wrap up nrf52 demo

This commit is contained in:
hathach
2018-03-20 20:57:49 +07:00
parent 9f5fcb64ed
commit 0fdec33521
117 changed files with 38672 additions and 5 deletions

View File

@@ -0,0 +1,495 @@
/**
* Copyright (c) 2016 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**@file
*
* @defgroup nrf_atomic Atomic operations API
* @ingroup nrf_atfifo
* @{
*
* @brief @tagAPI52 This module implements C11 stdatomic.h simplified API.
At this point only Cortex-M3/M4 cores are supported (LDREX/STREX instructions).
* Atomic types are limited to @ref nrf_atomic_u32_t and @ref nrf_atomic_flag_t.
*/
#ifndef NRF_ATOMIC_H__
#define NRF_ATOMIC_H__
#include "sdk_common.h"
#ifndef NRF_ATOMIC_USE_BUILD_IN
#if (defined(__GNUC__) && defined(WIN32))
#define NRF_ATOMIC_USE_BUILD_IN 1
#else
#define NRF_ATOMIC_USE_BUILD_IN 0
#endif
#endif // NRF_ATOMIC_USE_BUILD_IN
#if ((__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U))
#define STREX_LDREX_PRESENT
#else
#include "app_util_platform.h"
#endif
/**
* @brief Atomic 32 bit unsigned type
* */
typedef volatile uint32_t nrf_atomic_u32_t;
/**
* @brief Atomic 1 bit flag type (technically 32 bit)
* */
typedef volatile uint32_t nrf_atomic_flag_t;
#if (NRF_ATOMIC_USE_BUILD_IN == 0) && defined(STREX_LDREX_PRESENT)
#include "nrf_atomic_internal.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Stores value to an atomic object
*
* @param[in] p_data Atomic memory pointer
* @param[in] value Value to store
*
* @return Old value stored into atomic object
* */
static inline uint32_t nrf_atomic_u32_fetch_store(nrf_atomic_u32_t * p_data, uint32_t value)
{
#if NRF_ATOMIC_USE_BUILD_IN
return __atomic_exchange_n(p_data, value, __ATOMIC_SEQ_CST);
#elif defined(STREX_LDREX_PRESENT)
uint32_t old_val;
uint32_t new_val;
NRF_ATOMIC_OP(mov, old_val, new_val, p_data, value);
UNUSED_PARAMETER(old_val);
UNUSED_PARAMETER(new_val);
return old_val;
#else
CRITICAL_REGION_ENTER();
uint32_t old_val = *p_data;
*p_data = value;
CRITICAL_REGION_EXIT();
return old_val;
#endif //NRF_ATOMIC_USE_BUILD_IN
}
/**
* @brief Stores value to an atomic object
*
* @param[in] p_data Atomic memory pointer
* @param[in] value Value to store
*
* @return New value stored into atomic object
* */
static inline uint32_t nrf_atomic_u32_store(nrf_atomic_u32_t * p_data, uint32_t value)
{
#if NRF_ATOMIC_USE_BUILD_IN
__atomic_store_n(p_data, value, __ATOMIC_SEQ_CST);
return value;
#elif defined(STREX_LDREX_PRESENT)
uint32_t old_val;
uint32_t new_val;
NRF_ATOMIC_OP(mov, old_val, new_val, p_data, value);
UNUSED_PARAMETER(old_val);
UNUSED_PARAMETER(new_val);
return new_val;
#else
CRITICAL_REGION_ENTER();
*p_data = value;
CRITICAL_REGION_EXIT();
return value;
#endif //NRF_ATOMIC_USE_BUILD_IN
}
/**
* @brief Logical OR operation on an atomic object
*
* @param[in] p_data Atomic memory pointer
* @param[in] value Value of second operand OR operation
*
* @return Old value stored into atomic object
* */
static inline uint32_t nrf_atomic_u32_fetch_or(nrf_atomic_u32_t * p_data, uint32_t value)
{
