Merge branch 'master' into nuc121

This commit is contained in:
Ha Thach
2020-01-07 16:26:58 +07:00
committed by GitHub
41 changed files with 1674 additions and 529 deletions

View File

@@ -26,17 +26,27 @@
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && CFG_TUSB_MCU == OPT_MCU_SAMD51
#if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_SAMD51 || CFG_TUSB_MCU == OPT_MCU_SAMD21)
#include "device/dcd.h"
#include "sam.h"
#include "device/dcd.h"
/*------------------------------------------------------------------*/
/* MACRO TYPEDEF CONSTANT ENUM
*------------------------------------------------------------------*/
static UsbDeviceDescBank sram_registers[8][2];
static TU_ATTR_ALIGNED(4) UsbDeviceDescBank sram_registers[8][2];
static TU_ATTR_ALIGNED(4) uint8_t _setup_packet[8];
// ready for receiving SETUP packet
static inline void prepare_setup(void)
{
// Only make sure the EP0 OUT buffer is ready
sram_registers[0][0].ADDR.reg = (uint32_t) _setup_packet;
sram_registers[0][0].PCKSIZE.bit.MULTI_PACKET_SIZE = sizeof(_setup_packet);
sram_registers[0][0].PCKSIZE.bit.BYTE_COUNT = 0;
}
// Setup the control endpoint 0.
static void bus_reset(void)
{
@@ -51,7 +61,7 @@ static void bus_reset(void)
ep->EPINTENSET.reg = USB_DEVICE_EPINTENSET_TRCPT0 | USB_DEVICE_EPINTENSET_TRCPT1 | USB_DEVICE_EPINTENSET_RXSTP;
// Prepare for setup packet
dcd_edpt_xfer(0, 0, _setup_packet, sizeof(_setup_packet));
prepare_setup();
}
@@ -69,10 +79,10 @@ void dcd_init (uint8_t rhport)
USB->DEVICE.PADCAL.bit.TRANSP = (*((uint32_t*) USB_FUSES_TRANSP_ADDR) & USB_FUSES_TRANSP_Msk) >> USB_FUSES_TRANSP_Pos;
USB->DEVICE.PADCAL.bit.TRANSN = (*((uint32_t*) USB_FUSES_TRANSN_ADDR) & USB_FUSES_TRANSN_Msk) >> USB_FUSES_TRANSN_Pos;
USB->DEVICE.PADCAL.bit.TRIM = (*((uint32_t*) USB_FUSES_TRIM_ADDR) & USB_FUSES_TRIM_Msk) >> USB_FUSES_TRIM_Pos;
USB->DEVICE.PADCAL.bit.TRIM = (*((uint32_t*) USB_FUSES_TRIM_ADDR) & USB_FUSES_TRIM_Msk) >> USB_FUSES_TRIM_Pos;
USB->DEVICE.QOSCTRL.bit.CQOS = 3;
USB->DEVICE.QOSCTRL.bit.DQOS = 3;
USB->DEVICE.QOSCTRL.bit.CQOS = 3; // High Quality
USB->DEVICE.QOSCTRL.bit.DQOS = 3; // High Quality
// Configure registers
USB->DEVICE.DESCADD.reg = (uint32_t) &sram_registers;
@@ -81,9 +91,11 @@ void dcd_init (uint8_t rhport)
while (USB->DEVICE.SYNCBUSY.bit.ENABLE == 1) {}
USB->DEVICE.INTFLAG.reg |= USB->DEVICE.INTFLAG.reg; // clear pending
USB->DEVICE.INTENSET.reg = USB_DEVICE_INTENSET_SOF | USB_DEVICE_INTENSET_EORST;
USB->DEVICE.INTENSET.reg = /* USB_DEVICE_INTENSET_SOF | */ USB_DEVICE_INTENSET_EORST;
}
#if CFG_TUSB_MCU == OPT_MCU_SAMD51
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
@@ -102,15 +114,30 @@ void dcd_int_disable(uint8_t rhport)
NVIC_DisableIRQ(USB_0_IRQn);
}
#elif CFG_TUSB_MCU == OPT_MCU_SAMD21
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(USB_IRQn);
}
void dcd_int_disable(uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(USB_IRQn);
}
#endif
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
// Response with status first before changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
(void) dev_addr;
// Wait for EP0 to finish before switching the address.
while (USB->DEVICE.DeviceEndpoint[0].EPSTATUS.bit.BK1RDY == 1) {}
// Response with zlp status
dcd_edpt_xfer(rhport, 0x80, NULL, 0);
USB->DEVICE.DADD.reg = USB_DEVICE_DADD_DADD(dev_addr) | USB_DEVICE_DADD_ADDEN;
// DCD can only set address after status for this request is complete
// do it at dcd_edpt0_status_complete()
// Enable SUSPEND interrupt since the bus signal D+/D- are stable now.
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTENCLR_SUSPEND; // clear pending
@@ -135,6 +162,26 @@ void dcd_remote_wakeup(uint8_t rhport)
/* DCD Endpoint port
*------------------------------------------------------------------*/
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
(void) rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS )
{
uint8_t const dev_addr = (uint8_t) request->wValue;
USB->DEVICE.DADD.reg = USB_DEVICE_DADD_DADD(dev_addr) | USB_DEVICE_DADD_ADDEN;
}
// Just finished status stage, prepare for next setup packet
// Note: we may already prepare setup when the last EP0 OUT complete.
