Merge branch 'master' into test-mode-support

This commit is contained in:
HiFiPhile
2024-05-13 21:08:11 +02:00
731 changed files with 37452 additions and 11086 deletions

View File

@@ -97,28 +97,170 @@ static uint16_t ep0_pending[2]; // Index determines direction as t
// TX FIFO RAM allocation so far in words - RX FIFO size is readily available from dwc2->grxfsiz
static uint16_t _allocated_fifo_words_tx; // TX FIFO size in words (IN EPs)
static bool _out_ep_closed; // Flag to check if RX FIFO size needs an update (reduce its size)
// SOF enabling flag - required for SOF to not get disabled in ISR when SOF was enabled by
static bool _sof_en;
// Calculate the RX FIFO size according to recommendations from reference manual
// Calculate the RX FIFO size according to minimum recommendations from reference manual
// RxFIFO = (5 * number of control endpoints + 8) +
// ((largest USB packet used / 4) + 1 for status information) +
// (2 * number of OUT endpoints) + 1 for Global NAK
// with number of control endpoints = 1 we have
// RxFIFO = 15 + (largest USB packet used / 4) + 2 * number of OUT endpoints
// we double the largest USB packet size to be able to hold up to 2 packets
static inline uint16_t calc_grxfsiz(uint16_t max_ep_size, uint8_t ep_count) {
return 15 + 2 * (max_ep_size / 4) + 2 * ep_count;
}
static void update_grxfsiz(uint8_t rhport) {
TU_ATTR_ALWAYS_INLINE static inline void fifo_flush_tx(dwc2_regs_t* dwc2, uint8_t epnum) {
// flush TX fifo and wait for it cleared
dwc2->grstctl = GRSTCTL_TXFFLSH | (epnum << GRSTCTL_TXFNUM_Pos);
while (dwc2->grstctl & GRSTCTL_TXFFLSH_Msk) {}
}
TU_ATTR_ALWAYS_INLINE static inline void fifo_flush_rx(dwc2_regs_t* dwc2) {
// flush RX fifo and wait for it cleared
dwc2->grstctl = GRSTCTL_RXFFLSH;
while (dwc2->grstctl & GRSTCTL_RXFFLSH_Msk) {}
}
static bool fifo_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t packet_size) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// Determine largest EP size for RX FIFO
uint16_t max_epsize = 0;
for (uint8_t epnum = 0; epnum < ep_count; epnum++) {
max_epsize = tu_max16(max_epsize, xfer_status[epnum][TUSB_DIR_OUT].max_size);
TU_ASSERT(epnum < ep_count);
uint16_t fifo_size = tu_div_ceil(packet_size, 4);
// "USB Data FIFOs" section in reference manual
// Peripheral FIFO architecture
//
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
// | IN FIFO 0 |
// --------------- (320 or 1024) - 16
// | IN FIFO 1 |
// --------------- (320 or 1024) - 16 - x
// | . . . . |
// --------------- (320 or 1024) - 16 - x - y - ... - z
// | IN FIFO MAX |
// ---------------
// | FREE |
// --------------- GRXFSIZ
// | OUT FIFO |
// | ( Shared ) |
// --------------- 0
//
// In FIFO is allocated by following rules:
// - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n".
if (dir == TUSB_DIR_OUT) {
// Calculate required size of RX FIFO
uint16_t const sz = calc_grxfsiz(4 * fifo_size, ep_count);
// If size_rx needs to be extended check if possible and if so enlarge it
if (dwc2->grxfsiz < sz) {
TU_ASSERT(sz + _allocated_fifo_words_tx <= _dwc2_controller[rhport].ep_fifo_size / 4);
// Enlarge RX FIFO
dwc2->grxfsiz = sz;
}
} else {
// Note if The TXFELVL is configured as half empty. In order
// to be able to write a packet at that point, the fifo must be twice the max_size.
if ((dwc2->gahbcfg & GAHBCFG_TXFELVL) == 0) {
fifo_size *= 2;
}
// Check if free space is available
TU_ASSERT(_allocated_fifo_words_tx + fifo_size + dwc2->grxfsiz <= _dwc2_controller[rhport].ep_fifo_size / 4);
_allocated_fifo_words_tx += fifo_size;
TU_LOG(DWC2_DEBUG, " Allocated %u bytes at offset %" PRIu32, fifo_size * 4,
_dwc2_controller[rhport].ep_fifo_size - _allocated_fifo_words_tx * 4);
// DIEPTXF starts at FIFO #1.
