@@ -452,6 +452,14 @@
#define TUP_RHPORT_HIGHSPEED CFG_TUD_WCH_USBIP_USBHS
#define TUP_DCD_ENDPOINT_MAX (CFG_TUD_WCH_USBIP_USBHS ? 16 : 8)
//--------------------------------------------------------------------+
// Analog Devices
//--------------------------------------------------------------------+
#elif TU_CHECK_MCU(OPT_MCU_MAX32690)
#define TUP_DCD_ENDPOINT_MAX 12
#define TUP_RHPORT_HIGHSPEED 1
#endif
//--------------------------------------------------------------------+

View File

@@ -0,0 +1,841 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2021 Koji KITAYAMA
* Copyright (c) 2024 Brent Kowal (Analog Devices, Inc)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUD_ENABLED && TU_CHECK_MCU(OPT_MCU_MAX32690)
#if __GNUC__ > 8 && defined(__ARM_FEATURE_UNALIGNED)
/* GCC warns that an address may be unaligned, even though
* the target CPU has the capability for unaligned memory access. */
_Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"");
#endif
#include "device/dcd.h"
#include "mxc_delay.h"
#include "mxc_device.h"
#include "mxc_sys.h"
#include "nvic_table.h"
#include "usbhs_regs.h"
#define USBHS_M31_CLOCK_RECOVERY
/*------------------------------------------------------------------
* MACRO TYPEDEF CONSTANT ENUM DECLARATION
*------------------------------------------------------------------*/
#define REQUEST_TYPE_INVALID (0xFFu)
typedef union {
uint8_t u8;
uint16_t u16;
uint32_t u32;
} hw_fifo_t;
typedef struct TU_ATTR_PACKED
{
void *buf; /* the start address of a transfer data buffer */
uint16_t length; /* the number of bytes in the buffer */
uint16_t remaining; /* the number of bytes remaining in the buffer */
} pipe_state_t;
typedef struct
{
tusb_control_request_t setup_packet;
uint16_t remaining_ctrl; /* The number of bytes remaining in data stage of control transfer. */
int8_t status_out;
pipe_state_t pipe0;
pipe_state_t pipe[2][TUP_DCD_ENDPOINT_MAX - 1]; /* pipe[direction][endpoint number - 1] */
uint16_t pipe_buf_is_fifo[2]; /* Bitmap. Each bit means whether 1:TU_FIFO or 0:POD. */
} dcd_data_t;
/*------------------------------------------------------------------
* INTERNAL OBJECT & FUNCTION DECLARATION
*------------------------------------------------------------------*/
static dcd_data_t _dcd;
static volatile void* edpt_get_fifo_ptr(unsigned epnum)
{
volatile uint32_t *ptr;
ptr = &MXC_USBHS->fifo0;
ptr += epnum; /* Pointer math: multiplies ep by sizeof(uint32_t) */
return (volatile void *)ptr;
}
static void pipe_write_packet(void *buf, volatile void *fifo, unsigned len)
{
volatile hw_fifo_t *reg = (volatile hw_fifo_t*)fifo;
uintptr_t addr = (uintptr_t)buf;
while (len >= 4) {
reg->u32 = *(uint32_t const *)addr;
addr += 4;
len -= 4;
}
if (len >= 2) {
reg->u16 = *(uint16_t const *)addr;
addr += 2;
len -= 2;
}
if (len) {
reg->u8 = *(uint8_t const *)addr;
}
}
static void pipe_read_packet(void *buf, volatile void *fifo, unsigned len)
{
volatile hw_fifo_t *reg = (volatile hw_fifo_t*)fifo;
uintptr_t addr = (uintptr_t)buf;
while (len >= 4) {
*(uint32_t *)addr = reg->u32;
addr += 4;
len -= 4;
}
if (len >= 2) {
*(uint16_t *)addr = reg->u16;
addr += 2;
len -= 2;
}
if (len) {
*(uint8_t *)addr = reg->u8;
}
}
static void pipe_read_write_packet_ff(tu_fifo_t *f, volatile void *fifo, unsigned len, unsigned dir)
{
static const struct {
void (*tu_fifo_get_info)(tu_fifo_t *f, tu_fifo_buffer_info_t *info);
void (*tu_fifo_advance)(tu_fifo_t *f, uint16_t n);
void (*pipe_read_write)(void *buf, volatile void *fifo, unsigned len);
} ops[] = {
/* OUT */ {tu_fifo_get_write_info,tu_fifo_advance_write_pointer,pipe_read_packet},
/* IN */ {tu_fifo_get_read_info, tu_fifo_advance_read_pointer, pipe_write_packet},
};
tu_fifo_buffer_info_t info;
ops[dir].tu_fifo_get_info(f, &info);
