Merge branch 'master' into fork/HiFiPhile/ping_out

# Conflicts:
#	src/portable/synopsys/dwc2/hcd_dwc2.c
This commit is contained in:
hathach
2025-04-18 17:54:01 +07:00
71 changed files with 1479 additions and 1329 deletions

View File

@@ -344,7 +344,7 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
msc_csw_t * p_csw = &p_msc->csw;
switch (p_msc->stage) {
case MSC_STAGE_CMD:
case MSC_STAGE_CMD: {
//------------- new CBW received -------------//
// Complete IN while waiting for CMD is usually Status of previous SCSI op, ignore it
if (ep_addr != p_msc->ep_out) {
@@ -441,7 +441,8 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
}
}
}
break;
break;
}
case MSC_STAGE_DATA:
TU_LOG_DRV(" SCSI Data [Lun%u]\r\n", p_cbw->lun);

View File

@@ -108,15 +108,13 @@ typedef struct {
} tu_lookup_table_t;
static inline const char* tu_lookup_find(tu_lookup_table_t const* p_table, uint32_t key) {
tu_static char not_found[11];
for(uint16_t i=0; i<p_table->count; i++) {
if (p_table->items[i].key == key) return p_table->items[i].data;
if (p_table->items[i].key == key) { return p_table->items[i].data; }
}
// not found return the key value in hex
static char not_found[11];
snprintf(not_found, sizeof(not_found), "0x%08lX", (unsigned long) key);
return not_found;
}

View File

@@ -1372,9 +1372,13 @@ enum {
ENUM_HUB_CLEAR_RESET_2,
ENUM_SET_ADDR,
ENUM_GET_DEVICE_DESC,
ENUM_GET_STRING_LANGUAGE_ID_LEN,
ENUM_GET_STRING_LANGUAGE_ID,
ENUM_GET_STRING_MANUFACTURER_LEN,
ENUM_GET_STRING_MANUFACTURER,
ENUM_GET_STRING_PRODUCT_LEN,
ENUM_GET_STRING_PRODUCT,
ENUM_GET_STRING_SERIAL_LEN,
ENUM_GET_STRING_SERIAL,
ENUM_GET_9BYTE_CONFIG_DESC,
ENUM_GET_FULL_CONFIG_DESC,
@@ -1416,6 +1420,9 @@ static void process_enumeration(tuh_xfer_t* xfer) {
uint8_t const daddr = xfer->daddr;
uintptr_t const state = xfer->user_data;
usbh_device_t* dev = get_device(daddr);
if (daddr > 0) {
TU_ASSERT(dev,);
}
uint16_t langid = 0x0409; // default is English
switch (state) {
@@ -1474,30 +1481,6 @@ static void process_enumeration(tuh_xfer_t* xfer) {
break;
}
#if 0
case ENUM_RESET_2:
// TODO not used by now, but may be needed for some devices !?
// Reset device again before Set Address
TU_LOG_USBH("Port reset2 \r\n");
if (_dev0.hub_addr == 0) {
// connected directly to roothub
hcd_port_reset( _dev0.rhport );
tusb_time_delay_ms_api(RESET_DELAY); // TODO may not work for no-OS on MCU that require reset_end() since
// sof of controller may not running while resetting
hcd_port_reset_end(_dev0.rhport);
// TODO: fall through to SET ADDRESS, refactor later
}
#if CFG_TUH_HUB
else {
// after RESET_DELAY the hub_port_reset() already complete
TU_ASSERT( hub_port_reset(_dev0.hub_addr, _dev0.hub_port,
process_enumeration, ENUM_HUB_GET_STATUS_2), );
break;
}
#endif
TU_ATTR_FALLTHROUGH;
#endif
case ENUM_SET_ADDR:
enum_request_set_addr((tusb_desc_device_t*) _usbh_epbuf.ctrl);
break;
@@ -1520,14 +1503,15 @@ static void process_enumeration(tuh_xfer_t* xfer) {
// Get full device descriptor
TU_LOG_USBH("Get Device Descriptor\r\n");
TU_ASSERT(tuh_descriptor_get_device(new_addr, _usbh_epbuf.ctrl, sizeof(tusb_desc_device_t),
process_enumeration, ENUM_GET_STRING_LANGUAGE_ID),);
process_enumeration, ENUM_GET_STRING_LANGUAGE_ID_LEN),);
break;
}
case ENUM_GET_STRING_LANGUAGE_ID: {
// For string descriptor (langid, manufacturer, product, serila): always get the first 2 bytes
// to determine the length first. otherwise, some device may have buffer overflow.