// but it has no harm to do it again here
prepare_setup();
}
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
(void) rhport;
@@ -181,12 +228,6 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
UsbDeviceDescBank* bank = &sram_registers[epnum][dir];
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
// A setup token can occur immediately after an OUT STATUS packet so make sure we have a valid
// buffer for the control endpoint.
if (epnum == 0 && dir == 0 && buffer == NULL) {
buffer = _setup_packet;
}
bank->ADDR.reg = (uint32_t) buffer;
if ( dir == TUSB_DIR_OUT )
{
@@ -233,39 +274,63 @@ void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
}
}
/*------------------------------------------------------------------*/
//--------------------------------------------------------------------+
// Interrupt Handler
//--------------------------------------------------------------------+
void maybe_transfer_complete(void) {
uint32_t epints = USB->DEVICE.EPINTSMRY.reg;
static bool maybe_handle_setup_packet(void) {
if (USB->DEVICE.DeviceEndpoint[0].EPINTFLAG.bit.RXSTP)
{
USB->DEVICE.DeviceEndpoint[0].EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_RXSTP;
for (uint8_t epnum = 0; epnum < USB_EPT_NUM; epnum++) {
if ((epints & (1 << epnum)) == 0) {
continue;
}
// This copies the data elsewhere so we can reuse the buffer.
dcd_event_setup_received(0, (uint8_t*) sram_registers[0][0].ADDR.reg, true);
return true;
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
uint32_t epintflag = ep->EPINTFLAG.reg;
// Handle IN completions
if ((epintflag & USB_DEVICE_EPINTFLAG_TRCPT1) != 0) {
UsbDeviceDescBank* bank = &sram_registers[epnum][TUSB_DIR_IN];
uint16_t total_transfer_size = bank->PCKSIZE.bit.BYTE_COUNT;
dcd_event_xfer_complete(0, epnum | TUSB_DIR_IN_MASK, total_transfer_size, XFER_RESULT_SUCCESS, true);
ep->EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_TRCPT1;
}
// Handle OUT completions
if ((epintflag & USB_DEVICE_EPINTFLAG_TRCPT0) != 0) {
UsbDeviceDescBank* bank = &sram_registers[epnum][TUSB_DIR_OUT];
uint16_t total_transfer_size = bank->PCKSIZE.bit.BYTE_COUNT;
// A SETUP token can occur immediately after an OUT packet
// so make sure we have a valid buffer for the control endpoint.
if (epnum == 0) {
prepare_setup();
}
dcd_event_xfer_complete(0, epnum, total_transfer_size, XFER_RESULT_SUCCESS, true);
ep->EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_TRCPT0;
}
}
return false;
}
/*
*------------------------------------------------------------------*/
/* USB_EORSM_DNRSM, USB_EORST_RST, USB_LPMSUSP_DDISC, USB_LPM_DCONN,
USB_MSOF, USB_RAMACER, USB_RXSTP_TXSTP_0, USB_RXSTP_TXSTP_1,
USB_RXSTP_TXSTP_2, USB_RXSTP_TXSTP_3, USB_RXSTP_TXSTP_4,
USB_RXSTP_TXSTP_5, USB_RXSTP_TXSTP_6, USB_RXSTP_TXSTP_7,
USB_STALL0_STALL_0, USB_STALL0_STALL_1, USB_STALL0_STALL_2,
USB_STALL0_STALL_3, USB_STALL0_STALL_4, USB_STALL0_STALL_5,
USB_STALL0_STALL_6, USB_STALL0_STALL_7, USB_STALL1_0, USB_STALL1_1,
USB_STALL1_2, USB_STALL1_3, USB_STALL1_4, USB_STALL1_5, USB_STALL1_6,
USB_STALL1_7, USB_SUSPEND, USB_TRFAIL0_TRFAIL_0, USB_TRFAIL0_TRFAIL_1,
USB_TRFAIL0_TRFAIL_2, USB_TRFAIL0_TRFAIL_3, USB_TRFAIL0_TRFAIL_4,
USB_TRFAIL0_TRFAIL_5, USB_TRFAIL0_TRFAIL_6, USB_TRFAIL0_TRFAIL_7,
USB_TRFAIL1_PERR_0, USB_TRFAIL1_PERR_1, USB_TRFAIL1_PERR_2,
USB_TRFAIL1_PERR_3, USB_TRFAIL1_PERR_4, USB_TRFAIL1_PERR_5,
USB_TRFAIL1_PERR_6, USB_TRFAIL1_PERR_7, USB_UPRSM, USB_WAKEUP */
void USB_0_Handler(void) {
void dcd_isr (uint8_t rhport)
{
(void) rhport;
uint32_t int_status = USB->DEVICE.INTFLAG.reg & USB->DEVICE.INTENSET.reg;
/*------------- Interrupt Processing -------------*/
if ( int_status & USB_DEVICE_INTFLAG_SOF )
{
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTFLAG_SOF;
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
// SAMD doesn't distinguish between Suspend and Disconnect state.
// Both condition will cause SUSPEND interrupt triggered.