unsigned total_len = len;
len = TU_MIN(total_len, info.len_lin);
ops[dir].pipe_read_write(info.ptr_lin, fifo, len);
unsigned rem = total_len - len;
if (rem) {
len = TU_MIN(rem, info.len_wrap);
ops[dir].pipe_read_write(info.ptr_wrap, fifo, len);
rem -= len;
}
ops[dir].tu_fifo_advance(f, total_len - rem);
}
static void process_setup_packet(uint8_t rhport)
{
uint32_t *p = (void*)&_dcd.setup_packet;
p[0] = MXC_USBHS->fifo0;
p[1] = MXC_USBHS->fifo0;
_dcd.pipe0.buf = NULL;
_dcd.pipe0.length = 0;
_dcd.pipe0.remaining = 0;
dcd_event_setup_received(rhport, (const uint8_t*)(uintptr_t)&_dcd.setup_packet, true);
const unsigned len = _dcd.setup_packet.wLength;
_dcd.remaining_ctrl = len;
const unsigned dir_in = tu_edpt_dir(_dcd.setup_packet.bmRequestType);
/* Clear RX FIFO and reverse the transaction direction */
if (len && dir_in) {
MXC_USBHS->index = 0;
MXC_USBHS->csr0 = MXC_F_USBHS_CSR0_SERV_OUTPKTRDY;
}
}
static bool handle_xfer_in(uint_fast8_t ep_addr)
{
unsigned epnum = tu_edpt_number(ep_addr);
unsigned epnum_minus1 = epnum - 1;
pipe_state_t *pipe = &_dcd.pipe[tu_edpt_dir(ep_addr)][epnum_minus1];
const unsigned rem = pipe->remaining;
//This function should not be for ep0
TU_ASSERT(epnum);
if (!rem) {
pipe->buf = NULL;
return true;
}
MXC_USBHS->index = epnum;
const unsigned mps = MXC_USBHS->inmaxp;
const unsigned len = TU_MIN(mps, rem);
void *buf = pipe->buf;
volatile void* fifo_ptr = edpt_get_fifo_ptr(epnum);
// TU_LOG1(" %p mps %d len %d rem %d\r\n", buf, mps, len, rem);
if (len) {
if (_dcd.pipe_buf_is_fifo[TUSB_DIR_IN] & TU_BIT(epnum_minus1)) {
pipe_read_write_packet_ff(buf, fifo_ptr, len, TUSB_DIR_IN);
} else {
pipe_write_packet(buf,fifo_ptr, len);
pipe->buf = buf + len;
}
pipe->remaining = rem - len;
}
MXC_USBHS->incsrl = MXC_F_USBHS_INCSRL_INPKTRDY; //TODO: Verify a | isnt needed
return false;
}
static bool handle_xfer_out(uint_fast8_t ep_addr)
{
unsigned epnum = tu_edpt_number(ep_addr);
unsigned epnum_minus1 = epnum - 1;
pipe_state_t *pipe = &_dcd.pipe[tu_edpt_dir(ep_addr)][epnum_minus1];
//This function should not be for ep0
TU_ASSERT(epnum);
MXC_USBHS->index = epnum;
TU_ASSERT(MXC_USBHS->outcsrl & MXC_F_USBHS_OUTCSRL_OUTPKTRDY);
const unsigned mps = MXC_USBHS->outmaxp;
const unsigned rem = pipe->remaining;
const unsigned vld = MXC_USBHS->outcount;
const unsigned len = TU_MIN(TU_MIN(rem, mps), vld);
void *buf = pipe->buf;
volatile void* fifo_ptr = edpt_get_fifo_ptr(epnum);
if (len) {
if (_dcd.pipe_buf_is_fifo[TUSB_DIR_OUT] & TU_BIT(epnum_minus1)) {
pipe_read_write_packet_ff(buf,fifo_ptr, len, TUSB_DIR_OUT);
} else {
pipe_read_packet(buf, fifo_ptr, len);
pipe->buf = buf + len;
}
pipe->remaining = rem - len;
}
if ((len < mps) || (rem == len)) {
pipe->buf = NULL;
return NULL != buf;
}
MXC_USBHS->outcsrl = 0; /* Clear RXRDY bit */ //TODO: Verify just setting to 0 is ok
return false;
}
static bool edpt_n_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
(void)rhport;
unsigned epnum = tu_edpt_number(ep_addr);
unsigned epnum_minus1 = epnum - 1;
unsigned dir_in = tu_edpt_dir(ep_addr);
pipe_state_t *pipe = &_dcd.pipe[dir_in][epnum_minus1];
pipe->buf = buffer;
pipe->length = total_bytes;
pipe->remaining = total_bytes;
if (dir_in) {
handle_xfer_in(ep_addr);
} else {
MXC_USBHS->index = epnum;
if (MXC_USBHS->outcsrl & MXC_F_USBHS_OUTCSRL_OUTPKTRDY){
MXC_USBHS->outcsrl = 0; //TODO: Verify just setting to 0 is ok
}
}
return true;
}
static bool edpt0_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
(void)rhport;
TU_ASSERT(total_bytes <= 64); /* Current implementation supports for only up to 64 bytes. */
const unsigned req = _dcd.setup_packet.bmRequestType;
TU_ASSERT(req != REQUEST_TYPE_INVALID || total_bytes == 0);
if (req == REQUEST_TYPE_INVALID || _dcd.status_out) {
/* STATUS OUT stage.