case ENUM_GET_STRING_LANGUAGE_ID_LEN: {
// save the received device descriptor
TU_ASSERT(dev,);
tusb_desc_device_t const* desc_device = (tusb_desc_device_t const*) _usbh_epbuf.ctrl;
tusb_desc_device_t const *desc_device = (tusb_desc_device_t const *) _usbh_epbuf.ctrl;
dev->vid = desc_device->idVendor;
dev->pid = desc_device->idProduct;
dev->i_manufacturer = desc_device->iManufacturer;
@@ -1535,50 +1519,88 @@ static void process_enumeration(tuh_xfer_t* xfer) {
dev->i_serial = desc_device->iSerialNumber;
dev->bNumConfigurations = desc_device->bNumConfigurations;
tuh_enum_descriptor_device_cb(daddr, desc_device); // callback
tuh_enum_descriptor_device_cb(daddr, desc_device);// callback
tuh_descriptor_get_string_langid(daddr, _usbh_epbuf.ctrl, CFG_TUH_ENUMERATION_BUFSIZE,
process_enumeration, ENUM_GET_STRING_MANUFACTURER);
tuh_descriptor_get_string_langid(daddr, _usbh_epbuf.ctrl, 2,
process_enumeration, ENUM_GET_STRING_LANGUAGE_ID);
break;
}
case ENUM_GET_STRING_MANUFACTURER: {
TU_ASSERT(dev,);
const tusb_desc_string_t* desc_langid = (tusb_desc_string_t const*) _usbh_epbuf.ctrl;
case ENUM_GET_STRING_LANGUAGE_ID: {
const uint8_t str_len = xfer->buffer[0];
tuh_descriptor_get_string_langid(daddr, _usbh_epbuf.ctrl, str_len,
process_enumeration, ENUM_GET_STRING_MANUFACTURER_LEN);
break;
}
case ENUM_GET_STRING_MANUFACTURER_LEN: {
const tusb_desc_string_t* desc_langid = (const tusb_desc_string_t *) _usbh_epbuf.ctrl;
if (desc_langid->bLength >= 4) {
langid = tu_le16toh(desc_langid->utf16le[0]);
langid = tu_le16toh(desc_langid->utf16le[0]); // previous request is langid
}
if (dev->i_manufacturer != 0) {
tuh_descriptor_get_string(daddr, dev->i_manufacturer, langid, _usbh_epbuf.ctrl, CFG_TUH_ENUMERATION_BUFSIZE,
tuh_descriptor_get_string(daddr, dev->i_manufacturer, langid, _usbh_epbuf.ctrl, 2,
process_enumeration, ENUM_GET_STRING_MANUFACTURER);
break;
}else {
TU_ATTR_FALLTHROUGH;
}
}
case ENUM_GET_STRING_MANUFACTURER: {
if (dev->i_manufacturer != 0) {
langid = tu_le16toh(xfer->setup->wIndex); // langid from length's request
const uint8_t str_len = xfer->buffer[0];
tuh_descriptor_get_string(daddr, dev->i_manufacturer, langid, _usbh_epbuf.ctrl, str_len,
process_enumeration, ENUM_GET_STRING_PRODUCT_LEN);
break;
} else {
TU_ATTR_FALLTHROUGH;
}
}
case ENUM_GET_STRING_PRODUCT_LEN:
if (dev->i_product != 0) {
if (state == ENUM_GET_STRING_PRODUCT_LEN) {
langid = tu_le16toh(xfer->setup->wIndex); // get langid from previous setup packet if not fall through
}
tuh_descriptor_get_string(daddr, dev->i_product, langid, _usbh_epbuf.ctrl, 2,
process_enumeration, ENUM_GET_STRING_PRODUCT);
break;
} else {
TU_ATTR_FALLTHROUGH;
}
}
case ENUM_GET_STRING_PRODUCT: {
TU_ASSERT(dev,);
if (state == ENUM_GET_STRING_PRODUCT) {
langid = tu_le16toh(xfer->setup->wIndex); // if not fall through, get langid from previous setup packet
}
if (dev->i_product != 0) {
tuh_descriptor_get_string(daddr, dev->i_product, 0x0409, _usbh_epbuf.ctrl, CFG_TUH_ENUMERATION_BUFSIZE,
process_enumeration, ENUM_GET_STRING_SERIAL);
langid = tu_le16toh(xfer->setup->wIndex); // langid from length's request
const uint8_t str_len = xfer->buffer[0];
tuh_descriptor_get_string(daddr, dev->i_product, langid, _usbh_epbuf.ctrl, str_len,
process_enumeration, ENUM_GET_STRING_SERIAL_LEN);
break;
} else {
TU_ATTR_FALLTHROUGH;
}
}
case ENUM_GET_STRING_SERIAL: {
TU_ASSERT(dev,);
if (state == ENUM_GET_STRING_SERIAL) {