#if NRF_ATOMIC_USE_BUILD_IN
return __atomic_fetch_or(p_data, value, __ATOMIC_SEQ_CST);
#elif defined(STREX_LDREX_PRESENT)
uint32_t old_val;
uint32_t new_val;
NRF_ATOMIC_OP(orr, old_val, new_val, p_data, value);
UNUSED_PARAMETER(old_val);
UNUSED_PARAMETER(new_val);
return old_val;
#else
CRITICAL_REGION_ENTER();
uint32_t old_val = *p_data;
*p_data |= value;
CRITICAL_REGION_EXIT();
return old_val;
#endif //NRF_ATOMIC_USE_BUILD_IN
}
/**
* @brief Logical OR operation on an atomic object
*
* @param[in] p_data Atomic memory pointer
* @param[in] value Value of second operand OR operation
*
* @return New value stored into atomic object
* */
static inline uint32_t nrf_atomic_u32_or(nrf_atomic_u32_t * p_data, uint32_t value)
{
#if NRF_ATOMIC_USE_BUILD_IN
return __atomic_or_fetch(p_data, value, __ATOMIC_SEQ_CST);
#elif defined(STREX_LDREX_PRESENT)
uint32_t old_val;
uint32_t new_val;
NRF_ATOMIC_OP(orr, old_val, new_val, p_data, value);
UNUSED_PARAMETER(old_val);
UNUSED_PARAMETER(new_val);
return new_val;
#else
CRITICAL_REGION_ENTER();
*p_data |= value;
uint32_t new_value = *p_data;
CRITICAL_REGION_EXIT();
return new_value;
#endif //NRF_ATOMIC_USE_BUILD_IN
}
/**
* @brief Logical AND operation on an atomic object
*
* @param[in] p_data Atomic memory pointer
* @param[in] value Value of second operand AND operation
*
* @return Old value stored into atomic object
* */
static inline uint32_t nrf_atomic_u32_fetch_and(nrf_atomic_u32_t * p_data, uint32_t value)
{
#if NRF_ATOMIC_USE_BUILD_IN
return __atomic_fetch_and(p_data, value, __ATOMIC_SEQ_CST);
#elif defined(STREX_LDREX_PRESENT)
uint32_t old_val;
uint32_t new_val;
NRF_ATOMIC_OP(and, old_val, new_val, p_data, value);
UNUSED_PARAMETER(old_val);
UNUSED_PARAMETER(new_val);
return old_val;
#else
CRITICAL_REGION_ENTER();
uint32_t old_val = *p_data;
*p_data &= value;
CRITICAL_REGION_EXIT();
return old_val;
#endif //NRF_ATOMIC_USE_BUILD_IN
}
/**
* @brief Logical AND operation on an atomic object
*
* @param[in] p_data Atomic memory pointer
* @param[in] value Value of second operand AND operation
*
* @return New value stored into atomic object
* */
static inline uint32_t nrf_atomic_u32_and(nrf_atomic_u32_t * p_data, uint32_t value)
{
#if NRF_ATOMIC_USE_BUILD_IN
return __atomic_and_fetch(p_data, value, __ATOMIC_SEQ_CST);
#elif defined(STREX_LDREX_PRESENT)
uint32_t old_val;
uint32_t new_val;
NRF_ATOMIC_OP(and, old_val, new_val, p_data, value);
UNUSED_PARAMETER(old_val);
UNUSED_PARAMETER(new_val);
return new_val;
#else
CRITICAL_REGION_ENTER();
*p_data &= value;
uint32_t new_value = *p_data;
CRITICAL_REGION_EXIT();
return new_value;
#endif //NRF_ATOMIC_USE_BUILD_IN
}
/**
* @brief Logical XOR operation on an atomic object
*
* @param[in] p_data Atomic memory pointer
* @param[in] value Value of second operand XOR operation
*
* @return Old value stored into atomic object
* */
static inline uint32_t nrf_atomic_u32_fetch_xor(nrf_atomic_u32_t * p_data, uint32_t value)
{
#if NRF_ATOMIC_USE_BUILD_IN
return __atomic_fetch_xor(p_data, value, __ATOMIC_SEQ_CST);