* MUSB controller automatically handles STATUS OUT packets without
* software helps. We do not have to do anything. And STATUS stage
* may have already finished and received the next setup packet
* without calling this function, so we have no choice but to
* invoke the callback function of status packet here. */
_dcd.status_out = 0;
if (req == REQUEST_TYPE_INVALID) {
dcd_event_xfer_complete(rhport, ep_addr, total_bytes, XFER_RESULT_SUCCESS, false);
} else {
/* The next setup packet has already been received, it aborts
* invoking callback function to avoid confusing TUSB stack. */
TU_LOG1("Drop CONTROL_STAGE_ACK\r\n");
}
return true;
}
const unsigned dir_in = tu_edpt_dir(ep_addr);
MXC_USBHS->index = 0;
if (tu_edpt_dir(req) == dir_in) { /* DATA stage */
TU_ASSERT(total_bytes <= _dcd.remaining_ctrl);
const unsigned rem = _dcd.remaining_ctrl;
const unsigned len = TU_MIN(TU_MIN(rem, 64), total_bytes);
volatile void* fifo_ptr = edpt_get_fifo_ptr(0);
if (dir_in) {
pipe_write_packet(buffer, fifo_ptr, len);
_dcd.pipe0.buf = buffer + len;
_dcd.pipe0.length = len;
_dcd.pipe0.remaining = 0;
_dcd.remaining_ctrl = rem - len;
if ((len < 64) || (rem == len)) {
_dcd.setup_packet.bmRequestType = REQUEST_TYPE_INVALID; /* Change to STATUS/SETUP stage */
_dcd.status_out = 1;
/* Flush TX FIFO and reverse the transaction direction. */
MXC_USBHS->csr0 = MXC_F_USBHS_CSR0_INPKTRDY | MXC_F_USBHS_CSR0_DATA_END;
} else {
MXC_USBHS->csr0 = MXC_F_USBHS_CSR0_INPKTRDY; /* Flush TX FIFO to return ACK. */
}
} else {
_dcd.pipe0.buf = buffer;
_dcd.pipe0.length = len;
_dcd.pipe0.remaining = len;
MXC_USBHS->csr0 = MXC_F_USBHS_CSR0_SERV_OUTPKTRDY; /* Clear RX FIFO to return ACK. */
}
} else if (dir_in) {
_dcd.pipe0.buf = NULL;
_dcd.pipe0.length = 0;
_dcd.pipe0.remaining = 0;
/* Clear RX FIFO and reverse the transaction direction */
MXC_USBHS->csr0 = MXC_F_USBHS_CSR0_SERV_OUTPKTRDY | MXC_F_USBHS_CSR0_DATA_END;
}
return true;
}
static void process_ep0(uint8_t rhport)
{
MXC_USBHS->index = 0;
uint_fast8_t csrl = MXC_USBHS->csr0;
if (csrl & MXC_F_USBHS_CSR0_SENT_STALL) {
/* Returned STALL packet to HOST. */
MXC_USBHS->csr0 = 0; /* Clear STALL */
return;
}
unsigned req = _dcd.setup_packet.bmRequestType;
if (csrl & MXC_F_USBHS_CSR0_SETUP_END) {
TU_LOG1(" ABORT by the next packets\r\n");
MXC_USBHS->csr0 = MXC_F_USBHS_CSR0_SERV_SETUP_END;
if (req != REQUEST_TYPE_INVALID && _dcd.pipe0.buf) {
/* DATA stage was aborted by receiving STATUS or SETUP packet. */
_dcd.pipe0.buf = NULL;
_dcd.setup_packet.bmRequestType = REQUEST_TYPE_INVALID;
dcd_event_xfer_complete(rhport,
req & TUSB_DIR_IN_MASK,
_dcd.pipe0.length - _dcd.pipe0.remaining,
XFER_RESULT_SUCCESS, true);
}
req = REQUEST_TYPE_INVALID;
if (!(csrl & MXC_F_USBHS_CSR0_OUTPKTRDY)) return; /* Received SETUP packet */