langid = tu_le16toh(xfer->setup->wIndex); // if not fall through, get langid from previous setup packet
}
case ENUM_GET_STRING_SERIAL_LEN:
if (dev->i_serial != 0) {
tuh_descriptor_get_string(daddr, dev->i_serial, langid, _usbh_epbuf.ctrl, CFG_TUH_ENUMERATION_BUFSIZE,
process_enumeration, ENUM_GET_9BYTE_CONFIG_DESC);
if (state == ENUM_GET_STRING_SERIAL_LEN) {
langid = tu_le16toh(xfer->setup->wIndex); // get langid from previous setup packet if not fall through
}
tuh_descriptor_get_string(daddr, dev->i_serial, langid, _usbh_epbuf.ctrl, 2,
process_enumeration, ENUM_GET_STRING_SERIAL);
break;
} else {
TU_ATTR_FALLTHROUGH;
}
case ENUM_GET_STRING_SERIAL: {
if (dev->i_serial != 0) {
langid = tu_le16toh(xfer->setup->wIndex); // langid from length's request
const uint8_t str_len = xfer->buffer[0];
tuh_descriptor_get_string(daddr, dev->i_serial, langid, _usbh_epbuf.ctrl, str_len,
process_enumeration, ENUM_GET_9BYTE_CONFIG_DESC);
break;
} else {
TU_ATTR_FALLTHROUGH;
@@ -1627,8 +1649,6 @@ static void process_enumeration(tuh_xfer_t* xfer) {
case ENUM_CONFIG_DRIVER: {
TU_LOG_USBH("Device configured\r\n");
TU_ASSERT(dev,);
dev->configured = 1;
// Parse configuration & set up drivers

View File

@@ -41,12 +41,6 @@
#include "device/dcd.h"
#include "dwc2_common.h"
#if TU_CHECK_MCU(OPT_MCU_GD32VF103)
#define DWC2_EP_COUNT(_dwc2) DWC2_EP_MAX
#else
#define DWC2_EP_COUNT(_dwc2) ((_dwc2)->ghwcfg2_bm.num_dev_ep + 1)
#endif
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM
//--------------------------------------------------------------------+
@@ -79,6 +73,16 @@ CFG_TUD_MEM_SECTION static struct {
TUD_EPBUF_DEF(setup_packet, 8);
} _dcd_usbbuf;
TU_ATTR_ALWAYS_INLINE static inline uint8_t dwc2_ep_count(const dwc2_regs_t* dwc2) {
#if TU_CHECK_MCU(OPT_MCU_GD32VF103)
return DWC2_EP_MAX;
#else
const dwc2_ghwcfg2_t ghwcfg2 = {.value = dwc2->ghwcfg2};
return ghwcfg2.num_dev_ep + 1;
#endif
}
//--------------------------------------------------------------------
// DMA
//--------------------------------------------------------------------
@@ -102,7 +106,8 @@ bool dcd_dcache_clean_invalidate(const void* addr, uint32_t data_size) {
TU_ATTR_ALWAYS_INLINE static inline bool dma_device_enabled(const dwc2_regs_t* dwc2) {
(void) dwc2;
// Internal DMA only
return CFG_TUD_DWC2_DMA_ENABLE && dwc2->ghwcfg2_bm.arch == GHWCFG2_ARCH_INTERNAL_DMA;
const dwc2_ghwcfg2_t ghwcfg2 = {.value = dwc2->ghwcfg2};
return CFG_TUD_DWC2_DMA_ENABLE && ghwcfg2.arch == GHWCFG2_ARCH_INTERNAL_DMA;
}
static void dma_setup_prepare(uint8_t rhport) {
@@ -250,20 +255,15 @@ static void edpt_activate(uint8_t rhport, const tusb_desc_endpoint_t* p_endpoint
xfer->interval = p_endpoint_desc->bInterval;
// Endpoint control
union {
uint32_t value;
dwc2_depctl_t bm;
} depctl;
depctl.value = 0;
depctl.bm.mps = xfer->max_size;
depctl.bm.active = 1;
depctl.bm.type = p_endpoint_desc->bmAttributes.xfer;
dwc2_depctl_t depctl = {.value = 0};
depctl.mps = xfer->max_size;
depctl.active = 1;
depctl.type = p_endpoint_desc->bmAttributes.xfer;
if (p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS) {
depctl.bm.set_data0_iso_even = 1;
depctl.set_data0_iso_even = 1;
}
if (dir == TUSB_DIR_IN) {
depctl.bm.tx_fifo_num = epnum;
depctl.tx_fifo_num = epnum;
}
dwc2_dep_t* dep = &dwc2->ep[dir == TUSB_DIR_IN ? 0 : 1][epnum];
@@ -343,31 +343,22 @@ static void edpt_schedule_packets(uint8_t rhport, const uint8_t epnum, const uin
}
// transfer size: A full OUT transfer (multiple packets, possibly) triggers XFRC.
