Merge branch 'master' into develop

This commit is contained in:
hathach
2019-12-24 21:13:05 +07:00
29 changed files with 1452 additions and 98 deletions

View File

@@ -97,6 +97,34 @@ static inline uint16_t rdwr10_get_blockcount(uint8_t const command[])
return tu_ntohs(block_count);
}
//--------------------------------------------------------------------+
// Debug
//--------------------------------------------------------------------+
#if CFG_TUSB_DEBUG >= 2
static lookup_entry_t const _msc_scsi_cmd_lookup[] =
{
{ .key = SCSI_CMD_TEST_UNIT_READY , .data = "Test Unit Ready" },
{ .key = SCSI_CMD_INQUIRY , .data = "Inquiry" },
{ .key = SCSI_CMD_MODE_SELECT_6 , .data = "Mode_Select 6" },
{ .key = SCSI_CMD_MODE_SENSE_6 , .data = "Mode_Sense 6" },
{ .key = SCSI_CMD_START_STOP_UNIT , .data = "Start Stop Unit" },
{ .key = SCSI_CMD_PREVENT_ALLOW_MEDIUM_REMOVAL , .data = "Prevent Allow Medium Removal" },
{ .key = SCSI_CMD_READ_CAPACITY_10 , .data = "Read Capacity10" },
{ .key = SCSI_CMD_REQUEST_SENSE , .data = "Request Sense" },
{ .key = SCSI_CMD_READ_FORMAT_CAPACITY , .data = "Read Format Capacity" },
{ .key = SCSI_CMD_READ_10 , .data = "Read10" },
{ .key = SCSI_CMD_WRITE_10 , .data = "Write10" }
};
static lookup_table_t const _msc_scsi_cmd_table =
{
.count = TU_ARRAY_SIZE(_msc_scsi_cmd_lookup),
.items = _msc_scsi_cmd_lookup
};
#endif
//--------------------------------------------------------------------+
// APPLICATION API
//--------------------------------------------------------------------+
@@ -378,6 +406,9 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
TU_ASSERT( event == XFER_RESULT_SUCCESS &&
xferred_bytes == sizeof(msc_cbw_t) && p_cbw->signature == MSC_CBW_SIGNATURE );
TU_LOG2(" SCSI Command: %s\n", lookup_find(&_msc_scsi_cmd_table, p_cbw->command[0]));
// TU_LOG2_MEM(p_cbw, xferred_bytes, 2);
p_csw->signature = MSC_CSW_SIGNATURE;
p_csw->tag = p_cbw->tag;
p_csw->data_residue = 0;
@@ -448,6 +479,9 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
break;
case MSC_STAGE_DATA:
TU_LOG2(" SCSI Data\n");
//TU_LOG2_MEM(_mscd_buf, xferred_bytes, 2);
// OUT transfer, invoke callback if needed
if ( !tu_bit_test(p_cbw->dir, 7) )
{
@@ -538,6 +572,9 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
// Wait for the command status wrapper complete event
if( (ep_addr == p_msc->ep_in) && (xferred_bytes == sizeof(msc_csw_t)) )
{
TU_LOG2(" SCSI Status: %u\n", p_csw->status);
// TU_LOG2_MEM(p_csw, xferred_bytes, 2);
// Move to default CMD stage
p_msc->stage = MSC_STAGE_CMD;