// To prevent being triggered when D+/D- are not stable, SUSPEND interrupt is only
@@ -303,48 +368,44 @@ void USB_0_Handler(void) {
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
}
// Setup packet received.
maybe_handle_setup_packet();
// Handle SETUP packet
if (USB->DEVICE.DeviceEndpoint[0].EPINTFLAG.bit.RXSTP)
{
// This copies the data elsewhere so we can reuse the buffer.
dcd_event_setup_received(0, _setup_packet, true);
USB->DEVICE.DeviceEndpoint[0].EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_RXSTP;
}
// Handle complete transfer
maybe_transfer_complete();
}
#if CFG_TUSB_MCU == OPT_MCU_SAMD51
/*
*------------------------------------------------------------------*/
/* USB_EORSM_DNRSM, USB_EORST_RST, USB_LPMSUSP_DDISC, USB_LPM_DCONN,
USB_MSOF, USB_RAMACER, USB_RXSTP_TXSTP_0, USB_RXSTP_TXSTP_1,
USB_RXSTP_TXSTP_2, USB_RXSTP_TXSTP_3, USB_RXSTP_TXSTP_4,
USB_RXSTP_TXSTP_5, USB_RXSTP_TXSTP_6, USB_RXSTP_TXSTP_7,
USB_STALL0_STALL_0, USB_STALL0_STALL_1, USB_STALL0_STALL_2,
USB_STALL0_STALL_3, USB_STALL0_STALL_4, USB_STALL0_STALL_5,
USB_STALL0_STALL_6, USB_STALL0_STALL_7, USB_STALL1_0, USB_STALL1_1,
USB_STALL1_2, USB_STALL1_3, USB_STALL1_4, USB_STALL1_5, USB_STALL1_6,
USB_STALL1_7, USB_SUSPEND, USB_TRFAIL0_TRFAIL_0, USB_TRFAIL0_TRFAIL_1,
USB_TRFAIL0_TRFAIL_2, USB_TRFAIL0_TRFAIL_3, USB_TRFAIL0_TRFAIL_4,
USB_TRFAIL0_TRFAIL_5, USB_TRFAIL0_TRFAIL_6, USB_TRFAIL0_TRFAIL_7,
USB_TRFAIL1_PERR_0, USB_TRFAIL1_PERR_1, USB_TRFAIL1_PERR_2,
USB_TRFAIL1_PERR_3, USB_TRFAIL1_PERR_4, USB_TRFAIL1_PERR_5,
USB_TRFAIL1_PERR_6, USB_TRFAIL1_PERR_7, USB_UPRSM, USB_WAKEUP */
void USB_0_Handler(void) {
dcd_isr(0);
}
/* USB_SOF_HSOF */
void USB_1_Handler(void) {
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTFLAG_SOF;
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
void transfer_complete(uint8_t direction) {
uint32_t epints = USB->DEVICE.EPINTSMRY.reg;
for (uint8_t epnum = 0; epnum < USB_EPT_NUM; epnum++) {
if ((epints & (1 << epnum)) == 0) {
continue;
}
if (direction == TUSB_DIR_OUT && maybe_handle_setup_packet()) {
continue;
}
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
UsbDeviceDescBank* bank = &sram_registers[epnum][direction];
uint16_t total_transfer_size = bank->PCKSIZE.bit.BYTE_COUNT;
uint8_t ep_addr = epnum;
if (direction == TUSB_DIR_IN) {
ep_addr |= TUSB_DIR_IN_MASK;
}
dcd_event_xfer_complete(0, ep_addr, total_transfer_size, XFER_RESULT_SUCCESS, true);
// just finished status stage (total size = 0), prepare for next setup packet
if (epnum == 0 && total_transfer_size == 0) {
dcd_edpt_xfer(0, 0, _setup_packet, sizeof(_setup_packet));
}
if (direction == TUSB_DIR_IN) {
ep->EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_TRCPT1;
} else {
ep->EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_TRCPT0;
}
}
dcd_isr(0);
}
// Bank zero is for OUT and SETUP transactions.
@@ -352,7 +413,7 @@ void transfer_complete(uint8_t direction) {
USB_TRCPT0_3, USB_TRCPT0_4, USB_TRCPT0_5,
USB_TRCPT0_6, USB_TRCPT0_7 */
void USB_2_Handler(void) {
transfer_complete(TUSB_DIR_OUT);
dcd_isr(0);
}
// Bank one is used for IN transactions.
@@ -360,7 +421,15 @@ void USB_2_Handler(void) {
USB_TRCPT1_3, USB_TRCPT1_4, USB_TRCPT1_5,
USB_TRCPT1_6, USB_TRCPT1_7 */
void USB_3_Handler(void) {
transfer_complete(TUSB_DIR_IN);
dcd_isr(0);
}
#elif CFG_TUSB_MCU == OPT_MCU_SAMD21
void USB_Handler(void) {
dcd_isr(0);
}
#endif
#endif

View File

@@ -1,343 +0,0 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2018 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && CFG_TUSB_MCU == OPT_MCU_SAMD21
#include "device/dcd.h"
#include "sam.h"
/*------------------------------------------------------------------*/
/* MACRO TYPEDEF CONSTANT ENUM
*------------------------------------------------------------------*/
static TU_ATTR_ALIGNED(4) UsbDeviceDescBank sram_registers[8][2];
static TU_ATTR_ALIGNED(4) uint8_t _setup_packet[8];
// Setup the control endpoint 0.
static void bus_reset(void)
{
// Max size of packets is 64 bytes.