union {
uint32_t value;
dwc2_ep_tsize_t bm;
} deptsiz;
deptsiz.value = 0;
deptsiz.bm.xfer_size = total_bytes;
deptsiz.bm.packet_count = num_packets;
dwc2_ep_tsize_t deptsiz = {.value = 0};
deptsiz.xfer_size = total_bytes;
deptsiz.packet_count = num_packets;
dep->tsiz = deptsiz.value;
// control
union {
dwc2_depctl_t bm;
uint32_t value;
} depctl;
depctl.value = dep->ctl;
depctl.bm.clear_nak = 1;
depctl.bm.enable = 1;
if (depctl.bm.type == DEPCTL_EPTYPE_ISOCHRONOUS && xfer->interval == 1) {
const uint32_t odd_now = (dwc2->dsts_bm.frame_number & 1u);
dwc2_depctl_t depctl = {.value = dep->ctl};
depctl.clear_nak = 1;
depctl.enable = 1;
if (depctl.type == DEPCTL_EPTYPE_ISOCHRONOUS && xfer->interval == 1) {
const dwc2_dsts_t dsts = {.value = dwc2->dsts};
const uint32_t odd_now = dsts.frame_number & 1u;
if (odd_now) {
depctl.bm.set_data0_iso_even = 1;
depctl.set_data0_iso_even = 1;
} else {
depctl.bm.set_data1_iso_odd = 1;
depctl.set_data1_iso_odd = 1;
}
}
@@ -410,7 +401,8 @@ bool dcd_init(uint8_t rhport, const tusb_rhport_init_t* rh_init) {
// XCVRDLY: transceiver delay between xcvr_sel and txvalid during device chirp is required
// when using with some PHYs such as USB334x (USB3341, USB3343, USB3346, USB3347)
if (dwc2->ghwcfg2_bm.hs_phy_type == GHWCFG2_HSPHY_ULPI) {
const dwc2_ghwcfg2_t ghwcfg2 = {.value = dwc2->ghwcfg2};
if (ghwcfg2.hs_phy_type == GHWCFG2_HSPHY_ULPI) {
dcfg |= DCFG_XCVRDLY;
}
} else {
@@ -641,7 +633,7 @@ void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
// 7.4.1 Initialization on USB Reset
static void handle_bus_reset(uint8_t rhport) {
dwc2_regs_t *dwc2 = DWC2_REG(rhport);
const uint8_t ep_count = DWC2_EP_COUNT(dwc2);
const uint8_t ep_count = dwc2_ep_count(dwc2);
tu_memclr(xfer_status, sizeof(xfer_status));
@@ -671,7 +663,9 @@ static void handle_bus_reset(uint8_t rhport) {
dfifo_device_init(rhport);
// 5. Reset device address
dwc2->dcfg_bm.address = 0;
dwc2_dcfg_t dcfg = {.value = dwc2->dcfg};
dcfg.address = 0;
dwc2->dcfg = dcfg.value;
// Fixed both control EP0 size to 64 bytes
dwc2->epin[0].ctl &= ~(0x03 << DIEPCTL_MPSIZ_Pos);
@@ -691,8 +685,9 @@ static void handle_bus_reset(uint8_t rhport) {
static void handle_enum_done(uint8_t rhport) {
dwc2_regs_t *dwc2 = DWC2_REG(rhport);
const dwc2_dsts_t dsts = {.value = dwc2->dsts};
tusb_speed_t speed;
switch (dwc2->dsts_bm.enum_speed) {
switch (dsts.enum_speed) {
case DCFG_SPEED_HIGH:
speed = TUSB_SPEED_HIGH;
break;
@@ -737,12 +732,12 @@ static void handle_rxflvl_irq(uint8_t rhport) {
const volatile uint32_t* rx_fifo = dwc2->fifo[0];
// Pop control word off FIFO
const dwc2_grxstsp_t grxstsp_bm = dwc2->grxstsp_bm;
const uint8_t epnum = grxstsp_bm.ep_ch_num;
const dwc2_grxstsp_t grxstsp = {.value = dwc2->grxstsp};
const uint8_t epnum = grxstsp.ep_ch_num;
dwc2_dep_t* epout = &dwc2->epout[epnum];
switch (grxstsp_bm.packet_status) {
switch (grxstsp.packet_status) {
case GRXSTS_PKTSTS_GLOBAL_OUT_NAK:
// Global OUT NAK: do nothing
break;
@@ -764,7 +759,7 @@ static void handle_rxflvl_irq(uint8_t rhport) {
case GRXSTS_PKTSTS_RX_DATA: {
// Out packet received
const uint16_t byte_count = grxstsp_bm.byte_count;
const uint16_t byte_count = grxstsp.byte_count;
xfer_ctl_t* xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT);
if (byte_count) {
@@ -778,7 +773,8 @@ static void handle_rxflvl_irq(uint8_t rhport) {
// short packet, minus remaining bytes (xfer_size)
if (byte_count < xfer->max_size) {
xfer->total_len -= epout->tsiz_bm.xfer_size;
const dwc2_ep_tsize_t tsiz = {.value = epout->tsiz};
xfer->total_len -= tsiz.xfer_size;
if (epnum == 0) {
xfer->total_len -= _dcd_data.ep0_pending[TUSB_DIR_OUT];
_dcd_data.ep0_pending[TUSB_DIR_OUT] = 0;
@@ -840,11 +836,13 @@ static void handle_epin_slave(uint8_t rhport, uint8_t epnum, dwc2_diepint_t diep
// - 64 bytes or
// - Half/Empty of TX FIFO size (configured by GAHBCFG.TXFELVL)
if (diepint_bm.txfifo_empty && (dwc2->diepempmsk & (1 << epnum))) {
const uint16_t remain_packets = epin->tsiz_bm.packet_count;
dwc2_ep_tsize_t tsiz = {.value = epin->tsiz};
const uint16_t remain_packets = tsiz.packet_count;
// Process every single packet (only whole packets can be written to fifo)
for (uint16_t i = 0; i < remain_packets; i++) {
const uint16_t remain_bytes = (uint16_t) epin->tsiz_bm.xfer_size;
tsiz.value = epin->tsiz;
const uint16_t remain_bytes = (uint16_t) tsiz.xfer_size;
const uint16_t xact_bytes = tu_min16(remain_bytes, xfer->max_size);
// Check if dtxfsts has enough space available
@@ -863,7 +861,8 @@ static void handle_epin_slave(uint8_t rhport, uint8_t epnum, dwc2_diepint_t diep
}
// Turn off TXFE if all bytes are written.