View File

@@ -139,9 +139,9 @@ static inline uint8_t tu_log2(uint32_t value)
}
// Bit
static inline uint32_t tu_bit_set (uint32_t value, uint8_t n) { return value | TU_BIT(n); }
static inline uint32_t tu_bit_clear(uint32_t value, uint8_t n) { return value & (~TU_BIT(n)); }
static inline bool tu_bit_test (uint32_t value, uint8_t n) { return (value & TU_BIT(n)) ? true : false; }
static inline uint32_t tu_bit_set (uint32_t value, uint8_t pos) { return value | TU_BIT(pos); }
static inline uint32_t tu_bit_clear(uint32_t value, uint8_t pos) { return value & (~TU_BIT(pos)); }
static inline bool tu_bit_test (uint32_t value, uint8_t pos) { return (value & TU_BIT(pos)) ? true : false; }
/*------------------------------------------------------------------*/
/* Count number of arguments of __VA_ARGS__
@@ -213,22 +213,47 @@ static inline bool tu_bit_test (uint32_t value, uint8_t n) { return (value &
// 2 : print out log
#if CFG_TUSB_DEBUG
void tu_print_mem(void const *buf, uint8_t size, uint16_t count);
void tu_print_mem(void const *buf, uint16_t count, uint8_t indent);
#ifndef tu_printf
#define tu_printf printf
#define tu_printf printf
#endif
// Log with debug level 1
#define TU_LOG1 tu_printf
#define TU_LOG1_MEM tu_print_mem
#define TU_LOG1 tu_printf
#define TU_LOG1_MEM tu_print_mem
#define TU_LOG1_LOCATION() tu_printf("%s: %d:\n", __PRETTY_FUNCTION__, __LINE__)
// Log with debug level 2
#if CFG_TUSB_DEBUG > 1
#define TU_LOG2 TU_LOG1
#define TU_LOG2_MEM TU_LOG1_MEM
#define TU_LOG2 TU_LOG1
#define TU_LOG2_MEM TU_LOG1_MEM
#define TU_LOG2_LOCATION() TU_LOG1_LOCATION()
#endif
typedef struct
{
uint32_t key;
char const * data;
}lookup_entry_t;
typedef struct
{
uint16_t count;
lookup_entry_t const* items;
} lookup_table_t;
static inline char const* lookup_find(lookup_table_t const* p_table, uint32_t key)
{
for(uint16_t i=0; i<p_table->count; i++)
{
if (p_table->items[i].key == key) return p_table->items[i].data;
}
return NULL;
}
#endif // CFG_TUSB_DEBUG
#ifndef TU_LOG1

View File

@@ -110,6 +110,10 @@ void dcd_remote_wakeup(uint8_t rhport);
// Endpoint API
//--------------------------------------------------------------------+
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request) TU_ATTR_WEAK;
// Configure endpoint's registers according to descriptor
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc);

View File

@@ -202,15 +202,16 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
static bool process_set_config(uint8_t rhport, uint8_t cfg_num);
static bool process_get_descriptor(uint8_t rhport, tusb_control_request_t const * p_request);
void usbd_control_reset (uint8_t rhport);
bool usbd_control_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void usbd_control_reset(void);
void usbd_control_set_request(tusb_control_request_t const *request);
void usbd_control_set_complete_callback( bool (*fp) (uint8_t, tusb_control_request_t const * ) );
bool usbd_control_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
//--------------------------------------------------------------------+
// Debugging
//--------------------------------------------------------------------+
#if CFG_TUSB_DEBUG > 1
#if CFG_TUSB_DEBUG >= 2
static char const* const _usbd_event_str[DCD_EVENT_COUNT] =
{
"INVALID" ,
@@ -321,7 +322,7 @@ static void usbd_reset(uint8_t rhport)
memset(_usbd_dev.itf2drv, DRVID_INVALID, sizeof(_usbd_dev.itf2drv)); // invalid mapping