#elif defined(STREX_LDREX_PRESENT)
uint32_t old_val;
uint32_t new_val;
NRF_ATOMIC_OP(eor, old_val, new_val, p_data, value);
UNUSED_PARAMETER(old_val);
UNUSED_PARAMETER(new_val);
return old_val;
#else
CRITICAL_REGION_ENTER();
uint32_t old_val = *p_data;
*p_data ^= value;
CRITICAL_REGION_EXIT();
return old_val;
#endif //NRF_ATOMIC_USE_BUILD_IN
}
/**
* @brief Logical XOR operation on an atomic object
*
* @param[in] p_data Atomic memory pointer
* @param[in] value Value of second operand XOR operation
*
* @return New value stored into atomic object
* */
static inline uint32_t nrf_atomic_u32_xor(nrf_atomic_u32_t * p_data, uint32_t value)
{
#if NRF_ATOMIC_USE_BUILD_IN
return __atomic_xor_fetch(p_data, value, __ATOMIC_SEQ_CST);
#elif defined(STREX_LDREX_PRESENT)
uint32_t old_val;
uint32_t new_val;
NRF_ATOMIC_OP(eor, old_val, new_val, p_data, value);
UNUSED_PARAMETER(old_val);
UNUSED_PARAMETER(new_val);
return new_val;
#else
CRITICAL_REGION_ENTER();
*p_data ^= value;
uint32_t new_value = *p_data;
CRITICAL_REGION_EXIT();
return new_value;
#endif //NRF_ATOMIC_USE_BUILD_IN
}
/**
* @brief Arithmetic ADD operation on an atomic object
*
* @param[in] p_data Atomic memory pointer
* @param[in] value Value of second operand ADD operation
*
* @return Old value stored into atomic object
* */
static inline uint32_t nrf_atomic_u32_fetch_add(nrf_atomic_u32_t * p_data, uint32_t value)
{
#if NRF_ATOMIC_USE_BUILD_IN
return __atomic_fetch_add(p_data, value, __ATOMIC_SEQ_CST);
#elif defined(STREX_LDREX_PRESENT)
uint32_t old_val;
uint32_t new_val;
NRF_ATOMIC_OP(add, old_val, new_val, p_data, value);
UNUSED_PARAMETER(old_val);
UNUSED_PARAMETER(new_val);
return old_val;
#else
CRITICAL_REGION_ENTER();
uint32_t old_val = *p_data;
*p_data += value;
CRITICAL_REGION_EXIT();
return old_val;
#endif //NRF_ATOMIC_USE_BUILD_IN
}
/**
* @brief Arithmetic ADD operation on an atomic object
*
* @param[in] p_data Atomic memory pointer
* @param[in] value Value of second operand ADD operation
*
* @return New value stored into atomic object
* */
static inline uint32_t nrf_atomic_u32_add(nrf_atomic_u32_t * p_data, uint32_t value)
{
#if NRF_ATOMIC_USE_BUILD_IN
return __atomic_add_fetch(p_data, value, __ATOMIC_SEQ_CST);
#elif defined(STREX_LDREX_PRESENT)
uint32_t old_val;
uint32_t new_val;
NRF_ATOMIC_OP(add, old_val, new_val, p_data, value);
UNUSED_PARAMETER(old_val);
UNUSED_PARAMETER(new_val);
return new_val;
#else
CRITICAL_REGION_ENTER();
*p_data += value;
uint32_t new_value = *p_data;
CRITICAL_REGION_EXIT();
return new_value;
#endif //NRF_ATOMIC_USE_BUILD_IN
}
/**
* @brief Arithmetic SUB operation on an atomic object
*
* @param[in] p_data Atomic memory pointer
* @param[in] value Value of second operand SUB operation
*
* @return Old value stored into atomic object
* */
static inline uint32_t nrf_atomic_u32_fetch_sub(nrf_atomic_u32_t * p_data, uint32_t value)
{
#if NRF_ATOMIC_USE_BUILD_IN
return __atomic_fetch_sub(p_data, value, __ATOMIC_SEQ_CST);
#elif defined(STREX_LDREX_PRESENT)
uint32_t old_val;
uint32_t new_val;