if (epin->tsiz_bm.xfer_size == 0) {
tsiz.value = epin->tsiz;
if (tsiz.xfer_size == 0) {
dwc2->diepempmsk &= ~(1 << epnum);
}
}
@@ -894,7 +893,8 @@ static void handle_epout_dma(uint8_t rhport, uint8_t epnum, dwc2_doepint_t doepi
xfer_ctl_t* xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT);
// determine actual received bytes
const uint16_t remain = epout->tsiz_bm.xfer_size;
const dwc2_ep_tsize_t tsiz = {.value = epout->tsiz};
const uint16_t remain = tsiz.xfer_size;
xfer->total_len -= remain;
// this is ZLP, so prepare EP0 for next setup
@@ -930,7 +930,7 @@ static void handle_epin_dma(uint8_t rhport, uint8_t epnum, dwc2_diepint_t diepin
static void handle_ep_irq(uint8_t rhport, uint8_t dir) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
const bool is_dma = dma_device_enabled(dwc2);
const uint8_t ep_count = DWC2_EP_COUNT(dwc2);
const uint8_t ep_count = dwc2_ep_count(dwc2);
const uint8_t daint_offset = (dir == TUSB_DIR_IN) ? DAINT_IEPINT_Pos : DAINT_OEPINT_Pos;
dwc2_dep_t* ep_base = &dwc2->ep[dir == TUSB_DIR_IN ? 0 : 1][0];

View File

@@ -88,11 +88,13 @@ static void phy_fs_init(dwc2_regs_t* dwc2) {
static void phy_hs_init(dwc2_regs_t* dwc2) {
uint32_t gusbcfg = dwc2->gusbcfg;
const dwc2_ghwcfg2_t ghwcfg2 = {.value = dwc2->ghwcfg2};
const dwc2_ghwcfg4_t ghwcfg4 = {.value = dwc2->ghwcfg4};
// De-select FS PHY
gusbcfg &= ~GUSBCFG_PHYSEL;
if (dwc2->ghwcfg2_bm.hs_phy_type == GHWCFG2_HSPHY_ULPI) {
if (ghwcfg2.hs_phy_type == GHWCFG2_HSPHY_ULPI) {
TU_LOG(DWC2_COMMON_DEBUG, "Highspeed ULPI PHY init\r\n");
// Select ULPI PHY (external)
@@ -116,7 +118,7 @@ static void phy_hs_init(dwc2_regs_t* dwc2) {
gusbcfg &= ~GUSBCFG_ULPI_UTMI_SEL;
// Set 16-bit interface if supported
if (dwc2->ghwcfg4_bm.phy_data_width) {
if (ghwcfg4.phy_data_width) {
gusbcfg |= GUSBCFG_PHYIF16; // 16 bit
} else {
gusbcfg &= ~GUSBCFG_PHYIF16; // 8 bit
@@ -127,7 +129,7 @@ static void phy_hs_init(dwc2_regs_t* dwc2) {
dwc2->gusbcfg = gusbcfg;
// mcu specific phy init
dwc2_phy_init(dwc2, dwc2->ghwcfg2_bm.hs_phy_type);
dwc2_phy_init(dwc2, ghwcfg2.hs_phy_type);
// Reset core after selecting PHY
reset_core(dwc2);
@@ -136,11 +138,11 @@ static void phy_hs_init(dwc2_regs_t* dwc2) {
// - 9 if using 8-bit PHY interface
// - 5 if using 16-bit PHY interface
gusbcfg &= ~GUSBCFG_TRDT_Msk;
gusbcfg |= (dwc2->ghwcfg4_bm.phy_data_width ? 5u : 9u) << GUSBCFG_TRDT_Pos;
gusbcfg |= (ghwcfg4.phy_data_width ? 5u : 9u) << GUSBCFG_TRDT_Pos;
dwc2->gusbcfg = gusbcfg;
// MCU specific PHY update post reset
dwc2_phy_update(dwc2, dwc2->ghwcfg2_bm.hs_phy_type);
dwc2_phy_update(dwc2, ghwcfg2.hs_phy_type);
}
static bool check_dwc2(dwc2_regs_t* dwc2) {
@@ -171,7 +173,6 @@ static bool check_dwc2(dwc2_regs_t* dwc2) {
//--------------------------------------------------------------------
bool dwc2_core_is_highspeed(dwc2_regs_t* dwc2, tusb_role_t role) {
(void)dwc2;
#if CFG_TUD_ENABLED
if (role == TUSB_ROLE_DEVICE && !TUD_OPT_HIGH_SPEED) {
return false;
@@ -183,7 +184,8 @@ bool dwc2_core_is_highspeed(dwc2_regs_t* dwc2, tusb_role_t role) {
}
#endif
return dwc2->ghwcfg2_bm.hs_phy_type != GHWCFG2_HSPHY_NOT_SUPPORTED;
const dwc2_ghwcfg2_t ghwcfg2 = {.value = dwc2->ghwcfg2};
return ghwcfg2.hs_phy_type != GHWCFG2_HSPHY_NOT_SUPPORTED;
}
/* dwc2 has several PHYs option

File diff suppressed because it is too large Load Diff

View File

@@ -44,8 +44,6 @@
#endif
#define DWC2_CHANNEL_COUNT_MAX 16 // absolute max channel count
#define DWC2_CHANNEL_COUNT(_dwc2) tu_min8((_dwc2)->ghwcfg2_bm.num_host_ch + 1, DWC2_CHANNEL_COUNT_MAX)
TU_VERIFY_STATIC(CFG_TUH_DWC2_ENDPOINT_MAX <= 255, "currently only use 8-bit for index");