memset(_usbd_dev.ep2drv , DRVID_INVALID, sizeof(_usbd_dev.ep2drv )); // invalid mapping
usbd_control_reset(rhport);
usbd_control_reset();
for (uint8_t i = 0; i < USBD_CLASS_DRIVER_COUNT; i++)
{
@@ -375,8 +376,7 @@ void tud_task (void)
break;
case DCD_EVENT_SETUP_RECEIVED:
TU_LOG2(" ");
TU_LOG1_MEM(&event.setup_received, 1, 8);
TU_LOG2_MEM(&event.setup_received, 8, 2);
// Mark as connected after receiving 1st setup packet.
// But it is easier to set it every time instead of wasting time to check then set
@@ -385,7 +385,7 @@ void tud_task (void)
// Process control request
if ( !process_control_request(event.rhport, &event.setup_received) )
{
TU_LOG1(" Stall EP0\r\n");
TU_LOG2(" Stall EP0\r\n");
// Failed -> stall both control endpoint IN and OUT
dcd_edpt_stall(event.rhport, 0);
dcd_edpt_stall(event.rhport, 0 | TUSB_DIR_IN_MASK);
@@ -405,7 +405,6 @@ void tud_task (void)
if ( 0 == epnum )
{
TU_LOG1(" EP Addr = 0x%02X, len = %ld\r\n", ep_addr, event.xfer_complete.len);
usbd_control_xfer_cb(event.rhport, ep_addr, event.xfer_complete.result, event.xfer_complete.len);
}
else
@@ -500,10 +499,12 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
switch ( p_request->bRequest )
{
case TUSB_REQ_SET_ADDRESS:
// Depending on mcu, status phase could be sent either before or after changing device address
// Therefore DCD must include zero-length status response
// Depending on mcu, status phase could be sent either before or after changing device address,
// or even require stack to not response with status at all
// Therefore DCD must take full responsibility to response and include zlp status packet if needed.
usbd_control_set_request(p_request); // set request since DCD has no access to tud_control_status() API
dcd_set_address(rhport, (uint8_t) p_request->wValue);
return true; // skip status
// skip tud_control_status()
break;
case TUSB_REQ_GET_CONFIGURATION:
@@ -830,19 +831,15 @@ void dcd_event_handler(dcd_event_t const * event, bool in_isr)
{
switch (event->event_id)
{
case DCD_EVENT_BUS_RESET:
osal_queue_send(_usbd_q, event, in_isr);
break;
case DCD_EVENT_UNPLUGGED:
_usbd_dev.connected = 0;
_usbd_dev.connected = 0;
_usbd_dev.configured = 0;
_usbd_dev.suspended = 0;
_usbd_dev.suspended = 0;
osal_queue_send(_usbd_q, event, in_isr);
break;
case DCD_EVENT_SOF:
// nothing to do now
return; // skip SOF event for now
break;
case DCD_EVENT_SUSPEND:
@@ -857,6 +854,7 @@ void dcd_event_handler(dcd_event_t const * event, bool in_isr)
break;
case DCD_EVENT_RESUME:
// skip event if not connected (especially required for SAMD)
if ( _usbd_dev.connected )
{
_usbd_dev.suspended = 0;
@@ -864,21 +862,9 @@ void dcd_event_handler(dcd_event_t const * event, bool in_isr)
}
break;
case DCD_EVENT_SETUP_RECEIVED:
default:
osal_queue_send(_usbd_q, event, in_isr);
break;
case DCD_EVENT_XFER_COMPLETE:
osal_queue_send(_usbd_q, event, in_isr);
TU_ASSERT(event->xfer_complete.result == XFER_RESULT_SUCCESS,);
break;
// Not an DCD event, just a convenient way to defer ISR function should we need to
case USBD_EVENT_FUNC_CALL:
osal_queue_send(_usbd_q, event, in_isr);
break;
default: break;
}
}
@@ -962,6 +948,8 @@ bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
TU_VERIFY( dcd_edpt_xfer(rhport, ep_addr, buffer, total_bytes) );
_usbd_dev.ep_status[epnum][dir].busy = true;
TU_LOG2(" XFER Endpoint: 0x%02X, Bytes: %d\r\n", ep_addr, total_bytes);
return true;
}