NRF_ATOMIC_OP(sub, old_val, new_val, p_data, value);
UNUSED_PARAMETER(old_val);
UNUSED_PARAMETER(new_val);
return old_val;
#else
CRITICAL_REGION_ENTER();
uint32_t old_val = *p_data;
*p_data -= value;
CRITICAL_REGION_EXIT();
return old_val;
#endif //NRF_ATOMIC_USE_BUILD_IN
}
/**
* @brief Arithmetic SUB operation on an atomic object
*
* @param[in] p_data Atomic memory pointer
* @param[in] value Value of second operand SUB operation
*
* @return New value stored into atomic object
* */
static inline uint32_t nrf_atomic_u32_sub(nrf_atomic_u32_t * p_data, uint32_t value)
{
#if NRF_ATOMIC_USE_BUILD_IN
return __atomic_sub_fetch(p_data, value, __ATOMIC_SEQ_CST);
#elif defined(STREX_LDREX_PRESENT)
uint32_t old_val;
uint32_t new_val;
NRF_ATOMIC_OP(sub, old_val, new_val, p_data, value);
UNUSED_PARAMETER(old_val);
UNUSED_PARAMETER(new_val);
return new_val;
#else
CRITICAL_REGION_ENTER();
*p_data -= value;
uint32_t new_value = *p_data;
CRITICAL_REGION_EXIT();
return new_value;
#endif //NRF_ATOMIC_USE_BUILD_IN
}
/**************************************************************************************************/
/**
* @brief Logic one bit flag set operation on an atomic object
*
* @param[in] p_data Atomic flag memory pointer
*
* @return Old flag value
* */
static inline uint32_t nrf_atomic_flag_set_fetch(nrf_atomic_flag_t * p_data)
{
return nrf_atomic_u32_fetch_or(p_data, 1);
}
/**
* @brief Logic one bit flag set operation on an atomic object
*
* @param[in] p_data Atomic flag memory pointer
*
* @return New flag value
* */
static inline uint32_t nrf_atomic_flag_set(nrf_atomic_flag_t * p_data)
{
return nrf_atomic_u32_or(p_data, 1);
}
/**
* @brief Logic one bit flag clear operation on an atomic object
*
* @param[in] p_data Atomic flag memory pointer
*
* @return Old flag value
* */
static inline uint32_t nrf_atomic_flag_clear_fetch(nrf_atomic_flag_t * p_data)
{
return nrf_atomic_u32_fetch_and(p_data, 0);
}
/**
* @brief Logic one bit flag clear operation on an atomic object
*
* @param[in] p_data Atomic flag memory pointer
*
* @return New flag value
* */
static inline uint32_t nrf_atomic_flag_clear(nrf_atomic_flag_t * p_data)
{
return nrf_atomic_u32_and(p_data, 0);
}
#ifdef __cplusplus
}
#endif
#endif /* NRF_ATOMIC_H__ */
/** @} */

View File

@@ -0,0 +1,234 @@
/**
* Copyright (c) 2016 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef NRF_ATOMIC_INTERNAL_H__
#define NRF_ATOMIC_INTERNAL_H__
#include "sdk_common.h"
#include <stdbool.h>
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
*
* @defgroup nrf_atomic_internal Atomic operations internals
* @ingroup nrf_atomic
* @{
*
*/
/* Only Cortex M cores > 3 support LDREX/STREX instructions*/
#if ((__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U)) == 0
#error "Unsupported core version"
#endif
#if defined ( __CC_ARM )
static __asm uint32_t nrf_atomic_internal_mov(nrf_atomic_u32_t * p_ptr,
uint32_t value,
uint32_t * p_new)
{
/* The base standard provides for passing arguments in core registers (r0-r3) and on the stack.