// Both TXFD and TXSA are in unit of 32-bit words.
dwc2->dieptxf[epnum - 1] = (fifo_size << DIEPTXF_INEPTXFD_Pos) |
(_dwc2_controller[rhport].ep_fifo_size / 4 - _allocated_fifo_words_tx);
}
// Update size of RX FIFO
dwc2->grxfsiz = calc_grxfsiz(max_epsize, ep_count);
return true;
}
static void edpt_activate(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
xfer_ctl_t* xfer = XFER_CTL_BASE(epnum, dir);
xfer->max_size = tu_edpt_packet_size(p_endpoint_desc);
xfer->interval = p_endpoint_desc->bInterval;
// USBAEP, EPTYP, SD0PID_SEVNFRM, MPSIZ are the same for IN and OUT endpoints.
uint32_t const dxepctl = (1 << DOEPCTL_USBAEP_Pos) |
(p_endpoint_desc->bmAttributes.xfer << DOEPCTL_EPTYP_Pos) |
(p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? DOEPCTL_SD0PID_SEVNFRM : 0) |
(xfer->max_size << DOEPCTL_MPSIZ_Pos);
if (dir == TUSB_DIR_OUT) {
dwc2->epout[epnum].doepctl = dxepctl;
dwc2->daintmsk |= TU_BIT(DAINTMSK_OEPM_Pos + epnum);
} else {
dwc2->epin[epnum].diepctl = dxepctl | (epnum << DIEPCTL_TXFNUM_Pos);
dwc2->daintmsk |= (1 << (DAINTMSK_IEPM_Pos + epnum));
}
}
static void edpt_disable(uint8_t rhport, uint8_t ep_addr, bool stall) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
if (dir == TUSB_DIR_IN) {
dwc2_epin_t* epin = dwc2->epin;
// Only disable currently enabled non-control endpoint
if ((epnum == 0) || !(epin[epnum].diepctl & DIEPCTL_EPENA)) {
epin[epnum].diepctl |= DIEPCTL_SNAK | (stall ? DIEPCTL_STALL : 0);
} else {
// Stop transmitting packets and NAK IN xfers.
epin[epnum].diepctl |= DIEPCTL_SNAK;
while ((epin[epnum].diepint & DIEPINT_INEPNE) == 0) {}
// Disable the endpoint.
epin[epnum].diepctl |= DIEPCTL_EPDIS | (stall ? DIEPCTL_STALL : 0);
while ((epin[epnum].diepint & DIEPINT_EPDISD_Msk) == 0) {}
epin[epnum].diepint = DIEPINT_EPDISD;
}
// Flush the FIFO, and wait until we have confirmed it cleared.
fifo_flush_tx(dwc2, epnum);
} else {
dwc2_epout_t* epout = dwc2->epout;
// Only disable currently enabled non-control endpoint
if ((epnum == 0) || !(epout[epnum].doepctl & DOEPCTL_EPENA)) {
epout[epnum].doepctl |= stall ? DOEPCTL_STALL : 0;
} else {
// Asserting GONAK is required to STALL an OUT endpoint.