View File

@@ -64,6 +64,7 @@ static inline bool _status_stage_xact(uint8_t rhport, tusb_control_request_t con
return dcd_edpt_xfer(rhport, request->bmRequestType_bit.direction ? EDPT_CTRL_OUT : EDPT_CTRL_IN, NULL, 0);
}
// Status phase
bool tud_control_status(uint8_t rhport, tusb_control_request_t const * request)
{
_ctrl_xfer.request = (*request);
@@ -118,9 +119,8 @@ bool tud_control_xfer(uint8_t rhport, tusb_control_request_t const * request, vo
// USBD API
//--------------------------------------------------------------------+
void usbd_control_reset (uint8_t rhport)
void usbd_control_reset(void)
{
(void) rhport;
tu_varclr(&_ctrl_xfer);
}
@@ -130,6 +130,15 @@ void usbd_control_set_complete_callback( bool (*fp) (uint8_t, tusb_control_reque
_ctrl_xfer.complete_cb = fp;
}
// useful for dcd_set_address where DCD is responsible for status response
void usbd_control_set_request(tusb_control_request_t const *request)
{
_ctrl_xfer.request = (*request);
_ctrl_xfer.buffer = NULL;
_ctrl_xfer.total_xferred = 0;
_ctrl_xfer.data_len = 0;
}
// callback when a transaction complete on
// - DATA stage of control endpoint or
// - Status stage
@@ -141,6 +150,7 @@ bool usbd_control_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t result
if ( tu_edpt_dir(ep_addr) != _ctrl_xfer.request.bmRequestType_bit.direction )
{
TU_ASSERT(0 == xferred_bytes);
if (dcd_edpt0_status_complete) dcd_edpt0_status_complete(rhport, &_ctrl_xfer.request);
return true;
}