* Registers r4 and r5 have to be saved on stack. Note that only even number of register push are
* allowed. This is a requirement of the Procedure Call Standard for the ARM Architecture [AAPCS].
* */
push {r4, r5}
mov r4, r0
loop_mov
ldrex r0, [r4]
mov r5, r1
strex r3, r5, [r4]
cmp r3, #0
bne loop_mov
str r5, [r2]
pop {r4, r5}
bx lr
}
static __asm uint32_t nrf_atomic_internal_orr(nrf_atomic_u32_t * p_ptr,
uint32_t value,
uint32_t * p_new)
{
push {r4, r5}
mov r4, r0
loop_orr
ldrex r0, [r4]
orr r5, r0, r1
strex r3, r5, [r4]
cmp r3, #0
bne loop_orr
str r5, [r2]
pop {r4, r5}
bx lr
}
static __asm uint32_t nrf_atomic_internal_and(nrf_atomic_u32_t * p_ptr,
uint32_t value,
uint32_t * p_new)
{
push {r4, r5}
mov r4, r0
loop_and
ldrex r0, [r4]
and r5, r0, r1
strex r3, r5, [r4]
cmp r3, #0
bne loop_and
str r5, [r2]
pop {r4, r5}
bx lr
}
static __asm uint32_t nrf_atomic_internal_eor(nrf_atomic_u32_t * p_ptr,
uint32_t value,
uint32_t * p_new)
{
push {r4, r5}
mov r4, r0
loop_eor
ldrex r0, [r4]
eor r5, r0, r1
strex r3, r5, [r4]
cmp r3, #0
bne loop_eor
str r5, [r2]
pop {r4, r5}
bx lr
}
static __asm uint32_t nrf_atomic_internal_add(nrf_atomic_u32_t * p_ptr,
uint32_t value,
uint32_t * p_new)
{
push {r4, r5}
mov r4, r0
loop_add
ldrex r0, [r4]
add r5, r0, r1
strex r3, r5, [r4]
cmp r3, #0
bne loop_add
str r5, [r2]
pop {r4, r5}
bx lr
}
static __asm uint32_t nrf_atomic_internal_sub(nrf_atomic_u32_t * p_ptr,
uint32_t value,
uint32_t * p_new)
{
push {r4, r5}
mov r4, r0
loop_sub
ldrex r0, [r4]
sub r5, r0, r1
strex r3, r5, [r4]
cmp r3, #0
bne loop_sub
str r5, [r2]
pop {r4, r5}
bx lr
}
#define NRF_ATOMIC_OP(asm_op, old_val, new_val, ptr, value) \
old_val = nrf_atomic_internal_##asm_op(ptr, value, &new_val)
#elif defined ( __ICCARM__ ) || defined ( __GNUC__ )
/**
* @brief Atomic operation generic macro
* @param[in] asm_op operation: mov, orr, and, eor, add, sub
* @param[out] old_val atomic object output (uint32_t), value before operation
* @param[out] new_val atomic object output (uint32_t), value after operation
* @param[in] value atomic operation operand
* */
#define NRF_ATOMIC_OP(asm_op, old_val, new_val, ptr, value) \
{ \
uint32_t str_res; \
__ASM volatile( \
"1: ldrex %["#old_val"], [%["#ptr"]]\n" \
NRF_ATOMIC_OP_##asm_op(new_val, old_val, value) \
" strex %[str_res], %["#new_val"], [%["#ptr"]]\n" \
" teq %[str_res], #0\n" \
" bne.n 1b" \
: \
[old_val]"=&r" (old_val), \
[new_val]"=&r" (new_val), \
[str_res]"=&r" (str_res) \
: \
[ptr]"r" (ptr), \