}
if (csrl & MXC_F_USBHS_CSR0_OUTPKTRDY) {
/* Received SETUP or DATA OUT packet */
if (req == REQUEST_TYPE_INVALID) {
/* SETUP */
TU_ASSERT(sizeof(tusb_control_request_t) == MXC_USBHS->count0,);
process_setup_packet(rhport);
return;
}
if (_dcd.pipe0.buf) {
/* DATA OUT */
const unsigned vld = MXC_USBHS->count0;
const unsigned rem = _dcd.pipe0.remaining;
const unsigned len = TU_MIN(TU_MIN(rem, 64), vld);
volatile void* fifo_ptr = edpt_get_fifo_ptr(0);
pipe_read_packet(_dcd.pipe0.buf, fifo_ptr, len);
_dcd.pipe0.remaining = rem - len;
_dcd.remaining_ctrl -= len;
_dcd.pipe0.buf = NULL;
dcd_event_xfer_complete(rhport,
tu_edpt_addr(0, TUSB_DIR_OUT),
_dcd.pipe0.length - _dcd.pipe0.remaining,
XFER_RESULT_SUCCESS, true);
}
return;
}
/* When CSRL0 is zero, it means that completion of sending a any length packet
* or receiving a zero length packet. */
if (req != REQUEST_TYPE_INVALID && !tu_edpt_dir(req)) {
/* STATUS IN */
if (*(const uint16_t*)(uintptr_t)&_dcd.setup_packet == 0x0500) {
/* The address must be changed on completion of the control transfer. */
MXC_USBHS->faddr = (uint8_t)_dcd.setup_packet.wValue;
}
_dcd.setup_packet.bmRequestType = REQUEST_TYPE_INVALID;
dcd_event_xfer_complete(rhport,
tu_edpt_addr(0, TUSB_DIR_IN),
_dcd.pipe0.length - _dcd.pipe0.remaining,
XFER_RESULT_SUCCESS, true);
return;
}
if (_dcd.pipe0.buf) {
/* DATA IN */
_dcd.pipe0.buf = NULL;
dcd_event_xfer_complete(rhport,
tu_edpt_addr(0, TUSB_DIR_IN),
_dcd.pipe0.length - _dcd.pipe0.remaining,
XFER_RESULT_SUCCESS, true);
}
}
static void process_edpt_n(uint8_t rhport, uint_fast8_t ep_addr)
{
bool completed;
const unsigned dir_in = tu_edpt_dir(ep_addr);
const unsigned epnum = tu_edpt_number(ep_addr);
MXC_USBHS->index = epnum;
if (dir_in) {
if (MXC_USBHS->incsrl & MXC_F_USBHS_INCSRL_SENTSTALL) {
MXC_USBHS->incsrl &= ~(MXC_F_USBHS_INCSRL_SENTSTALL | MXC_F_USBHS_INCSRL_UNDERRUN);
return;
}
completed = handle_xfer_in(ep_addr);
} else {
if (MXC_USBHS->outcsrl & MXC_F_USBHS_OUTCSRL_SENTSTALL) {
MXC_USBHS->outcsrl &= ~(MXC_F_USBHS_OUTCSRL_SENTSTALL | MXC_F_USBHS_OUTCSRL_OVERRUN);
return;
}
completed = handle_xfer_out(ep_addr);
}
if (completed) {
pipe_state_t *pipe = &_dcd.pipe[dir_in][tu_edpt_number(ep_addr) - 1];
dcd_event_xfer_complete(rhport, ep_addr,
pipe->length - pipe->remaining,
XFER_RESULT_SUCCESS, true);
}
}
static void process_bus_reset(uint8_t rhport)
{
(void)rhport;
TU_LOG0("------Bus Reset\r\n");
/* When bmRequestType is REQUEST_TYPE_INVALID(0xFF),
* a control transfer state is SETUP or STATUS stage. */
_dcd.setup_packet.bmRequestType = REQUEST_TYPE_INVALID;
_dcd.status_out = 0;
/* When pipe0.buf has not NULL, DATA stage works in progress. */
_dcd.pipe0.buf = NULL;
MXC_USBHS->intrinen = 1; /* Enable only EP0 */