// Simpler to use polling here, we don't use the "B"OUTNAKEFF interrupt
// anyway, and it can't be cleared by user code. If this while loop never
// finishes, we have bigger problems than just the stack.
dwc2->dctl |= DCTL_SGONAK;
while ((dwc2->gintsts & GINTSTS_BOUTNAKEFF_Msk) == 0) {}
// Ditto here- disable the endpoint.
epout[epnum].doepctl |= DOEPCTL_EPDIS | (stall ? DOEPCTL_STALL : 0);
while ((epout[epnum].doepint & DOEPINT_EPDISD_Msk) == 0) {}
epout[epnum].doepint = DOEPINT_EPDISD;
// Allow other OUT endpoints to keep receiving.
dwc2->dctl |= DCTL_CGONAK;
}
}
}
// Start of Bus Reset
@@ -127,7 +269,6 @@ static void bus_reset(uint8_t rhport) {
uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
tu_memclr(xfer_status, sizeof(xfer_status));
_out_ep_closed = false;
_sof_en = false;
@@ -139,7 +280,17 @@ static void bus_reset(uint8_t rhport) {
dwc2->epout[n].doepctl |= DOEPCTL_SNAK;
}
// 2. Set up interrupt mask
// 2. Disable all IN endpoints
for (uint8_t n = 0; n < ep_count; n++) {
if (dwc2->epin[n].diepctl & DIEPCTL_EPENA) {
dwc2->epin[n].diepctl |= DIEPCTL_SNAK | DIEPCTL_EPDIS;
}
}
fifo_flush_tx(dwc2, 0x10); // all tx fifo
fifo_flush_rx(dwc2);
// 3. Set up interrupt mask
dwc2->daintmsk = TU_BIT(DAINTMSK_OEPM_Pos) | TU_BIT(DAINTMSK_IEPM_Pos);
dwc2->doepmsk = DOEPMSK_STUPM | DOEPMSK_XFRCM;
dwc2->diepmsk = DIEPMSK_TOM | DIEPMSK_XFRCM;
@@ -269,18 +420,16 @@ static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t c
/* Controller API
*------------------------------------------------------------------*/
#if CFG_TUSB_DEBUG >= DWC2_DEBUG
void print_dwc2_info(dwc2_regs_t* dwc2) {
// print guid, gsnpsid, ghwcfg1, ghwcfg2, ghwcfg3, ghwcfg4
// use dwc2_info.py/md for bit-field value and comparison with other ports
volatile uint32_t const* p = (volatile uint32_t const*) &dwc2->guid;
TU_LOG(DWC2_DEBUG, "guid, gsnpsid, ghwcfg1, ghwcfg2, ghwcfg3, ghwcfg4\r\n");
for (size_t i = 0; i < 5; i++) {
TU_LOG(DWC2_DEBUG, "0x%08lX, ", p[i]);
TU_LOG(DWC2_DEBUG, "0x%08" PRIX32 ", ", p[i]);
}
TU_LOG(DWC2_DEBUG, "0x%08lX\r\n", p[5]);
TU_LOG(DWC2_DEBUG, "0x%08" PRIX32 "\r\n", p[5]);
}
#endif
static void reset_core(dwc2_regs_t* dwc2) {
@@ -298,11 +447,15 @@ static void reset_core(dwc2_regs_t* dwc2) {
}
static bool phy_hs_supported(dwc2_regs_t* dwc2) {
// note: esp32 incorrect report its hs_phy_type as utmi
(void) dwc2;
#if TU_CHECK_MCU(OPT_MCU_ESP32S2, OPT_MCU_ESP32S3)
// note: esp32 incorrect report its hs_phy_type as utmi
return false;
#elif !TUD_OPT_HIGH_SPEED
return false;
#else
return TUD_OPT_HIGH_SPEED && dwc2->ghwcfg2_bm.hs_phy_type != HS_PHY_TYPE_NONE;
return dwc2->ghwcfg2_bm.hs_phy_type != HS_PHY_TYPE_NONE;
#endif
}
@@ -447,13 +600,8 @@ void dcd_init(uint8_t rhport) {
// (non zero-length packet), send STALL back and discard.