UsbDeviceDescBank* bank_out = &sram_registers[0][TUSB_DIR_OUT];
bank_out->PCKSIZE.bit.SIZE = 0x3;
UsbDeviceDescBank* bank_in = &sram_registers[0][TUSB_DIR_IN];
bank_in->PCKSIZE.bit.SIZE = 0x3;
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[0];
ep->EPCFG.reg = USB_DEVICE_EPCFG_EPTYPE0(0x1) | USB_DEVICE_EPCFG_EPTYPE1(0x1);
ep->EPINTENSET.reg = USB_DEVICE_EPINTENSET_TRCPT0 | USB_DEVICE_EPINTENSET_TRCPT1 | USB_DEVICE_EPINTENSET_RXSTP;
// Prepare for setup packet
dcd_edpt_xfer(0, 0, _setup_packet, sizeof(_setup_packet));
}
/*------------------------------------------------------------------*/
/* Controller API
*------------------------------------------------------------------*/
void dcd_init (uint8_t rhport)
{
(void) rhport;
// Reset to get in a clean state.
USB->DEVICE.CTRLA.bit.SWRST = true;
while (USB->DEVICE.SYNCBUSY.bit.SWRST == 0) {}
while (USB->DEVICE.SYNCBUSY.bit.SWRST == 1) {}
USB->DEVICE.PADCAL.bit.TRANSP = (*((uint32_t*) USB_FUSES_TRANSP_ADDR) & USB_FUSES_TRANSP_Msk) >> USB_FUSES_TRANSP_Pos;
USB->DEVICE.PADCAL.bit.TRANSN = (*((uint32_t*) USB_FUSES_TRANSN_ADDR) & USB_FUSES_TRANSN_Msk) >> USB_FUSES_TRANSN_Pos;
USB->DEVICE.PADCAL.bit.TRIM = (*((uint32_t*) USB_FUSES_TRIM_ADDR) & USB_FUSES_TRIM_Msk) >> USB_FUSES_TRIM_Pos;
USB->DEVICE.QOSCTRL.bit.CQOS = USB_QOSCTRL_CQOS_HIGH_Val;
USB->DEVICE.QOSCTRL.bit.DQOS = USB_QOSCTRL_DQOS_HIGH_Val;
// Configure registers
USB->DEVICE.DESCADD.reg = (uint32_t) &sram_registers;
USB->DEVICE.CTRLB.reg = USB_DEVICE_CTRLB_SPDCONF_FS;
USB->DEVICE.CTRLA.reg = USB_CTRLA_MODE_DEVICE | USB_CTRLA_ENABLE | USB_CTRLA_RUNSTDBY;
while (USB->DEVICE.SYNCBUSY.bit.ENABLE == 1) {}
USB->DEVICE.INTFLAG.reg |= USB->DEVICE.INTFLAG.reg; // clear pending
USB->DEVICE.INTENSET.reg = USB_DEVICE_INTENSET_SOF | USB_DEVICE_INTENSET_EORST;
}
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(USB_IRQn);
}
void dcd_int_disable(uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(USB_IRQn);
}
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
// Response with status first before changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
// Wait for EP0 to finish before switching the address.
while (USB->DEVICE.DeviceEndpoint[0].EPSTATUS.bit.BK1RDY == 1) {}
USB->DEVICE.DADD.reg = USB_DEVICE_DADD_DADD(dev_addr) | USB_DEVICE_DADD_ADDEN;
// Enable SUSPEND interrupt since the bus signal D+/D- are stable now.
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTENCLR_SUSPEND; // clear pending
USB->DEVICE.INTENSET.reg = USB_DEVICE_INTENSET_SUSPEND;
}
void dcd_set_config (uint8_t rhport, uint8_t config_num)
{
(void) rhport;
(void) config_num;
// Nothing to do
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
USB->DEVICE.CTRLB.bit.UPRSM = 1;
}
/*------------------------------------------------------------------*/
/* DCD Endpoint port
*------------------------------------------------------------------*/
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(desc_edpt->bEndpointAddress);
UsbDeviceDescBank* bank = &sram_registers[epnum][dir];
uint32_t size_value = 0;
while (size_value < 7) {
if (1 << (size_value + 3) == desc_edpt->wMaxPacketSize.size) {
break;
}
size_value++;
}
// unsupported endpoint size
if ( size_value == 7 && desc_edpt->wMaxPacketSize.size != 1023 ) return false;
bank->PCKSIZE.bit.SIZE = size_value;
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
if ( dir == TUSB_DIR_OUT )
{
ep->EPCFG.bit.EPTYPE0 = desc_edpt->bmAttributes.xfer + 1;
ep->EPINTENSET.bit.TRCPT0 = true;
}else
{
ep->EPCFG.bit.EPTYPE1 = desc_edpt->bmAttributes.xfer + 1;
ep->EPINTENSET.bit.TRCPT1 = true;
}
return true;
}
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
UsbDeviceDescBank* bank = &sram_registers[epnum][dir];
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
// A setup token can occur immediately after an OUT STATUS packet so make sure we have a valid
// buffer for the control endpoint.