MXC_USBHS->introuten = 0;
/* Clear FIFO settings */
for (unsigned i = 1; i < TUP_DCD_ENDPOINT_MAX; ++i) {
MXC_USBHS->index = i;
if (MXC_USBHS->incsrl & MXC_F_USBHS_INCSRL_INPKTRDY) {
/* Per musbhsfc_pg, only flush FIFO if IN packet loaded */
MXC_USBHS->incsrl = MXC_F_USBHS_INCSRL_FLUSHFIFO;
}
if (MXC_USBHS->outcsrl & MXC_F_USBHS_OUTCSRL_OUTPKTRDY) {
/* Per musbhsfc_pg, only flush FIFO if OUT packet is ready */
MXC_USBHS->outcsrl = MXC_F_USBHS_OUTCSRL_FLUSHFIFO;
}
}
dcd_event_bus_reset(0, (MXC_USBHS->power & MXC_F_USBHS_POWER_HS_MODE) ? TUSB_SPEED_HIGH : TUSB_SPEED_FULL, true);
}
/*------------------------------------------------------------------
* Device API
*------------------------------------------------------------------*/
void dcd_init(uint8_t rhport)
{
(void)rhport;
MXC_USBHS->intrusben |= MXC_F_USBHS_INTRUSBEN_SUSPEND_INT_EN;
//Interrupt for VBUS disconnect
MXC_USBHS->mxm_int_en |= MXC_F_USBHS_MXM_INT_EN_NOVBUS;
NVIC_ClearPendingIRQ(USB_IRQn);
dcd_edpt_close_all(rhport);
//Unsuspend the MAC
MXC_USBHS->mxm_suspend = 0;
/* Configure PHY */
MXC_USBHS->m31_phy_xcfgi_31_0 = (0x1 << 3) | (0x1 << 11);
MXC_USBHS->m31_phy_xcfgi_63_32 = 0;
MXC_USBHS->m31_phy_xcfgi_95_64 = 0x1 << (72-64);
MXC_USBHS->m31_phy_xcfgi_127_96 = 0;
#ifdef USBHS_M31_CLOCK_RECOVERY
MXC_USBHS->m31_phy_noncry_rstb = 1;
MXC_USBHS->m31_phy_noncry_en = 1;
MXC_USBHS->m31_phy_outclksel = 0;
MXC_USBHS->m31_phy_coreclkin = 0;
MXC_USBHS->m31_phy_xtlsel = 2; /* Select 25 MHz clock */
#else
/* Use this option to feed the PHY a 30 MHz clock, which is them used as a PLL reference */
/* As it depends on the system core clock, this should probably be done at the SYS level */
MXC_USBHS->m31_phy_noncry_rstb = 0;
MXC_USBHS->m31_phy_noncry_en = 0;
MXC_USBHS->m31_phy_outclksel = 1;
MXC_USBHS->m31_phy_coreclkin = 1;
MXC_USBHS->m31_phy_xtlsel = 3; /* Select 30 MHz clock */
#endif
MXC_USBHS->m31_phy_pll_en = 1;
MXC_USBHS->m31_phy_oscouten = 1;
/* Reset PHY */
MXC_USBHS->m31_phy_ponrst = 0;
MXC_USBHS->m31_phy_ponrst = 1;
dcd_connect(rhport);
}
void dcd_int_enable(uint8_t rhport)
{
(void)rhport;
NVIC_EnableIRQ(USB_IRQn);
}
void dcd_int_disable(uint8_t rhport)
{
(void)rhport;
NVIC_DisableIRQ(USB_IRQn);
}
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
(void)rhport;
(void)dev_addr;
_dcd.pipe0.buf = NULL;
_dcd.pipe0.length = 0;
_dcd.pipe0.remaining = 0;
/* Clear RX FIFO to return ACK. */
MXC_USBHS->index = 0;
MXC_USBHS->csr0 = MXC_F_USBHS_CSR0_SERV_OUTPKTRDY | MXC_F_USBHS_CSR0_DATA_END;
}
// Wake up host
void dcd_remote_wakeup(uint8_t rhport)
{
(void)rhport;
MXC_USBHS->power |= MXC_F_USBHS_POWER_RESUME;
#if CFG_TUSB_OS != OPT_OS_NONE
osal_task_delay(10);
#else
MXC_Delay(MXC_DELAY_MSEC(10));
#endif
MXC_USBHS->power &= ~MXC_F_USBHS_POWER_RESUME;
}
