enable CFG_TUD/THU_MEM_DCACHE_ENABLE for imxrt with M7 by default

This commit is contained in:
hathach
2024-12-17 20:53:50 +07:00
parent a39e30db92
commit 22a6777c2d
7 changed files with 149 additions and 136 deletions

View File

@@ -24,10 +24,10 @@
* This file is part of the TinyUSB stack.
*/
#include "board.h"
#include "bsp/board_api.h"
#include "board/clock_config.h"
#include "board/pin_mux.h"
#include "bsp/board_api.h"
#include "board.h"
// Suppress warning caused by mcu driver
#ifdef __GNUC__
@@ -47,14 +47,14 @@
#endif
/* --- Note about USB buffer RAM ---
For M7 core it's recommended to put USB buffer in DTCM for better performance (flexspi_nor linker default)
Otherwise you have to put the buffer in a non-cacheable section by configurate MPU manually or using BOARD_ConfigMPU():
- Define CFG_TUSB_MEM_SECTION=__attribute__((section("NonCacheable")))
- (IAR only) Change __NCACHE_REGION_SIZE in linker script to cover the size of non-cacheable section, multiple of 2^N
For M7 core it's recommended to put USB buffer in DTCM for better performance (flexspi_nor linker default)
Otherwise you have to put the buffer in a non-cacheable section by configurate MPU manually or using BOARD_ConfigMPU():
- Define CFG_TUSB_MEM_SECTION=__attribute__((section("NonCacheable")))
- (IAR only) Change __NCACHE_REGION_SIZE in linker script to cover the size of non-cacheable section, multiple of 2^N
For secondary M4 core, the USB controller doesn't support transfer from DTCM so OCRAM must be used:
- __NCACHE_REGION_SIZE is defined by the linker script by default
- Define CFG_TUSB_MEM_SECTION=__attribute__((section("NonCacheable")))
For secondary M4 core, the USB controller doesn't support transfer from DTCM so OCRAM must be used:
- __NCACHE_REGION_SIZE is defined by the linker script by default
- Define CFG_TUSB_MEM_SECTION=__attribute__((section("NonCacheable")))
*/
static void BOARD_ConfigMPU(void);
@@ -148,7 +148,112 @@ void board_init(void) {
#endif
}
/* MPU configuration. */
//--------------------------------------------------------------------+
// USB Interrupt Handler
//--------------------------------------------------------------------+
void USB_OTG1_IRQHandler(void) {
tusb_int_handler(0, true);
}
void USB_OTG2_IRQHandler(void) {
tusb_int_handler(1, true);
}
//--------------------------------------------------------------------+
// Board porting API
//--------------------------------------------------------------------+
void board_led_write(bool state) {
GPIO_PinWrite(LED_PORT, LED_PIN, state ? LED_STATE_ON : (1 - LED_STATE_ON));
}
uint32_t board_button_read(void) {
return BUTTON_STATE_ACTIVE == GPIO_PinRead(BUTTON_PORT, BUTTON_PIN);
}
size_t board_get_unique_id(uint8_t id[], size_t max_len) {
(void) max_len;
#if FSL_FEATURE_OCOTP_HAS_TIMING_CTRL
OCOTP_Init(OCOTP, CLOCK_GetFreq(kCLOCK_IpgClk));
#else
OCOTP_Init(OCOTP, 0u);
#endif
// Reads shadow registers 0x01 - 0x04 (Configuration and Manufacturing Info)
// into 8 bit wide destination, avoiding punning.
for (int i = 0; i < 4; ++i) {
uint32_t wr = OCOTP_ReadFuseShadowRegister(OCOTP, i + 1);
for (int j = 0; j < 4; j++) {
id[i * 4 + j] = wr & 0xff;
wr >>= 8;
}
}
OCOTP_Deinit(OCOTP);
return 16;
}
int board_uart_read(uint8_t *buf, int len) {
int count = 0;
while (count < len) {
uint8_t const rx_count = LPUART_GetRxFifoCount(UART_PORT);
if (!rx_count) {
// clear all error flag if any
uint32_t status_flags = LPUART_GetStatusFlags(UART_PORT);
status_flags &= (kLPUART_RxOverrunFlag | kLPUART_ParityErrorFlag | kLPUART_FramingErrorFlag |
kLPUART_NoiseErrorFlag);
LPUART_ClearStatusFlags(UART_PORT, status_flags);
break;
}