dwc2->dcfg |= DCFG_NZLSOHSK;
// flush all TX fifo and wait for it cleared
dwc2->grstctl = GRSTCTL_TXFFLSH | (0x10u << GRSTCTL_TXFNUM_Pos);
while (dwc2->grstctl & GRSTCTL_TXFFLSH_Msk) {}
// flush RX fifo and wait for it cleared
dwc2->grstctl = GRSTCTL_RXFFLSH;
while (dwc2->grstctl & GRSTCTL_RXFFLSH_Msk) {}
fifo_flush_tx(dwc2, 0x10); // all tx fifo
fifo_flush_rx(dwc2);
// Clear all interrupts
uint32_t int_mask = dwc2->gintsts;
@@ -462,11 +610,12 @@ void dcd_init(uint8_t rhport) {
dwc2->gotgint |= int_mask;
// Required as part of core initialization.
// TODO: How should mode mismatch be handled? It will cause
// the core to stop working/require reset.
dwc2->gintmsk = GINTMSK_OTGINT | GINTMSK_MMISM | GINTMSK_RXFLVLM |
dwc2->gintmsk = GINTMSK_OTGINT | GINTMSK_RXFLVLM |
GINTMSK_USBSUSPM | GINTMSK_USBRST | GINTMSK_ENUMDNEM | GINTMSK_WUIM;
// Configure TX FIFO empty level for interrupt. Default is complete empty
dwc2->gahbcfg |= GAHBCFG_TXFELVL;
// Enable global interrupt
dwc2->gahbcfg |= GAHBCFG_GINT;
@@ -547,84 +696,8 @@ void dcd_sof_enable(uint8_t rhport, bool en) {
*------------------------------------------------------------------*/
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const* desc_edpt) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(desc_edpt->bEndpointAddress);
TU_ASSERT(epnum < ep_count);
xfer_ctl_t* xfer = XFER_CTL_BASE(epnum, dir);
xfer->max_size = tu_edpt_packet_size(desc_edpt);
xfer->interval = desc_edpt->bInterval;
uint16_t const fifo_size = tu_div_ceil(xfer->max_size, 4);
if (dir == TUSB_DIR_OUT) {
// Calculate required size of RX FIFO
uint16_t const sz = calc_grxfsiz(4 * fifo_size, ep_count);
// If size_rx needs to be extended check if possible and if so enlarge it
if (dwc2->grxfsiz < sz) {
TU_ASSERT(sz + _allocated_fifo_words_tx <= _dwc2_controller[rhport].ep_fifo_size / 4);
// Enlarge RX FIFO
dwc2->grxfsiz = sz;
}
dwc2->epout[epnum].doepctl |= (1 << DOEPCTL_USBAEP_Pos) |
(desc_edpt->bmAttributes.xfer << DOEPCTL_EPTYP_Pos) |
(desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? DOEPCTL_SD0PID_SEVNFRM : 0) |
(xfer->max_size << DOEPCTL_MPSIZ_Pos);
dwc2->daintmsk |= TU_BIT(DAINTMSK_OEPM_Pos + epnum);
} else {
// "USB Data FIFOs" section in reference manual
// Peripheral FIFO architecture
//
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
// | IN FIFO 0 |
// --------------- (320 or 1024) - 16
// | IN FIFO 1 |
// --------------- (320 or 1024) - 16 - x
// | . . . . |
// --------------- (320 or 1024) - 16 - x - y - ... - z
// | IN FIFO MAX |
// ---------------
// | FREE |
// --------------- GRXFSIZ
// | OUT FIFO |
// | ( Shared ) |
// --------------- 0
//
// In FIFO is allocated by following rules:
// - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n".
// Check if free space is available
TU_ASSERT(_allocated_fifo_words_tx + fifo_size + dwc2->grxfsiz <= _dwc2_controller[rhport].ep_fifo_size / 4);
_allocated_fifo_words_tx += fifo_size;
TU_LOG(DWC2_DEBUG, " Allocated %u bytes at offset %lu", fifo_size * 4,
_dwc2_controller[rhport].ep_fifo_size - _allocated_fifo_words_tx * 4);
// DIEPTXF starts at FIFO #1.