[value]"r" (value) \
: "cc"); \
UNUSED_PARAMETER(str_res); \
}
#define NRF_ATOMIC_OP_mov(new_val, old_val, value) "mov %["#new_val"], %["#value"]\n"
#define NRF_ATOMIC_OP_orr(new_val, old_val, value) "orr %["#new_val"], %["#old_val"], %["#value"]\n"
#define NRF_ATOMIC_OP_and(new_val, old_val, value) "and %["#new_val"], %["#old_val"], %["#value"]\n"
#define NRF_ATOMIC_OP_eor(new_val, old_val, value) "eor %["#new_val"], %["#old_val"], %["#value"]\n"
#define NRF_ATOMIC_OP_add(new_val, old_val, value) "add %["#new_val"], %["#old_val"], %["#value"]\n"
#define NRF_ATOMIC_OP_sub(new_val, old_val, value) "sub %["#new_val"], %["#old_val"], %["#value"]\n"
#else
#error "Unsupported compiler"
#endif
#ifdef __cplusplus
}
#endif
#endif /* NRF_ATOMIC_INTERNAL_H__ */
/** @} */

View File

@@ -0,0 +1,153 @@
/**
* Copyright (c) 2016 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef NRF_ATOMIC_SANITY_CHECK_H__
#define NRF_ATOMIC_SANITY_CHECK_H__
#include "nrf_atomic.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Quick sanity check of nrf_atomic API
* */
static inline void nrf_atomic_sanity_check(void)
{
#if defined(DEBUG_NRF) || defined(DEBUG_NRF_USER)
nrf_atomic_u32_t val;
nrf_atomic_u32_t flag;
/*Fetch version tests*/
val = 0;
ASSERT(nrf_atomic_u32_store_fetch(&val, 10) == 0);
ASSERT(nrf_atomic_u32_store_fetch(&val, 0) == 10);
val = 0;
ASSERT(nrf_atomic_u32_or_fetch(&val, 1 << 16) == 0);
ASSERT(nrf_atomic_u32_or_fetch(&val, 1 << 5) == ((1 << 16)));
ASSERT(nrf_atomic_u32_or_fetch(&val, 1 << 5) == ((1 << 16) | (1 << 5)));
ASSERT(nrf_atomic_u32_or_fetch(&val, 0) == ((1 << 16) | (1 << 5)));
ASSERT(nrf_atomic_u32_or_fetch(&val, 0xFFFFFFFF) == ((1 << 16) | (1 << 5)));
ASSERT(nrf_atomic_u32_or_fetch(&val, 0xFFFFFFFF) == (0xFFFFFFFF));
val = 0xFFFFFFFF;
ASSERT(nrf_atomic_u32_and_fetch(&val, ~(1 << 16)) == 0xFFFFFFFF);
ASSERT(nrf_atomic_u32_and_fetch(&val, ~(1 << 5)) == (0xFFFFFFFF & ~((1 << 16))));
ASSERT(nrf_atomic_u32_and_fetch(&val, 0) == (0xFFFFFFFF & ~(((1 << 16) | (1 << 5)))));
ASSERT(nrf_atomic_u32_and_fetch(&val, 0xFFFFFFFF) == (0));
val = 0;
ASSERT(nrf_atomic_u32_xor_fetch(&val, (1 << 16)) == 0);
ASSERT(nrf_atomic_u32_xor_fetch(&val, (1 << 5)) == ((1 << 16)));
ASSERT(nrf_atomic_u32_xor_fetch(&val, 0) == ((1 << 16) | (1 << 5)));
ASSERT(nrf_atomic_u32_xor_fetch(&val, (1 << 16) | (1 << 5)) == ((1 << 16) | (1 << 5)));
ASSERT(nrf_atomic_u32_xor_fetch(&val, 0) == (0));
val = 0;
ASSERT(nrf_atomic_u32_add_fetch(&val, 100) == 0);