View File

@@ -28,8 +28,8 @@
#if TUSB_OPT_DEVICE_ENABLED && CFG_TUSB_MCU == OPT_MCU_SAMD21
#include "device/dcd.h"
#include "sam.h"
#include "device/dcd.h"
/*------------------------------------------------------------------*/
/* MACRO TYPEDEF CONSTANT ENUM
@@ -98,13 +98,13 @@ void dcd_int_disable(uint8_t rhport)
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
// Response with status first before changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
(void) dev_addr;
// Wait for EP0 to finish before switching the address.
while (USB->DEVICE.DeviceEndpoint[0].EPSTATUS.bit.BK1RDY == 1) {}
// Response with zlp status
dcd_edpt_xfer(rhport, 0x80, NULL, 0);
USB->DEVICE.DADD.reg = USB_DEVICE_DADD_DADD(dev_addr) | USB_DEVICE_DADD_ADDEN;
// DCD can only set address after status for this request is complete
// do it at dcd_edpt0_status_complete()
// Enable SUSPEND interrupt since the bus signal D+/D- are stable now.
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTENCLR_SUSPEND; // clear pending
@@ -116,7 +116,6 @@ void dcd_set_config (uint8_t rhport, uint8_t config_num)
(void) rhport;
(void) config_num;
// Nothing to do
}
void dcd_remote_wakeup(uint8_t rhport)
@@ -130,6 +129,23 @@ void dcd_remote_wakeup(uint8_t rhport)
/* DCD Endpoint port
*------------------------------------------------------------------*/
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS )
{
uint8_t const dev_addr = (uint8_t) request->wValue;
USB->DEVICE.DADD.reg = USB_DEVICE_DADD_DADD(dev_addr) | USB_DEVICE_DADD_ADDEN;
}
// Just finished status stage, prepare for next setup packet
dcd_edpt_xfer(rhport, 0x00, _setup_packet, sizeof(_setup_packet));
}
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
(void) rhport;
@@ -282,12 +298,6 @@ void maybe_transfer_complete(void) {
uint8_t ep_addr = epnum;
dcd_event_xfer_complete(0, ep_addr, total_transfer_size, XFER_RESULT_SUCCESS, true);
}
// Just finished status stage (total size = 0), prepare for next setup packet
// TODO could cause issue with actual zero length data used by class such as DFU
if (epnum == 0 && total_transfer_size == 0) {
dcd_edpt_xfer(0, 0, _setup_packet, sizeof(_setup_packet));
}
}
}

View File

@@ -28,8 +28,8 @@
#if TUSB_OPT_DEVICE_ENABLED && CFG_TUSB_MCU == OPT_MCU_SAMD51
#include "device/dcd.h"
#include "sam.h"
#include "device/dcd.h"
/*------------------------------------------------------------------*/
/* MACRO TYPEDEF CONSTANT ENUM
@@ -104,13 +104,13 @@ void dcd_int_disable(uint8_t rhport)
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
// Response with status first before changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
(void) dev_addr;
// Wait for EP0 to finish before switching the address.
while (USB->DEVICE.DeviceEndpoint[0].EPSTATUS.bit.BK1RDY == 1) {}
// Response with zlp status
dcd_edpt_xfer(rhport, 0x80, NULL, 0);
USB->DEVICE.DADD.reg = USB_DEVICE_DADD_DADD(dev_addr) | USB_DEVICE_DADD_ADDEN;
// DCD can only set address after status for this request is complete
// do it at dcd_edpt0_status_complete()
// Enable SUSPEND interrupt since the bus signal D+/D- are stable now.
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTENCLR_SUSPEND; // clear pending
@@ -135,6 +135,22 @@ void dcd_remote_wakeup(uint8_t rhport)
/* DCD Endpoint port
*------------------------------------------------------------------*/
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS )
{
uint8_t const dev_addr = (uint8_t) request->wValue;
USB->DEVICE.DADD.reg = USB_DEVICE_DADD_DADD(dev_addr) | USB_DEVICE_DADD_ADDEN;
}
// Just finished status stage, prepare for next setup packet
dcd_edpt_xfer(rhport, 0x00, _setup_packet, sizeof(_setup_packet));
}
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
(void) rhport;
@@ -334,11 +350,6 @@ void transfer_complete(uint8_t direction) {
}
dcd_event_xfer_complete(0, ep_addr, total_transfer_size, XFER_RESULT_SUCCESS, true);
// just finished status stage (total size = 0), prepare for next setup packet
if (epnum == 0 && total_transfer_size == 0) {
dcd_edpt_xfer(0, 0, _setup_packet, sizeof(_setup_packet));
}
if (direction == TUSB_DIR_IN) {
ep->EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_TRCPT1;
} else {