enum {
@@ -97,7 +95,6 @@ typedef struct {
uint8_t err_count : 3;
uint8_t period_split_nyet_count : 3;
uint8_t halted_nyet : 1;
uint8_t halted_sof_schedule : 1;
};
uint8_t result;
@@ -116,9 +113,15 @@ hcd_data_t _hcd_data;
//--------------------------------------------------------------------
//
//--------------------------------------------------------------------
TU_ATTR_ALWAYS_INLINE static inline uint8_t dwc2_channel_count(const dwc2_regs_t* dwc2) {
const dwc2_ghwcfg2_t ghwcfg2 = {.value = dwc2->ghwcfg2};
return tu_min8(ghwcfg2.num_host_ch + 1, DWC2_CHANNEL_COUNT_MAX);
}
TU_ATTR_ALWAYS_INLINE static inline tusb_speed_t hprt_speed_get(dwc2_regs_t* dwc2) {
tusb_speed_t speed;
switch(dwc2->hprt_bm.speed) {
const dwc2_hprt_t hprt = {.value = dwc2->hprt};
switch(hprt.speed) {
case HPRT_SPEED_HIGH: speed = TUSB_SPEED_HIGH; break;
case HPRT_SPEED_FULL: speed = TUSB_SPEED_FULL; break;
case HPRT_SPEED_LOW : speed = TUSB_SPEED_LOW ; break;
@@ -133,7 +136,8 @@ TU_ATTR_ALWAYS_INLINE static inline tusb_speed_t hprt_speed_get(dwc2_regs_t* dwc
TU_ATTR_ALWAYS_INLINE static inline bool dma_host_enabled(const dwc2_regs_t* dwc2) {
(void) dwc2;
// Internal DMA only
return CFG_TUH_DWC2_DMA_ENABLE && dwc2->ghwcfg2_bm.arch == GHWCFG2_ARCH_INTERNAL_DMA;
const dwc2_ghwcfg2_t ghwcfg2 = {.value = dwc2->ghwcfg2};
return CFG_TUH_DWC2_DMA_ENABLE && ghwcfg2.arch == GHWCFG2_ARCH_INTERNAL_DMA;
}
#if CFG_TUH_MEM_DCACHE_ENABLE
@@ -155,7 +159,7 @@ bool hcd_dcache_clean_invalidate(const void* addr, uint32_t data_size) {
// Allocate a channel for new transfer
TU_ATTR_ALWAYS_INLINE static inline uint8_t channel_alloc(dwc2_regs_t* dwc2) {
const uint8_t max_channel = DWC2_CHANNEL_COUNT(dwc2);
const uint8_t max_channel = dwc2_channel_count(dwc2);
for (uint8_t ch_id = 0; ch_id < max_channel; ch_id++) {
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
if (!xfer->allocated) {
@@ -168,15 +172,18 @@ TU_ATTR_ALWAYS_INLINE static inline uint8_t channel_alloc(dwc2_regs_t* dwc2) {
}
// Check if is periodic (interrupt/isochronous)
TU_ATTR_ALWAYS_INLINE static inline bool edpt_is_periodic(uint8_t ep_type) {
return ep_type == HCCHAR_EPTYPE_INTERRUPT || ep_type == HCCHAR_EPTYPE_ISOCHRONOUS;
TU_ATTR_ALWAYS_INLINE static inline bool channel_is_periodic(uint32_t hcchar) {
const dwc2_channel_char_t hcchar_bm = {.value = hcchar};
return hcchar_bm.ep_type == HCCHAR_EPTYPE_INTERRUPT || hcchar_bm.ep_type == HCCHAR_EPTYPE_ISOCHRONOUS;
}
TU_ATTR_ALWAYS_INLINE static inline uint8_t req_queue_avail(const dwc2_regs_t* dwc2, bool is_period) {
if (is_period) {
return dwc2->hptxsts_bm.req_queue_available;
const dwc2_hptxsts_t hptxsts = {.value = dwc2->hptxsts};
return hptxsts.req_queue_available;
} else {
return dwc2->hnptxsts_bm.req_queue_available;
const dwc2_hnptxsts_t hnptxsts = {.value = dwc2->hnptxsts};
return hnptxsts.req_queue_available;
}
}
@@ -188,7 +195,7 @@ TU_ATTR_ALWAYS_INLINE static inline void channel_dealloc(dwc2_regs_t* dwc2, uint
TU_ATTR_ALWAYS_INLINE static inline bool channel_disable(const dwc2_regs_t* dwc2, dwc2_channel_t* channel) {
// disable also require request queue
TU_ASSERT(req_queue_avail(dwc2, edpt_is_periodic(channel->hcchar_bm.ep_type)));
TU_ASSERT(req_queue_avail(dwc2, channel_is_periodic(channel->hcchar)));
channel->hcintmsk |= HCINT_HALTED;
channel->hcchar |= HCCHAR_CHDIS | HCCHAR_CHENA; // must set both CHDIS and CHENA
return true;
@@ -196,18 +203,18 @@ TU_ATTR_ALWAYS_INLINE static inline bool channel_disable(const dwc2_regs_t* dwc2
// attempt to send IN token to receive data
TU_ATTR_ALWAYS_INLINE static inline bool channel_send_in_token(const dwc2_regs_t* dwc2, dwc2_channel_t* channel) {