for (int i = 0; i < rx_count; i++) {
buf[count] = LPUART_ReadByte(UART_PORT);
count++;
}
}
return count;
}
int board_uart_write(void const *buf, int len) {
LPUART_WriteBlocking(UART_PORT, (uint8_t const *) buf, len);
return len;
}
#if CFG_TUSB_OS == OPT_OS_NONE
volatile uint32_t system_ticks = 0;
void SysTick_Handler(void) {
system_ticks++;
}
uint32_t board_millis(void) {
return system_ticks;
}
#endif
#ifndef __ICCARM__
// Implement _start() since we use linker flag '-nostartfiles'.
// Requires defined __STARTUP_CLEAR_BSS,
extern int main(void);
TU_ATTR_UNUSED void _start(void) {
// called by startup code
main();
while (1) {}
}
#ifdef __clang__
void _exit(int __status) {
while (1) {}
}
#endif
#endif
//--------------------------------------------------------------------
// MPU configuration
//--------------------------------------------------------------------
#if __CORTEX_M == 7
static void BOARD_ConfigMPU(void) {
#if defined(__CC_ARM) || defined(__ARMCC_VERSION)
@@ -343,7 +448,9 @@ static void BOARD_ConfigMPU(void) {
SCB_EnableICache();
#endif
}
#elif __CORTEX_M == 4
void BOARD_ConfigMPU(void) {
#if defined(__CC_ARM) || defined(__ARMCC_VERSION)
extern uint32_t Image$$RW_m_ncache$$Base[];
@@ -525,107 +632,3 @@ void BOARD_ConfigMPU(void) {
LMEM->PCCCR |= LMEM_PCCCR_ENCACHE_MASK;
}
#endif
//--------------------------------------------------------------------+
// USB Interrupt Handler
//--------------------------------------------------------------------+
void USB_OTG1_IRQHandler(void) {
tusb_int_handler(0, true);
}
void USB_OTG2_IRQHandler(void) {
tusb_int_handler(1, true);
}
//--------------------------------------------------------------------+
// Board porting API
//--------------------------------------------------------------------+
void board_led_write(bool state) {
GPIO_PinWrite(LED_PORT, LED_PIN, state ? LED_STATE_ON : (1 - LED_STATE_ON));
}
uint32_t board_button_read(void) {
return BUTTON_STATE_ACTIVE == GPIO_PinRead(BUTTON_PORT, BUTTON_PIN);
}
size_t board_get_unique_id(uint8_t id[], size_t max_len) {
(void) max_len;
#if FSL_FEATURE_OCOTP_HAS_TIMING_CTRL
OCOTP_Init(OCOTP, CLOCK_GetFreq(kCLOCK_IpgClk));
#else
OCOTP_Init(OCOTP, 0u);
#endif
// Reads shadow registers 0x01 - 0x04 (Configuration and Manufacturing Info)
// into 8 bit wide destination, avoiding punning.
for (int i = 0; i < 4; ++i) {
uint32_t wr = OCOTP_ReadFuseShadowRegister(OCOTP, i + 1);
for (int j = 0; j < 4; j++) {
id[i * 4 + j] = wr & 0xff;
wr >>= 8;
}
}
OCOTP_Deinit(OCOTP);
return 16;
}
int board_uart_read(uint8_t *buf, int len) {
int count = 0;
while (count < len) {
uint8_t const rx_count = LPUART_GetRxFifoCount(UART_PORT);
if (!rx_count) {
// clear all error flag if any
uint32_t status_flags = LPUART_GetStatusFlags(UART_PORT);
status_flags &= (kLPUART_RxOverrunFlag | kLPUART_ParityErrorFlag | kLPUART_FramingErrorFlag |
kLPUART_NoiseErrorFlag);
LPUART_ClearStatusFlags(UART_PORT, status_flags);
break;
}
for (int i = 0; i < rx_count; i++) {
buf[count] = LPUART_ReadByte(UART_PORT);
count++;
}
}
return count;
}
int board_uart_write(void const *buf, int len) {
LPUART_WriteBlocking(UART_PORT, (uint8_t const *) buf, len);
return len;
}
#if CFG_TUSB_OS == OPT_OS_NONE
volatile uint32_t system_ticks = 0;
void SysTick_Handler(void) {
system_ticks++;
}
uint32_t board_millis(void) {
return system_ticks;
}
#endif
#ifndef __ICCARM__
// Implement _start() since we use linker flag '-nostartfiles'.
// Requires defined __STARTUP_CLEAR_BSS,
extern int main(void);
TU_ATTR_UNUSED void _start(void) {
// called by startup code
main();
while (1) {}
}
#ifdef __clang__
void _exit(int __status) {
while (1) {}
}
#endif
#endif