View File

@@ -0,0 +1,443 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2018, hathach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUSB_MCU == OPT_MCU_SAMG
#include "sam.h"
#include "device/dcd.h"
// TODO should support (SAM3S || SAM4S || SAM4E || SAMG55)
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
#define EP_COUNT 6
// Transfer descriptor
typedef struct
{
uint8_t* buffer;
uint16_t total_len;
volatile uint16_t actual_len;
uint16_t epsize;
} xfer_desc_t;
// Endpoint 0-5, each can only be either OUT or In
xfer_desc_t _dcd_xfer[EP_COUNT];
void xfer_epsize_set(xfer_desc_t* xfer, uint16_t epsize)
{
xfer->epsize = epsize;
}
void xfer_begin(xfer_desc_t* xfer, uint8_t * buffer, uint16_t total_bytes)
{
xfer->buffer = buffer;
xfer->total_len = total_bytes;
xfer->actual_len = 0;
}
void xfer_end(xfer_desc_t* xfer)
{
xfer->buffer = NULL;
xfer->total_len = 0;
xfer->actual_len = 0;
}
uint16_t xfer_packet_len(xfer_desc_t* xfer)
{
// also cover zero-length packet
return tu_min16(xfer->total_len - xfer->actual_len, xfer->epsize);
}
void xfer_packet_done(xfer_desc_t* xfer)
{
uint16_t const xact_len = xfer_packet_len(xfer);
xfer->buffer += xact_len;
xfer->actual_len += xact_len;
}
//------------- Transaction helpers -------------//
// Write data to EP FIFO, return number of written bytes
static void xact_ep_write(uint8_t epnum, uint8_t* buffer, uint16_t xact_len)
{
for(uint16_t i=0; i<xact_len; i++)
{
UDP->UDP_FDR[epnum] = (uint32_t) buffer[i];
}
}
// Read data from EP FIFO
static void xact_ep_read(uint8_t epnum, uint8_t* buffer, uint16_t xact_len)
{
for(uint16_t i=0; i<xact_len; i++)
{
buffer[i] = (uint8_t) UDP->UDP_FDR[epnum];
}
}
/*------------------------------------------------------------------*/
/* Device API
*------------------------------------------------------------------*/
// Set up endpoint 0, clear all other endpoints
static void bus_reset(void)
{
tu_memclr(_dcd_xfer, sizeof(_dcd_xfer));
xfer_epsize_set(&_dcd_xfer[0], CFG_TUD_ENDPOINT0_SIZE);
// Enable EP0 control
UDP->UDP_CSR[0] = UDP_CSR_EPEDS_Msk;
// Enable interrupt : EP0, Suspend, Resume, Wakeup
UDP->UDP_IER = UDP_IER_EP0INT_Msk | UDP_IER_RXSUSP_Msk | UDP_IER_RXRSM_Msk | UDP_IER_WAKEUP_Msk;
// Enable transceiver
UDP->UDP_TXVC &= ~UDP_TXVC_TXVDIS_Msk;
}
// Initialize controller to device mode
void dcd_init (uint8_t rhport)
{
(void) rhport;
tu_memclr(_dcd_xfer, sizeof(_dcd_xfer));
// Enable pull-up, disable transceiver
UDP->UDP_TXVC = UDP_TXVC_PUON | UDP_TXVC_TXVDIS_Msk;
}
// Enable device interrupt
void dcd_int_enable (uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(UDP_IRQn);
}
// Disable device interrupt
void dcd_int_disable (uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(UDP_IRQn);
}
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
(void) rhport;
(void) dev_addr;
// Response with zlp status
dcd_edpt_xfer(rhport, 0x80, NULL, 0);
// DCD can only set address after status for this request is complete.
// do it at dcd_edpt0_status_complete()
}
// Receive Set Configure request
void dcd_set_config (uint8_t rhport, uint8_t config_num)
{
(void) rhport;
(void) config_num;
// Configured State
// UDP->UDP_GLB_STAT |= UDP_GLB_STAT_CONFG_Msk;
}
// Wake up host
void dcd_remote_wakeup (uint8_t rhport)
{
(void) rhport;
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
(void) rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD )
{
if (request->bRequest == TUSB_REQ_SET_ADDRESS)
{
uint8_t const dev_addr = (uint8_t) request->wValue;
// Enable addressed state
UDP->UDP_GLB_STAT |= UDP_GLB_STAT_FADDEN_Msk;
// Set new address & Function enable bit
UDP->UDP_FADDR = UDP_FADDR_FEN_Msk | UDP_FADDR_FADD(dev_addr);
}else if (request->bRequest == TUSB_REQ_SET_CONFIGURATION)
{
// Configured State
UDP->UDP_GLB_STAT |= UDP_GLB_STAT_CONFG_Msk;
}
}
}
// Configure endpoint's registers according to descriptor
// SAMG doesn't support a same endpoint number with IN and OUT
// e.g EP1 OUT & EP1 IN cannot exist together
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(ep_desc->bEndpointAddress);
// TODO Isochronous is not supported yet
TU_VERIFY(ep_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
TU_VERIFY(epnum < EP_COUNT);
// Must not already enabled
TU_ASSERT((UDP->UDP_CSR[epnum] & UDP_CSR_EPEDS_Msk) == 0);
xfer_epsize_set(&_dcd_xfer[epnum], ep_desc->wMaxPacketSize.size);
// Configure type and eanble EP
UDP->UDP_CSR[epnum] = UDP_CSR_EPEDS_Msk | UDP_CSR_EPTYPE(ep_desc->bmAttributes.xfer + 4*dir);
// Enable EP Interrupt for IN
if (dir == TUSB_DIR_IN) UDP->UDP_IER |= (1 << epnum);
return true;
}
// Submit a transfer, When complete dcd_event_xfer_complete() is invoked to notify the stack