// Both TXFD and TXSA are in unit of 32-bit words.
dwc2->dieptxf[epnum - 1] = (fifo_size << DIEPTXF_INEPTXFD_Pos) |
(_dwc2_controller[rhport].ep_fifo_size / 4 - _allocated_fifo_words_tx);
dwc2->epin[epnum].diepctl |= (1 << DIEPCTL_USBAEP_Pos) |
(epnum << DIEPCTL_TXFNUM_Pos) |
(desc_edpt->bmAttributes.xfer << DIEPCTL_EPTYP_Pos) |
(desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? DIEPCTL_SD0PID_SEVNFRM : 0) |
(xfer->max_size << DIEPCTL_MPSIZ_Pos);
dwc2->daintmsk |= (1 << (DAINTMSK_IEPM_Pos + epnum));
}
TU_ASSERT(fifo_alloc(rhport, desc_edpt->bEndpointAddress, tu_edpt_packet_size(desc_edpt)));
edpt_activate(rhport, desc_edpt);
return true;
}
@@ -638,16 +711,39 @@ void dcd_edpt_close_all(uint8_t rhport) {
for (uint8_t n = 1; n < ep_count; n++) {
// disable OUT endpoint
dwc2->epout[n].doepctl = 0;
if (dwc2->epout[n].doepctl & DOEPCTL_EPENA) {
dwc2->epout[n].doepctl |= DOEPCTL_SNAK | DOEPCTL_EPDIS;
}
xfer_status[n][TUSB_DIR_OUT].max_size = 0;
// disable IN endpoint
dwc2->epin[n].diepctl = 0;
if (dwc2->epin[n].diepctl & DIEPCTL_EPENA) {
dwc2->epin[n].diepctl |= DIEPCTL_SNAK | DIEPCTL_EPDIS;
}
xfer_status[n][TUSB_DIR_IN].max_size = 0;
}
// reset allocated fifo OUT
dwc2->grxfsiz = calc_grxfsiz(64, ep_count);
// reset allocated fifo IN
_allocated_fifo_words_tx = 16;
fifo_flush_tx(dwc2, 0x10); // all tx fifo
fifo_flush_rx(dwc2);
}
bool dcd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packet_size) {
TU_ASSERT(fifo_alloc(rhport, ep_addr, largest_packet_size));
return true;
}
bool dcd_edpt_iso_activate(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) {
// Disable EP to clear potential incomplete transfers
edpt_disable(rhport, p_endpoint_desc->bEndpointAddress, false);
edpt_activate(rhport, p_endpoint_desc);
return true;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) {
@@ -707,89 +803,12 @@ bool dcd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t* ff, uint16_t
return true;
}
static void dcd_edpt_disable(uint8_t rhport, uint8_t ep_addr, bool stall) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
if (dir == TUSB_DIR_IN) {
dwc2_epin_t* epin = dwc2->epin;
// Only disable currently enabled non-control endpoint
if ((epnum == 0) || !(epin[epnum].diepctl & DIEPCTL_EPENA)) {
epin[epnum].diepctl |= DIEPCTL_SNAK | (stall ? DIEPCTL_STALL : 0);
} else {
// Stop transmitting packets and NAK IN xfers.
epin[epnum].diepctl |= DIEPCTL_SNAK;
while ((epin[epnum].diepint & DIEPINT_INEPNE) == 0) {}
// Disable the endpoint.
epin[epnum].diepctl |= DIEPCTL_EPDIS | (stall ? DIEPCTL_STALL : 0);
while ((epin[epnum].diepint & DIEPINT_EPDISD_Msk) == 0) {}
epin[epnum].diepint = DIEPINT_EPDISD;
}
// Flush the FIFO, and wait until we have confirmed it cleared.
dwc2->grstctl = ((epnum << GRSTCTL_TXFNUM_Pos) | GRSTCTL_TXFFLSH);
while ((dwc2->grstctl & GRSTCTL_TXFFLSH_Msk) != 0) {}
} else {
dwc2_epout_t* epout = dwc2->epout;
// Only disable currently enabled non-control endpoint
if ((epnum == 0) || !(epout[epnum].doepctl & DOEPCTL_EPENA)) {
epout[epnum].doepctl |= stall ? DOEPCTL_STALL : 0;
} else {
// Asserting GONAK is required to STALL an OUT endpoint.