if (epnum == 0 && dir == 0 && buffer == NULL) {
buffer = _setup_packet;
}
bank->ADDR.reg = (uint32_t) buffer;
if ( dir == TUSB_DIR_OUT )
{
bank->PCKSIZE.bit.MULTI_PACKET_SIZE = total_bytes;
bank->PCKSIZE.bit.BYTE_COUNT = 0;
ep->EPSTATUSCLR.reg |= USB_DEVICE_EPSTATUSCLR_BK0RDY;
ep->EPINTFLAG.reg |= USB_DEVICE_EPINTFLAG_TRFAIL0;
} else
{
bank->PCKSIZE.bit.MULTI_PACKET_SIZE = 0;
bank->PCKSIZE.bit.BYTE_COUNT = total_bytes;
// bank->PCKSIZE.bit.AUTO_ZLP = 1;
ep->EPSTATUSSET.reg |= USB_DEVICE_EPSTATUSSET_BK1RDY;
ep->EPINTFLAG.reg |= USB_DEVICE_EPINTFLAG_TRFAIL1;
}
return true;
}
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) {
ep->EPSTATUSSET.reg = USB_DEVICE_EPSTATUSSET_STALLRQ1;
} else {
ep->EPSTATUSSET.reg = USB_DEVICE_EPSTATUSSET_STALLRQ0;
}
}
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) {
ep->EPSTATUSCLR.reg = USB_DEVICE_EPSTATUSCLR_STALLRQ1 | USB_DEVICE_EPSTATUSCLR_DTGLIN;
} else {
ep->EPSTATUSCLR.reg = USB_DEVICE_EPSTATUSCLR_STALLRQ0 | USB_DEVICE_EPSTATUSCLR_DTGLOUT;
}
}
/*------------------------------------------------------------------*/
static bool maybe_handle_setup_packet(void) {
if (USB->DEVICE.DeviceEndpoint[0].EPINTFLAG.bit.RXSTP)
{
USB->DEVICE.DeviceEndpoint[0].EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_RXSTP;
// This copies the data elsewhere so we can reuse the buffer.
dcd_event_setup_received(0, (uint8_t*) sram_registers[0][0].ADDR.reg, true);
return true;
}
return false;
}
void maybe_transfer_complete(void) {
uint32_t epints = USB->DEVICE.EPINTSMRY.reg;
for (uint8_t epnum = 0; epnum < USB_EPT_NUM; epnum++) {
if ((epints & (1 << epnum)) == 0) {
continue;
}
if (maybe_handle_setup_packet()) {
continue;
}
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
uint32_t epintflag = ep->EPINTFLAG.reg;
uint16_t total_transfer_size = 0;
// Handle IN completions
if ((epintflag & USB_DEVICE_EPINTFLAG_TRCPT1) != 0) {
ep->EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_TRCPT1;
UsbDeviceDescBank* bank = &sram_registers[epnum][TUSB_DIR_IN];
total_transfer_size = bank->PCKSIZE.bit.BYTE_COUNT;
uint8_t ep_addr = epnum | TUSB_DIR_IN_MASK;
dcd_event_xfer_complete(0, ep_addr, total_transfer_size, XFER_RESULT_SUCCESS, true);
}
// Handle OUT completions
if ((epintflag & USB_DEVICE_EPINTFLAG_TRCPT0) != 0) {
ep->EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_TRCPT0;
UsbDeviceDescBank* bank = &sram_registers[epnum][TUSB_DIR_OUT];
total_transfer_size = bank->PCKSIZE.bit.BYTE_COUNT;
uint8_t ep_addr = epnum;
dcd_event_xfer_complete(0, ep_addr, total_transfer_size, XFER_RESULT_SUCCESS, true);
}
// Just finished status stage (total size = 0), prepare for next setup packet
// TODO could cause issue with actual zero length data used by class such as DFU
if (epnum == 0 && total_transfer_size == 0) {
dcd_edpt_xfer(0, 0, _setup_packet, sizeof(_setup_packet));
}
}
}
void USB_Handler(void)
{
uint32_t int_status = USB->DEVICE.INTFLAG.reg & USB->DEVICE.INTENSET.reg;
USB->DEVICE.INTFLAG.reg = int_status; // clear interrupt
/*------------- Interrupt Processing -------------*/
if ( int_status & USB_DEVICE_INTFLAG_SOF )
{
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
// SAMD doesn't distinguish between Suspend and Disconnect state.
// Both condition will cause SUSPEND interrupt triggered.
// To prevent being triggered when D+/D- are not stable, SUSPEND interrupt is only
// enabled when we received SET_ADDRESS request and cleared on Bus Reset
if ( int_status & USB_DEVICE_INTFLAG_SUSPEND )
{
// Enable wakeup interrupt
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTFLAG_WAKEUP; // clear pending
USB->DEVICE.INTENSET.reg = USB_DEVICE_INTFLAG_WAKEUP;
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
}
// Wakeup interrupt is only enabled when we got suspended.
// Wakeup interrupt will disable itself
if ( int_status & USB_DEVICE_INTFLAG_WAKEUP )
{
// disable wakeup interrupt itself
USB->DEVICE.INTENCLR.reg = USB_DEVICE_INTFLAG_WAKEUP;
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
}
if ( int_status & USB_DEVICE_INTFLAG_EORST )
{
// Disable both suspend and wakeup interrupt
USB->DEVICE.INTENCLR.reg = USB_DEVICE_INTFLAG_WAKEUP | USB_DEVICE_INTFLAG_SUSPEND;
bus_reset();
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
}
// Setup packet received.