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_desc_t* xfer = &_dcd_xfer[epnum];
xfer_begin(xfer, buffer, total_bytes);
if (dir == TUSB_DIR_IN)
{
// Set DIR bit for EP0
if ( epnum == 0 ) UDP->UDP_CSR[epnum] |= UDP_CSR_DIR_Msk;
xact_ep_write(epnum, xfer->buffer, xfer_packet_len(xfer));
// TX ready for transfer
UDP->UDP_CSR[epnum] |= UDP_CSR_TXPKTRDY_Msk;
}
else
{
// Clear DIR bit for EP0
if ( epnum == 0 ) UDP->UDP_CSR[epnum] &= ~UDP_CSR_DIR_Msk;
// OUT Data may already received and acked by hardware
// Read it as 1st packet then continue with transfer if needed
if ( UDP->UDP_CSR[epnum] & (UDP_CSR_RX_DATA_BK0_Msk | UDP_CSR_RX_DATA_BK1_Msk) )
{
// uint16_t const xact_len = (uint16_t) ((UDP->UDP_CSR[epnum] & UDP_CSR_RXBYTECNT_Msk) >> UDP_CSR_RXBYTECNT_Pos);
// TU_LOG2("xact_len = %d\r", xact_len);
// // Read from EP fifo
// xact_ep_read(epnum, xfer->buffer, xact_len);
// xfer_packet_done(xfer);
//
// // Clear DATA Bank0 bit
// UDP->UDP_CSR[epnum] &= ~UDP_CSR_RX_DATA_BK0_Msk;
//
// if ( 0 == xfer_packet_len(xfer) )
// {
// // Disable OUT EP interrupt when transfer is complete
// UDP->UDP_IER &= ~(1 << epnum);
//
// dcd_event_xfer_complete(rhport, epnum, xact_len, XFER_RESULT_SUCCESS, false);
// return true; // complete
// }
}
// Enable interrupt when starting OUT transfer
if (epnum != 0) UDP->UDP_IER |= (1 << epnum);
}
return true;
}
// Stall endpoint
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
// Set force stall bit
UDP->UDP_CSR[epnum] |= UDP_CSR_FORCESTALL_Msk;
}
// clear stall, data toggle is also reset to DATA0
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
// clear stall
UDP->UDP_CSR[epnum] &= ~UDP_CSR_FORCESTALL_Msk;
// must also reset EP to clear data toggle
UDP->UDP_RST_EP = tu_bit_set(UDP->UDP_RST_EP, epnum);
UDP->UDP_RST_EP = tu_bit_clear(UDP->UDP_RST_EP, epnum);
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
void dcd_isr(uint8_t rhport)
{
uint32_t const intr_mask = UDP->UDP_IMR;
uint32_t const intr_status = UDP->UDP_ISR & intr_mask;
// clear interrupt
UDP->UDP_ICR = intr_status;
// Bus reset
if (intr_status & UDP_ISR_ENDBUSRES_Msk)
{
bus_reset();
dcd_event_bus_signal(rhport, DCD_EVENT_BUS_RESET, true);
}
// SOF
// if (intr_status & UDP_ISR_SOFINT_Msk) dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
// Suspend
// if (intr_status & UDP_ISR_RXSUSP_Msk) dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
// Resume
// if (intr_status & UDP_ISR_RXRSM_Msk) dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
// Wakeup
// if (intr_status & UDP_ISR_WAKEUP_Msk) dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
//------------- Endpoints -------------//
if ( intr_status & TU_BIT(0) )
{
// setup packet
if (UDP->UDP_CSR[0] & UDP_CSR_RXSETUP)
{
// get setup from FIFO
uint8_t setup[8];
for(uint8_t i=0; i<sizeof(setup); i++)
{
setup[i] = (uint8_t) UDP->UDP_FDR[0];
}
// notify usbd
dcd_event_setup_received(rhport, setup, true);
// Clear Setup bit
UDP->UDP_CSR[0] &= ~UDP_CSR_RXSETUP_Msk;
return;
}
}
for(uint8_t epnum = 0; epnum < EP_COUNT; epnum++)
{
if ( intr_status & TU_BIT(epnum) )
{
xfer_desc_t* xfer = &_dcd_xfer[epnum];
// Endpoint IN
if (UDP->UDP_CSR[epnum] & UDP_CSR_TXCOMP_Msk)
{
xfer_packet_done(xfer);
uint16_t const xact_len = xfer_packet_len(xfer);
if (xact_len)
{
// write to EP fifo
xact_ep_write(epnum, xfer->buffer, xact_len);
// TX ready for transfer
UDP->UDP_CSR[epnum] |= UDP_CSR_TXPKTRDY_Msk;
}else
{
// xfer is complete
dcd_event_xfer_complete(rhport, epnum | TUSB_DIR_IN_MASK, xfer->actual_len, XFER_RESULT_SUCCESS, true);
}
// Clear TX Complete bit
UDP->UDP_CSR[epnum] &= ~UDP_CSR_TXCOMP_Msk;
}
// Endpoint OUT
// Ping-Pong is a must for Bulk/Iso
// When both Bank0 and Bank1 are both set, there is not way to know which one comes first
if (UDP->UDP_CSR[epnum] & (UDP_CSR_RX_DATA_BK0_Msk | UDP_CSR_RX_DATA_BK1_Msk))
{
uint16_t const xact_len = (uint16_t) ((UDP->UDP_CSR[epnum] & UDP_CSR_RXBYTECNT_Msk) >> UDP_CSR_RXBYTECNT_Pos);
//if (epnum != 0) TU_LOG2("xact_len = %d\r", xact_len);
// Read from EP fifo
xact_ep_read(epnum, xfer->buffer, xact_len);
xfer_packet_done(xfer);
if ( 0 == xfer_packet_len(xfer) )
{
// Disable OUT EP interrupt when transfer is complete
if (epnum != 0) UDP->UDP_IDR |= (1 << epnum);
dcd_event_xfer_complete(rhport, epnum, xact_len, XFER_RESULT_SUCCESS, true);
// xfer_end(xfer);
}
// Clear DATA Bank0 bit
UDP->UDP_CSR[epnum] &= ~(UDP_CSR_RX_DATA_BK0_Msk | UDP_CSR_RX_DATA_BK1_Msk);
}
// Stall sent to host
if (UDP->UDP_CSR[epnum] & UDP_CSR_STALLSENT_Msk)
{
UDP->UDP_CSR[epnum] &= ~UDP_CSR_STALLSENT_Msk;
}
}
}
}
#endif