// Simpler to use polling here, we don't use the "B"OUTNAKEFF interrupt
// anyway, and it can't be cleared by user code. If this while loop never
// finishes, we have bigger problems than just the stack.
dwc2->dctl |= DCTL_SGONAK;
while ((dwc2->gintsts & GINTSTS_BOUTNAKEFF_Msk) == 0) {}
// Ditto here- disable the endpoint.
epout[epnum].doepctl |= DOEPCTL_EPDIS | (stall ? DOEPCTL_STALL : 0);
while ((epout[epnum].doepint & DOEPINT_EPDISD_Msk) == 0) {}
epout[epnum].doepint = DOEPINT_EPDISD;
// Allow other OUT endpoints to keep receiving.
dwc2->dctl |= DCTL_CGONAK;
}
}
}
/**
* Close an endpoint.
*/
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_edpt_disable(rhport, ep_addr, false);
// Update max_size
xfer_status[epnum][dir].max_size = 0; // max_size = 0 marks a disabled EP - required for changing FIFO allocation
if (dir == TUSB_DIR_IN) {
uint16_t const fifo_size = (dwc2->dieptxf[epnum - 1] & DIEPTXF_INEPTXFD_Msk) >> DIEPTXF_INEPTXFD_Pos;
uint16_t const fifo_start = (dwc2->dieptxf[epnum - 1] & DIEPTXF_INEPTXSA_Msk) >> DIEPTXF_INEPTXSA_Pos;
// For now only the last opened endpoint can be closed without fuss.
TU_ASSERT(fifo_start == _dwc2_controller[rhport].ep_fifo_size / 4 - _allocated_fifo_words_tx,);
_allocated_fifo_words_tx -= fifo_size;
} else {
_out_ep_closed = true; // Set flag such that RX FIFO gets reduced in size once RX FIFO is empty
}
edpt_disable(rhport, ep_addr, false);
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) {
dcd_edpt_disable(rhport, ep_addr, true);
edpt_disable(rhport, ep_addr, true);
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
@@ -1130,18 +1149,16 @@ void dcd_int_handler(uint8_t rhport) {
dwc2->gotgint = otg_int;
}
if (int_status & GINTSTS_SOF) {
dwc2->gotgint = GINTSTS_SOF;
if(int_status & GINTSTS_SOF) {
dwc2->gintsts = GINTSTS_SOF;
const uint32_t frame = (dwc2->dsts & DSTS_FNSOF) >> DSTS_FNSOF_Pos;
if (_sof_en) {
uint32_t frame = (dwc2->dsts & (DSTS_FNSOF)) >> 8;
dcd_event_sof(rhport, frame, true);
} else {
// Disable SOF interrupt if SOF was not explicitly enabled. SOF was used for remote wakeup detection
// Disable SOF interrupt if SOF was not explicitly enabled since SOF was used for remote wakeup detection
if (!_sof_en) {
dwc2->gintmsk &= ~GINTMSK_SOFM;
}
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
dcd_event_sof(rhport, frame, true);
}
// RxFIFO non-empty interrupt handling.
@@ -1154,15 +1171,7 @@ void dcd_int_handler(uint8_t rhport) {
// Loop until all available packets were handled
do {
handle_rxflvl_irq(rhport);
} while (dwc2->gotgint & GINTSTS_RXFLVL);
// Manage RX FIFO size
if (_out_ep_closed) {
update_grxfsiz(rhport);
// Disable flag
_out_ep_closed = false;
}
} while(dwc2->gintsts & GINTSTS_RXFLVL);
dwc2->gintmsk |= GINTMSK_RXFLVLM;
}