// Connect by enabling internal pull-up resistor on D+/D-
void dcd_connect(uint8_t rhport)
{
(void)rhport;
MXC_USBHS->power |= TUD_OPT_HIGH_SPEED ? MXC_F_USBHS_POWER_HS_ENABLE : 0;
MXC_USBHS->power |= MXC_F_USBHS_POWER_SOFTCONN;
}
// Disconnect by disabling internal pull-up resistor on D+/D-
void dcd_disconnect(uint8_t rhport)
{
(void)rhport;
MXC_USBHS->power &= ~MXC_F_USBHS_POWER_SOFTCONN;
}
void dcd_sof_enable(uint8_t rhport, bool en)
{
(void) rhport;
(void) en;
// TODO implement later
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
// Configure endpoint's registers according to descriptor
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
const unsigned ep_addr = ep_desc->bEndpointAddress;
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir_in = tu_edpt_dir(ep_addr);
const unsigned xfer = ep_desc->bmAttributes.xfer;
const unsigned mps = tu_edpt_packet_size(ep_desc);
TU_ASSERT(epn < TUP_DCD_ENDPOINT_MAX);
pipe_state_t *pipe = &_dcd.pipe[dir_in][epn - 1];
pipe->buf = NULL;
pipe->length = 0;
pipe->remaining = 0;
MXC_USBHS->index = epn;
if (dir_in) {
MXC_USBHS->inmaxp = mps;
MXC_USBHS->incsru = (MXC_F_USBHS_INCSRU_DPKTBUFDIS | MXC_F_USBHS_INCSRU_MODE) | ((xfer == TUSB_XFER_ISOCHRONOUS) ? MXC_F_USBHS_INCSRU_ISO : 0);
if (MXC_USBHS->incsrl & MXC_F_USBHS_INCSRL_INPKTRDY) {
MXC_USBHS->incsrl = MXC_F_USBHS_INCSRL_CLRDATATOG | MXC_F_USBHS_INCSRL_FLUSHFIFO;
} else {
MXC_USBHS->incsrl = MXC_F_USBHS_INCSRL_CLRDATATOG;
}
MXC_USBHS->intrinen |= TU_BIT(epn);
} else {
MXC_USBHS->outmaxp = mps;
MXC_USBHS->outcsru = (MXC_F_USBHS_OUTCSRU_DPKTBUFDIS) | ((xfer == TUSB_XFER_ISOCHRONOUS) ? MXC_F_USBHS_OUTCSRU_ISO : 0);
if (MXC_USBHS->outcsrl & MXC_F_USBHS_OUTCSRL_OUTPKTRDY) {
MXC_USBHS->outcsrl = MXC_F_USBHS_OUTCSRL_CLRDATATOG | MXC_F_USBHS_OUTCSRL_FLUSHFIFO;
} else {
MXC_USBHS->outcsrl = MXC_F_USBHS_OUTCSRL_CLRDATATOG;
}
MXC_USBHS->introuten |= TU_BIT(epn);
}
return true;
}
void dcd_edpt_close_all(uint8_t rhport)
{
(void) rhport;
MXC_SYS_Crit_Enter();
MXC_USBHS->intrinen = 1; /* Enable only EP0 */
MXC_USBHS->introuten = 0;
for (unsigned i = 1; i < TUP_DCD_ENDPOINT_MAX; ++i) {
MXC_USBHS->index = i;
MXC_USBHS->inmaxp = 0;
MXC_USBHS->incsru = MXC_F_USBHS_INCSRU_DPKTBUFDIS;
if (MXC_USBHS->incsrl & MXC_F_USBHS_INCSRL_INPKTRDY) {
MXC_USBHS->incsrl = MXC_F_USBHS_INCSRL_CLRDATATOG | MXC_F_USBHS_INCSRL_FLUSHFIFO;
} else {
MXC_USBHS->incsrl = MXC_F_USBHS_INCSRL_CLRDATATOG;
}
MXC_USBHS->outmaxp = 0;
MXC_USBHS->outcsru = MXC_F_USBHS_OUTCSRU_DPKTBUFDIS;
if (MXC_USBHS->outcsrl & MXC_F_USBHS_OUTCSRL_OUTPKTRDY) {
MXC_USBHS->outcsrl = MXC_F_USBHS_OUTCSRL_CLRDATATOG | MXC_F_USBHS_OUTCSRL_FLUSHFIFO;
} else {
MXC_USBHS->outcsrl = MXC_F_USBHS_OUTCSRL_CLRDATATOG;
}
}
MXC_SYS_Crit_Exit();
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;