View File

@@ -175,7 +175,6 @@ static inline xfer_ctl_t* xfer_ctl_ptr(uint32_t epnum, uint32_t dir)
static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[6];
static uint8_t newDADDR; // Used to set the new device address during the CTR IRQ handler
static uint8_t remoteWakeCountdown; // When wake is requested
// EP Buffers assigned from end of memory location, to minimize their chance of crashing
@@ -298,14 +297,14 @@ void dcd_int_disable(uint8_t rhport)
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
(void)rhport;
// We cannot immediatly change it; it must be queued to change after the STATUS packet is sent.
// (CTR handler will actually change the address once it sees that the transmission is complete)
newDADDR = dev_addr;
(void) rhport;
(void) dev_addr;
// Respond with status
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
// DCD can only set address after status for this request is complete.
// do it at dcd_edpt0_status_complete()
}
// Receive Set Config request
@@ -362,7 +361,7 @@ static void dcd_handle_bus_reset(void)
ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT; // 8 bytes per endpoint (two TX and two RX words, each)
dcd_edpt_open (0, &ep0OUT_desc);
dcd_edpt_open (0, &ep0IN_desc);
newDADDR = 0u;
USB->DADDR = USB_DADDR_EF; // Set enable flag, and leaving the device address as zero.
}
@@ -398,13 +397,7 @@ static uint16_t dcd_ep_ctr_handler(void)
if((xfer->total_len == xfer->queued_len))
{
dcd_event_xfer_complete(0u, (uint8_t)(0x80 + EPindex), xfer->total_len, XFER_RESULT_SUCCESS, true);
if((newDADDR != 0) && ( xfer->total_len == 0U))
{
// Delayed setting of the DADDR after the 0-len DATA packet acking the request is sent.
reg16_clear_bits(&USB->DADDR, USB_DADDR_ADD);
USB->DADDR = (uint16_t)(USB->DADDR | newDADDR); // leave the enable bit set
newDADDR = 0;
}
if(xfer->total_len == 0) // Probably a status message?
{
pcd_clear_rx_dtog(USB,EPindex);
@@ -602,6 +595,24 @@ static void dcd_fs_irqHandler(void) {
// Endpoint API
//--------------------------------------------------------------------+
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
(void) rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS )
{
uint8_t const dev_addr = (uint8_t) request->wValue;
// Setting new address after the whole request is complete
reg16_clear_bits(&USB->DADDR, USB_DADDR_ADD);
USB->DADDR = (uint16_t)(USB->DADDR | dev_addr); // leave the enable bit set
}
}
// The STM32F0 doesn't seem to like |= or &= to manipulate the EP#R registers,
// so I'm using the #define from HAL here, instead.

View File

@@ -232,7 +232,6 @@ void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
(void) rhport;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE;
dev->DCFG |= (dev_addr << USB_OTG_DCFG_DAD_Pos) & USB_OTG_DCFG_DAD_Msk;
// Response with status after changing device address

View File

@@ -0,0 +1,116 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2018, hathach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUSB_MCU == OPT_MCU_NONE
#include "device/dcd.h"
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
/*------------------------------------------------------------------*/
/* Device API
*------------------------------------------------------------------*/
// Initialize controller to device mode
void dcd_init (uint8_t rhport)
{
(void) rhport;
}
// Enable device interrupt
void dcd_int_enable (uint8_t rhport)
{
(void) rhport;
}
// Disable device interrupt
void dcd_int_disable (uint8_t rhport)
{
(void) rhport;
}
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
(void) rhport;
(void) dev_addr;
}
// Receive Set Configure request
void dcd_set_config (uint8_t rhport, uint8_t config_num)
{
(void) rhport;
(void) config_num;
}
// Wake up host
void dcd_remote_wakeup (uint8_t rhport)
{
(void) rhport;
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
// Configure endpoint's registers according to descriptor
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
(void) ep_desc;
return false;
}
// Submit a transfer, When complete dcd_event_xfer_complete() is invoked to notify the stack
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void) rhport;
(void) ep_addr;
(void) buffer;
(void) total_bytes;
return false;
}
// Stall endpoint
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
(void) ep_addr;
}
// clear stall, data toggle is also reset to DATA0
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
(void) ep_addr;
}
#endif

View File

@@ -81,8 +81,10 @@ static void dump_str_line(uint8_t const* buf, uint16_t count)
// size : item size in bytes
// count : number of item
// print offet or not (handfy for dumping large memory)
void tu_print_mem(void const *buf, uint8_t size, uint16_t count)
void tu_print_mem(void const *buf, uint16_t count, uint8_t indent)
{
uint8_t const size = 1; // fixed 1 byte for now
if ( !buf || !count )
{
tu_printf("NULL\r\n");
@@ -110,6 +112,8 @@ void tu_print_mem(void const *buf, uint8_t size, uint16_t count)
tu_printf("\r\n");
}
for(uint8_t s=0; s < indent; s++) tu_printf(" ");
// print offset or absolute address
tu_printf("%03lX: ", 16*i/item_per_line);
}

View File

@@ -36,6 +36,8 @@
* \ref CFG_TUSB_MCU must be defined to one of these
* @{ */
#define OPT_MCU_NONE 0
// LPC
#define OPT_MCU_LPC11UXX 1 ///< NXP LPC11Uxx
#define OPT_MCU_LPC13XX 2 ///< NXP LPC13xx
@@ -55,6 +57,7 @@
// SAM
#define OPT_MCU_SAMD21 200 ///< MicroChip SAMD21
#define OPT_MCU_SAMD51 201 ///< MicroChip SAMD51
#define OPT_MCU_SAMG 202 ///< MicroChip SAMDG series
// STM32
#define OPT_MCU_STM32F0 300 ///< ST STM32F0