maybe_handle_setup_packet();
// Handle complete transfer
maybe_transfer_complete();
}
#endif

View File

@@ -0,0 +1,443 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2018, hathach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUSB_MCU == OPT_MCU_SAMG
#include "sam.h"
#include "device/dcd.h"
// TODO should support (SAM3S || SAM4S || SAM4E || SAMG55)
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
#define EP_COUNT 6
// Transfer descriptor
typedef struct
{
uint8_t* buffer;
uint16_t total_len;
volatile uint16_t actual_len;
uint16_t epsize;
} xfer_desc_t;
// Endpoint 0-5, each can only be either OUT or In
xfer_desc_t _dcd_xfer[EP_COUNT];
void xfer_epsize_set(xfer_desc_t* xfer, uint16_t epsize)
{
xfer->epsize = epsize;
}
void xfer_begin(xfer_desc_t* xfer, uint8_t * buffer, uint16_t total_bytes)
{
xfer->buffer = buffer;
xfer->total_len = total_bytes;
xfer->actual_len = 0;
}
void xfer_end(xfer_desc_t* xfer)
{
xfer->buffer = NULL;
xfer->total_len = 0;
xfer->actual_len = 0;
}
uint16_t xfer_packet_len(xfer_desc_t* xfer)
{
// also cover zero-length packet
return tu_min16(xfer->total_len - xfer->actual_len, xfer->epsize);
}
void xfer_packet_done(xfer_desc_t* xfer)
{
uint16_t const xact_len = xfer_packet_len(xfer);
xfer->buffer += xact_len;
xfer->actual_len += xact_len;
}
//------------- Transaction helpers -------------//
// Write data to EP FIFO, return number of written bytes
static void xact_ep_write(uint8_t epnum, uint8_t* buffer, uint16_t xact_len)
{
for(uint16_t i=0; i<xact_len; i++)
{
UDP->UDP_FDR[epnum] = (uint32_t) buffer[i];
}
}
// Read data from EP FIFO
static void xact_ep_read(uint8_t epnum, uint8_t* buffer, uint16_t xact_len)
{
for(uint16_t i=0; i<xact_len; i++)
{
buffer[i] = (uint8_t) UDP->UDP_FDR[epnum];
}
}
/*------------------------------------------------------------------*/
/* Device API
*------------------------------------------------------------------*/
// Set up endpoint 0, clear all other endpoints
static void bus_reset(void)
{
tu_memclr(_dcd_xfer, sizeof(_dcd_xfer));
xfer_epsize_set(&_dcd_xfer[0], CFG_TUD_ENDPOINT0_SIZE);
// Enable EP0 control
UDP->UDP_CSR[0] = UDP_CSR_EPEDS_Msk;
// Enable interrupt : EP0, Suspend, Resume, Wakeup
UDP->UDP_IER = UDP_IER_EP0INT_Msk | UDP_IER_RXSUSP_Msk | UDP_IER_RXRSM_Msk | UDP_IER_WAKEUP_Msk;
// Enable transceiver
UDP->UDP_TXVC &= ~UDP_TXVC_TXVDIS_Msk;
}
// Initialize controller to device mode
void dcd_init (uint8_t rhport)
{
(void) rhport;
tu_memclr(_dcd_xfer, sizeof(_dcd_xfer));
// Enable pull-up, disable transceiver
UDP->UDP_TXVC = UDP_TXVC_PUON | UDP_TXVC_TXVDIS_Msk;
}
// Enable device interrupt
void dcd_int_enable (uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(UDP_IRQn);
}
// Disable device interrupt
void dcd_int_disable (uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(UDP_IRQn);
}
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
(void) rhport;
(void) dev_addr;
// Response with zlp status
dcd_edpt_xfer(rhport, 0x80, NULL, 0);
// DCD can only set address after status for this request is complete.
// do it at dcd_edpt0_status_complete()
}
// Receive Set Configure request
void dcd_set_config (uint8_t rhport, uint8_t config_num)
{
(void) rhport;
(void) config_num;
// Configured State
// UDP->UDP_GLB_STAT |= UDP_GLB_STAT_CONFG_Msk;
}
// Wake up host
void dcd_remote_wakeup (uint8_t rhport)
{
(void) rhport;
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
(void) rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD )
{
if (request->bRequest == TUSB_REQ_SET_ADDRESS)
{
uint8_t const dev_addr = (uint8_t) request->wValue;
// Enable addressed state
UDP->UDP_GLB_STAT |= UDP_GLB_STAT_FADDEN_Msk;
// Set new address & Function enable bit
UDP->UDP_FADDR = UDP_FADDR_FEN_Msk | UDP_FADDR_FADD(dev_addr);
}else if (request->bRequest == TUSB_REQ_SET_CONFIGURATION)
{
// Configured State
UDP->UDP_GLB_STAT |= UDP_GLB_STAT_CONFG_Msk;
}
}
}
// Configure endpoint's registers according to descriptor
// SAMG doesn't support a same endpoint number with IN and OUT
// e.g EP1 OUT & EP1 IN cannot exist together
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(ep_desc->bEndpointAddress);
// TODO Isochronous is not supported yet
TU_VERIFY(ep_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
TU_VERIFY(epnum < EP_COUNT);
// Must not already enabled
TU_ASSERT((UDP->UDP_CSR[epnum] & UDP_CSR_EPEDS_Msk) == 0);
xfer_epsize_set(&_dcd_xfer[epnum], ep_desc->wMaxPacketSize.size);
// Configure type and eanble EP
UDP->UDP_CSR[epnum] = UDP_CSR_EPEDS_Msk | UDP_CSR_EPTYPE(ep_desc->bmAttributes.xfer + 4*dir);
// Enable EP Interrupt for IN