TU_ASSERT(req_queue_avail(dwc2, edpt_is_periodic(channel->hcchar_bm.ep_type)));
TU_ASSERT(req_queue_avail(dwc2, channel_is_periodic(channel->hcchar)));
channel->hcchar |= HCCHAR_CHENA;
return true;
}
// Find currently enabled channel. Note: EP0 is bidirectional
TU_ATTR_ALWAYS_INLINE static inline uint8_t channel_find_enabled(dwc2_regs_t* dwc2, uint8_t dev_addr, uint8_t ep_num, uint8_t ep_dir) {
const uint8_t max_channel = DWC2_CHANNEL_COUNT(dwc2);
const uint8_t max_channel = dwc2_channel_count(dwc2);
for (uint8_t ch_id = 0; ch_id < max_channel; ch_id++) {
if (_hcd_data.xfer[ch_id].allocated) {
const dwc2_channel_char_t hcchar_bm = dwc2->channel[ch_id].hcchar_bm;
if (hcchar_bm.dev_addr == dev_addr && hcchar_bm.ep_num == ep_num && (ep_num == 0 || hcchar_bm.ep_dir == ep_dir)) {
const dwc2_channel_char_t hcchar = {.value = dwc2->channel[ch_id].hcchar};
if (hcchar.dev_addr == dev_addr && hcchar.ep_num == ep_num && (ep_num == 0 || hcchar.ep_dir == ep_dir)) {
return ch_id;
}
}
@@ -304,12 +311,13 @@ TU_ATTR_ALWAYS_INLINE static inline uint8_t cal_next_pid(uint8_t pid, uint8_t pa
static void dfifo_host_init(uint8_t rhport) {
const dwc2_controller_t* dwc2_controller = &_dwc2_controller[rhport];
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
const dwc2_ghwcfg2_t ghwcfg2 = {.value = dwc2->ghwcfg2};
// Scatter/Gather DMA mode is not yet supported. Buffer DMA only need 1 words per channel
const bool is_dma = dma_host_enabled(dwc2);
uint16_t dfifo_top = dwc2_controller->ep_fifo_size/4;
if (is_dma) {
dfifo_top -= dwc2->ghwcfg2_bm.num_host_ch;
dfifo_top -= ghwcfg2.num_host_ch;
}
// fixed allocation for now, improve later:
@@ -319,7 +327,7 @@ static void dfifo_host_init(uint8_t rhport) {
uint32_t ptx_largest = is_highspeed ? TUSB_EPSIZE_ISO_HS_MAX/4 : 256/4;
uint16_t nptxfsiz = 2 * nptx_largest;
uint16_t rxfsiz = 2 * (ptx_largest + 2) + dwc2->ghwcfg2_bm.num_host_ch;
uint16_t rxfsiz = 2 * (ptx_largest + 2) + ghwcfg2.num_host_ch;
TU_ASSERT(dfifo_top >= (nptxfsiz + rxfsiz),);
uint16_t ptxfsiz = dfifo_top - (nptxfsiz + rxfsiz);
@@ -381,7 +389,7 @@ bool hcd_init(uint8_t rhport, const tusb_rhport_init_t* rh_init) {
dwc2->hprt = HPRT_POWER; // turn on VBUS
// Enable required interrupts
dwc2->gintmsk |= GINTSTS_OTGINT | GINTSTS_CONIDSTSCHNG | GINTSTS_HPRTINT | GINTSTS_HCINT;
dwc2->gintmsk |= GINTSTS_OTGINT | GINTSTS_CONIDSTSCHNG | GINTSTS_HPRTINT | GINTSTS_HCINT | GINTSTS_DISCINT;
// NPTX can hold at least 2 packet, change interrupt level to half-empty
uint32_t gahbcfg = dwc2->gahbcfg & ~GAHBCFG_TX_FIFO_EPMTY_LVL;
@@ -514,10 +522,11 @@ bool hcd_edpt_close(uint8_t rhport, uint8_t daddr, uint8_t ep_addr) {
// clean up channel after part of transfer is done but the whole urb is not complete
static void channel_xfer_out_wrapup(dwc2_regs_t* dwc2, uint8_t ch_id) {
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
dwc2_channel_t* channel = &dwc2->channel[ch_id];
const dwc2_channel_t* channel = &dwc2->channel[ch_id];
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
edpt->next_pid = channel->hctsiz_bm.pid; // save PID
const dwc2_channel_tsize_t hctsiz = {.value = channel->hctsiz};
edpt->next_pid = hctsiz.pid; // save PID
/* Since hctsiz.xfersize field reflects the number of bytes transferred via the AHB, not the USB)
* For IN: we can use hctsiz.xfersize as remaining bytes.
@@ -525,9 +534,10 @@ static void channel_xfer_out_wrapup(dwc2_regs_t* dwc2, uint8_t ch_id) {
* number of packets that have been transferred via the USB. This is always an integral number of packets if the
* transfer was halted before its normal completion.