unsigned const epn = tu_edpt_number(ep_addr);
unsigned const dir_in = tu_edpt_dir(ep_addr);
MXC_SYS_Crit_Enter();
MXC_USBHS->index = epn;
if (dir_in) {
MXC_USBHS->intrinen &= ~TU_BIT(epn);
MXC_USBHS->inmaxp = 0;
MXC_USBHS->incsru = MXC_F_USBHS_INCSRU_DPKTBUFDIS;
if (MXC_USBHS->incsrl & MXC_F_USBHS_INCSRL_INPKTRDY) {
MXC_USBHS->incsrl = MXC_F_USBHS_INCSRL_CLRDATATOG | MXC_F_USBHS_INCSRL_FLUSHFIFO;
} else {
MXC_USBHS->incsrl = MXC_F_USBHS_INCSRL_CLRDATATOG;
}
} else {
MXC_USBHS->introuten &= ~TU_BIT(epn);
MXC_USBHS->outmaxp = 0;
MXC_USBHS->outcsru = MXC_F_USBHS_OUTCSRU_DPKTBUFDIS;
if (MXC_USBHS->outcsrl & MXC_F_USBHS_OUTCSRL_OUTPKTRDY) {
MXC_USBHS->outcsrl = MXC_F_USBHS_OUTCSRL_CLRDATATOG | MXC_F_USBHS_OUTCSRL_FLUSHFIFO;
} else {
MXC_USBHS->outcsrl = MXC_F_USBHS_OUTCSRL_CLRDATATOG;
}
}
MXC_SYS_Crit_Exit();
}
// Submit a transfer, When complete dcd_event_xfer_complete() is invoked to notify the stack
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void)rhport;
bool ret;
unsigned const epnum = tu_edpt_number(ep_addr);
MXC_SYS_Crit_Enter();
if (epnum) {
_dcd.pipe_buf_is_fifo[tu_edpt_dir(ep_addr)] &= ~TU_BIT(epnum - 1);
ret = edpt_n_xfer(rhport, ep_addr, buffer, total_bytes);
} else
ret = edpt0_xfer(rhport, ep_addr, buffer, total_bytes);
MXC_SYS_Crit_Exit();
return ret;
}
// Submit a transfer where is managed by FIFO, When complete dcd_event_xfer_complete() is invoked to notify the stack - optional, however, must be listed in usbd.c
bool dcd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
{
(void)rhport;
bool ret;
unsigned const epnum = tu_edpt_number(ep_addr);
TU_ASSERT(epnum);
MXC_SYS_Crit_Enter();
_dcd.pipe_buf_is_fifo[tu_edpt_dir(ep_addr)] |= TU_BIT(epnum - 1);
ret = edpt_n_xfer(rhport, ep_addr, (uint8_t*)ff, total_bytes);
MXC_SYS_Crit_Exit();
return ret;
}
// Stall endpoint
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;
unsigned const epn = tu_edpt_number(ep_addr);
MXC_SYS_Crit_Enter();
MXC_USBHS->index = epn;
if (0 == epn) {
if (!ep_addr) { /* Ignore EP80 */
_dcd.setup_packet.bmRequestType = REQUEST_TYPE_INVALID;
_dcd.pipe0.buf = NULL;
MXC_USBHS->csr0 = MXC_F_USBHS_CSR0_SEND_STALL;
}
} else {
if (tu_edpt_dir(ep_addr)) { /* IN */
MXC_USBHS->incsrl = MXC_F_USBHS_INCSRL_SENDSTALL;
} else { /* OUT */
TU_ASSERT(!(MXC_USBHS->outcsrl & MXC_F_USBHS_OUTCSRL_OUTPKTRDY),);
MXC_USBHS->outcsrl = MXC_F_USBHS_OUTCSRL_SENDSTALL;
}
}
MXC_SYS_Crit_Exit();
}
// clear stall, data toggle is also reset to DATA0
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;
unsigned const epn = tu_edpt_number(ep_addr);
MXC_SYS_Crit_Enter();
MXC_USBHS->index = epn;
if (tu_edpt_dir(ep_addr)) { /* IN */
/* IN endpoint */
if (MXC_USBHS->incsrl & MXC_F_USBHS_INCSRL_INPKTRDY) {