ASSERT(nrf_atomic_u32_add_fetch(&val, 100) == 100);
ASSERT(nrf_atomic_u32_add_fetch(&val, 1 << 24) == 200);
ASSERT(nrf_atomic_u32_add_fetch(&val, 0) == (200 + (1 << 24)));
ASSERT(nrf_atomic_u32_add_fetch(&val, 0xFFFFFFFF) == (200 + (1 << 24)));
ASSERT(nrf_atomic_u32_add_fetch(&val, 0) == (200 - 1 + (1 << 24)));
val = 1000;
ASSERT(nrf_atomic_u32_sub_fetch(&val, 100) == 1000);
ASSERT(nrf_atomic_u32_sub_fetch(&val, 100) == 900);
ASSERT(nrf_atomic_u32_sub_fetch(&val, 0) == 800);
ASSERT(nrf_atomic_u32_sub_fetch(&val, 0xFFFFFFFF) == 800);
ASSERT(nrf_atomic_u32_sub_fetch(&val, 0) == 801);
flag = 0;
ASSERT(nrf_atomic_flag_set_fetch(&flag) == 0);
ASSERT(nrf_atomic_flag_set_fetch(&flag) == 1);
ASSERT(nrf_atomic_flag_clear_fetch(&flag) == 1);
ASSERT(nrf_atomic_flag_clear_fetch(&flag) == 0);
/*No fetch version tests*/
val = 0;
ASSERT(nrf_atomic_u32_store(&val, 10) == 10);
ASSERT(nrf_atomic_u32_store(&val, 0) == 0);
val = 0;
ASSERT(nrf_atomic_u32_or(&val, 1 << 16) == 1 << 16);
ASSERT(nrf_atomic_u32_or(&val, 1 << 5) == ((1 << 16) | (1 << 5)));
ASSERT(nrf_atomic_u32_or(&val, 1 << 5) == ((1 << 16) | (1 << 5)));
ASSERT(nrf_atomic_u32_or(&val, 0) == ((1 << 16) | (1 << 5)));
ASSERT(nrf_atomic_u32_or(&val, 0xFFFFFFFF) == 0xFFFFFFFF);
val = 0xFFFFFFFF;
ASSERT(nrf_atomic_u32_and(&val, ~(1 << 16)) == (0xFFFFFFFF & ~((1 << 16))));
ASSERT(nrf_atomic_u32_and(&val, ~(1 << 5)) == (0xFFFFFFFF & ~(((1 << 16) | (1 << 5)))));
ASSERT(nrf_atomic_u32_and(&val, 0) == 0);
val = 0;
ASSERT(nrf_atomic_u32_xor(&val, (1 << 16)) == ((1 << 16)));
ASSERT(nrf_atomic_u32_xor(&val, (1 << 5)) == ((1 << 16) | (1 << 5)));
ASSERT(nrf_atomic_u32_xor(&val, 0) == ((1 << 16) | (1 << 5)));
ASSERT(nrf_atomic_u32_xor(&val, (1 << 16) | (1 << 5)) == 0);
val = 0;
ASSERT(nrf_atomic_u32_add(&val, 100) == 100);
ASSERT(nrf_atomic_u32_add(&val, 100) == 200);
ASSERT(nrf_atomic_u32_add(&val, 1 << 24) == (200 + (1 << 24)));
ASSERT(nrf_atomic_u32_add(&val, 0) == (200 + (1 << 24)));
ASSERT(nrf_atomic_u32_add(&val, 0xFFFFFFFF) == (200 - 1 + (1 << 24)));
val = 1000;
ASSERT(nrf_atomic_u32_sub(&val, 100) == 900);
ASSERT(nrf_atomic_u32_sub(&val, 100) == 800);
ASSERT(nrf_atomic_u32_sub(&val, 0) == 800);
ASSERT(nrf_atomic_u32_sub(&val, 0xFFFFFFFF) == 801);
flag = 0;
ASSERT(nrf_atomic_flag_set(&flag) == 1);
ASSERT(nrf_atomic_flag_set(&flag) == 1);
ASSERT(nrf_atomic_flag_clear(&flag) == 0);
ASSERT(nrf_atomic_flag_clear(&flag) == 0);
#endif
}
#ifdef __cplusplus
}
#endif
#endif /* NRF_ATOMIC_SANITY_CHECK_H__ */