if (dir == TUSB_DIR_IN) UDP->UDP_IER |= (1 << epnum);
return true;
}
// Submit a transfer, When complete dcd_event_xfer_complete() is invoked to notify the stack
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_desc_t* xfer = &_dcd_xfer[epnum];
xfer_begin(xfer, buffer, total_bytes);
if (dir == TUSB_DIR_IN)
{
// Set DIR bit for EP0
if ( epnum == 0 ) UDP->UDP_CSR[epnum] |= UDP_CSR_DIR_Msk;
xact_ep_write(epnum, xfer->buffer, xfer_packet_len(xfer));
// TX ready for transfer
UDP->UDP_CSR[epnum] |= UDP_CSR_TXPKTRDY_Msk;
}
else
{
// Clear DIR bit for EP0
if ( epnum == 0 ) UDP->UDP_CSR[epnum] &= ~UDP_CSR_DIR_Msk;
// OUT Data may already received and acked by hardware
// Read it as 1st packet then continue with transfer if needed
if ( UDP->UDP_CSR[epnum] & (UDP_CSR_RX_DATA_BK0_Msk | UDP_CSR_RX_DATA_BK1_Msk) )
{
// uint16_t const xact_len = (uint16_t) ((UDP->UDP_CSR[epnum] & UDP_CSR_RXBYTECNT_Msk) >> UDP_CSR_RXBYTECNT_Pos);
// TU_LOG2("xact_len = %d\r", xact_len);
// // Read from EP fifo
// xact_ep_read(epnum, xfer->buffer, xact_len);
// xfer_packet_done(xfer);
//
// // Clear DATA Bank0 bit
// UDP->UDP_CSR[epnum] &= ~UDP_CSR_RX_DATA_BK0_Msk;
//
// if ( 0 == xfer_packet_len(xfer) )
// {
// // Disable OUT EP interrupt when transfer is complete
// UDP->UDP_IER &= ~(1 << epnum);
//
// dcd_event_xfer_complete(rhport, epnum, xact_len, XFER_RESULT_SUCCESS, false);
// return true; // complete
// }
}
// Enable interrupt when starting OUT transfer
if (epnum != 0) UDP->UDP_IER |= (1 << epnum);
}
return true;
}
// Stall endpoint
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
// Set force stall bit
UDP->UDP_CSR[epnum] |= UDP_CSR_FORCESTALL_Msk;
}
// clear stall, data toggle is also reset to DATA0
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
// clear stall
UDP->UDP_CSR[epnum] &= ~UDP_CSR_FORCESTALL_Msk;
// must also reset EP to clear data toggle
UDP->UDP_RST_EP = tu_bit_set(UDP->UDP_RST_EP, epnum);
UDP->UDP_RST_EP = tu_bit_clear(UDP->UDP_RST_EP, epnum);
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
void dcd_isr(uint8_t rhport)
{
uint32_t const intr_mask = UDP->UDP_IMR;
uint32_t const intr_status = UDP->UDP_ISR & intr_mask;
// clear interrupt
UDP->UDP_ICR = intr_status;
// Bus reset
if (intr_status & UDP_ISR_ENDBUSRES_Msk)
{
bus_reset();
dcd_event_bus_signal(rhport, DCD_EVENT_BUS_RESET, true);
}
// SOF
// if (intr_status & UDP_ISR_SOFINT_Msk) dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
// Suspend
// if (intr_status & UDP_ISR_RXSUSP_Msk) dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
// Resume
// if (intr_status & UDP_ISR_RXRSM_Msk) dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
// Wakeup
// if (intr_status & UDP_ISR_WAKEUP_Msk) dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
//------------- Endpoints -------------//
if ( intr_status & TU_BIT(0) )
{
// setup packet
if (UDP->UDP_CSR[0] & UDP_CSR_RXSETUP)
{
// get setup from FIFO
uint8_t setup[8];
for(uint8_t i=0; i<sizeof(setup); i++)
{
setup[i] = (uint8_t) UDP->UDP_FDR[0];
}
// notify usbd
dcd_event_setup_received(rhport, setup, true);
// Clear Setup bit
UDP->UDP_CSR[0] &= ~UDP_CSR_RXSETUP_Msk;
return;
}
}
for(uint8_t epnum = 0; epnum < EP_COUNT; epnum++)
{
if ( intr_status & TU_BIT(epnum) )
{
xfer_desc_t* xfer = &_dcd_xfer[epnum];
// Endpoint IN
if (UDP->UDP_CSR[epnum] & UDP_CSR_TXCOMP_Msk)
{
xfer_packet_done(xfer);
uint16_t const xact_len = xfer_packet_len(xfer);
if (xact_len)
{
// write to EP fifo
xact_ep_write(epnum, xfer->buffer, xact_len);
// TX ready for transfer
UDP->UDP_CSR[epnum] |= UDP_CSR_TXPKTRDY_Msk;
}else
{
// xfer is complete
dcd_event_xfer_complete(rhport, epnum | TUSB_DIR_IN_MASK, xfer->actual_len, XFER_RESULT_SUCCESS, true);
}
// Clear TX Complete bit
UDP->UDP_CSR[epnum] &= ~UDP_CSR_TXCOMP_Msk;
}
// Endpoint OUT
// Ping-Pong is a must for Bulk/Iso
// When both Bank0 and Bank1 are both set, there is not way to know which one comes first
if (UDP->UDP_CSR[epnum] & (UDP_CSR_RX_DATA_BK0_Msk | UDP_CSR_RX_DATA_BK1_Msk))
{
uint16_t const xact_len = (uint16_t) ((UDP->UDP_CSR[epnum] & UDP_CSR_RXBYTECNT_Msk) >> UDP_CSR_RXBYTECNT_Pos);
//if (epnum != 0) TU_LOG2("xact_len = %d\r", xact_len);
// Read from EP fifo
xact_ep_read(epnum, xfer->buffer, xact_len);
xfer_packet_done(xfer);
if ( 0 == xfer_packet_len(xfer) )
{
// Disable OUT EP interrupt when transfer is complete
if (epnum != 0) UDP->UDP_IDR |= (1 << epnum);
dcd_event_xfer_complete(rhport, epnum, xact_len, XFER_RESULT_SUCCESS, true);
// xfer_end(xfer);
}
// Clear DATA Bank0 bit
UDP->UDP_CSR[epnum] &= ~(UDP_CSR_RX_DATA_BK0_Msk | UDP_CSR_RX_DATA_BK1_Msk);