/* Per musbhsfc_pg, only flush FIFO if IN packet loaded */
MXC_USBHS->incsrl = MXC_F_USBHS_INCSRL_CLRDATATOG | MXC_F_USBHS_INCSRL_FLUSHFIFO;
} else {
MXC_USBHS->incsrl = MXC_F_USBHS_INCSRL_CLRDATATOG;
}
} else { /* OUT */
/* Otherwise, must be OUT endpoint */
if (MXC_USBHS->outcsrl & MXC_F_USBHS_OUTCSRL_OUTPKTRDY) {
/* Per musbhsfc_pg, only flush FIFO if OUT packet is ready */
MXC_USBHS->outcsrl = MXC_F_USBHS_OUTCSRL_CLRDATATOG | MXC_F_USBHS_OUTCSRL_FLUSHFIFO;
} else {
MXC_USBHS->outcsrl = MXC_F_USBHS_OUTCSRL_CLRDATATOG;
}
}
MXC_SYS_Crit_Exit();
}
/*-------------------------------------------------------------------
* ISR
*-------------------------------------------------------------------*/
void dcd_int_handler(uint8_t rhport)
{
uint_fast8_t is, txis, rxis;
uint32_t mxm_int, mxm_int_en, mxm_is;
uint32_t saved_index;
/* Save current index register */
saved_index = MXC_USBHS->index;
is = MXC_USBHS->intrusb; /* read and clear interrupt status */
txis = MXC_USBHS->intrin; /* read and clear interrupt status */
rxis = MXC_USBHS->introut; /* read and clear interrupt status */
/* These USB interrupt flags are W1C. */
/* Order of volatile accesses must be separated for IAR */
mxm_int = MXC_USBHS->mxm_int;
mxm_int_en = MXC_USBHS->mxm_int_en;
mxm_is = mxm_int & mxm_int_en;
MXC_USBHS->mxm_int = mxm_is;
is &= MXC_USBHS->intrusben; /* Clear disabled interrupts */
if (mxm_is & MXC_F_USBHS_MXM_INT_NOVBUS) {
dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
}
if (is & MXC_F_USBHS_INTRUSB_SOF_INT) {
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
}
if (is & MXC_F_USBHS_INTRUSB_RESET_INT) {
process_bus_reset(rhport);
}
if (is & MXC_F_USBHS_INTRUSB_RESUME_INT) {
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
}
if (is & MXC_F_USBHS_INTRUSB_SUSPEND_INT) {
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
txis &= MXC_USBHS->intrinen; /* Clear disabled interrupts */
if (txis & MXC_F_USBHS_INTRIN_EP0_IN_INT) {
process_ep0(rhport);
txis &= ~TU_BIT(0);
}
while (txis) {
unsigned const num = __builtin_ctz(txis);
process_edpt_n(rhport, tu_edpt_addr(num, TUSB_DIR_IN));
txis &= ~TU_BIT(num);
}
rxis &= MXC_USBHS->introuten; /* Clear disabled interrupts */
while (rxis) {
unsigned const num = __builtin_ctz(rxis);
process_edpt_n(rhport, tu_edpt_addr(num, TUSB_DIR_OUT));
rxis &= ~TU_BIT(num);
}
/* Restore register index before exiting ISR */
MXC_USBHS->index = saved_index;
}
#endif

View File

@@ -188,6 +188,9 @@
#define OPT_MCU_MCXN9 2300 ///< NXP MCX N9 Series
#define OPT_MCU_MCXA15 2301 ///< NXP MCX A15 Series
// Analog Devices
#define OPT_MCU_MAX32690 2400 ///< ADI MAX32690
// Check if configured MCU is one of listed
// Apply _TU_CHECK_MCU with || as separator to list of input
#define _TU_CHECK_MCU(_m) (CFG_TUSB_MCU == _m)