}
// Stall sent to host
if (UDP->UDP_CSR[epnum] & UDP_CSR_STALLSENT_Msk)
{
UDP->UDP_CSR[epnum] &= ~UDP_CSR_STALLSENT_Msk;
}
}
}
}
#endif

View File

@@ -175,7 +175,6 @@ static inline xfer_ctl_t* xfer_ctl_ptr(uint32_t epnum, uint32_t dir)
static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[6];
static uint8_t newDADDR; // Used to set the new device address during the CTR IRQ handler
static uint8_t remoteWakeCountdown; // When wake is requested
// EP Buffers assigned from end of memory location, to minimize their chance of crashing
@@ -298,14 +297,14 @@ void dcd_int_disable(uint8_t rhport)
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
(void)rhport;
// We cannot immediatly change it; it must be queued to change after the STATUS packet is sent.
// (CTR handler will actually change the address once it sees that the transmission is complete)
newDADDR = dev_addr;
(void) rhport;
(void) dev_addr;
// Respond with status
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
// DCD can only set address after status for this request is complete.
// do it at dcd_edpt0_status_complete()
}
// Receive Set Config request
@@ -362,7 +361,7 @@ static void dcd_handle_bus_reset(void)
ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT; // 8 bytes per endpoint (two TX and two RX words, each)
dcd_edpt_open (0, &ep0OUT_desc);
dcd_edpt_open (0, &ep0IN_desc);
newDADDR = 0u;
USB->DADDR = USB_DADDR_EF; // Set enable flag, and leaving the device address as zero.
}
@@ -398,13 +397,7 @@ static uint16_t dcd_ep_ctr_handler(void)
if((xfer->total_len == xfer->queued_len))
{
dcd_event_xfer_complete(0u, (uint8_t)(0x80 + EPindex), xfer->total_len, XFER_RESULT_SUCCESS, true);
if((newDADDR != 0) && ( xfer->total_len == 0U))
{
// Delayed setting of the DADDR after the 0-len DATA packet acking the request is sent.
reg16_clear_bits(&USB->DADDR, USB_DADDR_ADD);
USB->DADDR = (uint16_t)(USB->DADDR | newDADDR); // leave the enable bit set
newDADDR = 0;
}
if(xfer->total_len == 0) // Probably a status message?
{
pcd_clear_rx_dtog(USB,EPindex);
@@ -602,6 +595,24 @@ static void dcd_fs_irqHandler(void) {
// Endpoint API
//--------------------------------------------------------------------+
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
(void) rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS )
{
uint8_t const dev_addr = (uint8_t) request->wValue;
// Setting new address after the whole request is complete
reg16_clear_bits(&USB->DADDR, USB_DADDR_ADD);
USB->DADDR = (uint16_t)(USB->DADDR | dev_addr); // leave the enable bit set
}
}
// The STM32F0 doesn't seem to like |= or &= to manipulate the EP#R registers,
// so I'm using the #define from HAL here, instead.

View File

@@ -232,7 +232,6 @@ void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
(void) rhport;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE;
dev->DCFG |= (dev_addr << USB_OTG_DCFG_DAD_Pos) & USB_OTG_DCFG_DAD_Msk;
// Response with status after changing device address

View File

@@ -0,0 +1,116 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2018, hathach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUSB_MCU == OPT_MCU_NONE
#include "device/dcd.h"
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
/*------------------------------------------------------------------*/
/* Device API
*------------------------------------------------------------------*/
// Initialize controller to device mode
void dcd_init (uint8_t rhport)
{
(void) rhport;
}
// Enable device interrupt
void dcd_int_enable (uint8_t rhport)
{
(void) rhport;
}
// Disable device interrupt
void dcd_int_disable (uint8_t rhport)
{
(void) rhport;
}
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
(void) rhport;
(void) dev_addr;
}
// Receive Set Configure request
void dcd_set_config (uint8_t rhport, uint8_t config_num)
{
(void) rhport;
(void) config_num;
}
// Wake up host
void dcd_remote_wakeup (uint8_t rhport)
{
(void) rhport;
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
// Configure endpoint's registers according to descriptor
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
(void) ep_desc;
return false;
}
// Submit a transfer, When complete dcd_event_xfer_complete() is invoked to notify the stack
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void) rhport;
(void) ep_addr;
(void) buffer;
(void) total_bytes;
return false;
}
// Stall endpoint
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
(void) ep_addr;
}
// clear stall, data toggle is also reset to DATA0
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
(void) ep_addr;
}
#endif