*/
const uint16_t remain_packets = channel->hctsiz_bm.packet_count;
const uint16_t total_packets = cal_packet_count(edpt->buflen, channel->hcchar_bm.ep_size);
const uint16_t actual_bytes = (total_packets - remain_packets) * channel->hcchar_bm.ep_size;
const uint16_t remain_packets = hctsiz.packet_count;
const dwc2_channel_char_t hcchar = {.value = channel->hcchar};
const uint16_t total_packets = cal_packet_count(edpt->buflen, hcchar.ep_size);
const uint16_t actual_bytes = (total_packets - remain_packets) * hcchar.ep_size;
xfer->fifo_bytes = 0;
xfer->xferred_bytes += actual_bytes;
@@ -540,7 +550,7 @@ static bool channel_xfer_start(dwc2_regs_t* dwc2, uint8_t ch_id) {
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
dwc2_channel_char_t* hcchar_bm = &edpt->hcchar_bm;
dwc2_channel_t* channel = &dwc2->channel[ch_id];
bool const is_period = edpt_is_periodic(hcchar_bm->ep_type);
bool const is_period = channel_is_periodic(edpt->hcchar);
// clear previous state
xfer->fifo_bytes = 0;
@@ -553,12 +563,15 @@ static bool channel_xfer_start(dwc2_regs_t* dwc2, uint8_t ch_id) {
// hctsiz: zero length packet still count as 1
const uint16_t packet_count = cal_packet_count(edpt->buflen, hcchar_bm->ep_size);
uint32_t hctsiz = (edpt->next_pid << HCTSIZ_PID_Pos) | (packet_count << HCTSIZ_PKTCNT_Pos) | edpt->buflen;
dwc2_channel_tsize_t hctsiz = {.value = 0};
hctsiz.pid = edpt->next_pid; // next PID is set in transfer complete interrupt
hctsiz.packet_count = packet_count;
hctsiz.xfer_size = edpt->buflen;
if (edpt->do_ping && edpt->speed == TUSB_SPEED_HIGH &&
edpt->next_pid != HCTSIZ_PID_SETUP && hcchar_bm->ep_dir == TUSB_DIR_OUT) {
hctsiz |= HCTSIZ_DOPING;
hctsiz.do_ping = 1;
}
channel->hctsiz = hctsiz;
channel->hctsiz = hctsiz.value;
edpt->do_ping = 0;
// pre-calculate next PID based on packet count, adjusted in transfer complete interrupt if short packet
@@ -590,7 +603,7 @@ static bool channel_xfer_start(dwc2_regs_t* dwc2, uint8_t ch_id) {
hcintmsk |= HCINT_BABBLE_ERR | HCINT_DATATOGGLE_ERR | HCINT_ACK;
} else {
hcintmsk |= HCINT_NYET;
if (edpt->hcsplt_bm.split_en || hctsiz & HCTSIZ_DOPING) {
if (edpt->hcsplt_bm.split_en || hctsiz.do_ping) {
hcintmsk |= HCINT_ACK;
}
}
@@ -699,18 +712,23 @@ bool hcd_edpt_clear_stall(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
//--------------------------------------------------------------------
// HCD Event Handler
//--------------------------------------------------------------------
// retry an IN transfer, channel must be halted
static void channel_xfer_in_retry(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t hcint) {
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
dwc2_channel_t* channel = &dwc2->channel[ch_id];
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
dwc2_channel_t* channel = &dwc2->channel[ch_id];
dwc2_channel_char_t hcchar = {.value = channel->hcchar};
if (edpt_is_periodic(channel->hcchar_bm.ep_type)){
if (channel_is_periodic(hcchar.value)){
const dwc2_channel_split_t hcsplt = {.value = channel->hcsplt};
// retry immediately for periodic split NYET if we haven't reach max retry
if (channel->hcsplt_bm.split_en && channel->hcsplt_bm.split_compl && (hcint & HCINT_NYET || xfer->halted_nyet)) {
if (hcsplt.split_en && hcsplt.split_compl && (hcint & HCINT_NYET || xfer->halted_nyet)) {
xfer->period_split_nyet_count++;
xfer->halted_nyet = 0;
if (xfer->period_split_nyet_count < HCD_XFER_PERIOD_SPLIT_NYET_MAX) {
channel->hcchar_bm.odd_frame = 1 - (dwc2->hfnum & 1); // transfer on next frame
hcchar.odd_frame = 1 - (dwc2->hfnum & 1); // transfer on next frame
channel->hcchar = hcchar.value;
channel_send_in_token(dwc2, channel);
return;
} else {
@@ -719,18 +737,20 @@ static void channel_xfer_in_retry(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t hci
}
}
// for periodic, de-allocate channel, enable SOF set frame counter for later transfer
edpt->next_pid = channel->hctsiz_bm.pid; // save PID
edpt->uframe_countdown = edpt->uframe_interval;
dwc2->gintmsk |= GINTSTS_SOF;
if (hcint & HCINT_HALTED) {
const uint32_t ucount = (hprt_speed_get(dwc2) == TUSB_SPEED_HIGH ? 1 : 8);
if (edpt->uframe_interval == ucount) {
// retry on next frame if bInterval is 1
hcchar.odd_frame = 1 - (dwc2->hfnum & 1);
channel->hcchar = hcchar.value;
channel_send_in_token(dwc2, channel);
} else {
// otherwise, de-allocate channel, enable SOF set frame counter for later transfer
const dwc2_channel_tsize_t hctsiz = {.value = channel->hctsiz};
edpt->next_pid = hctsiz.pid; // save PID
edpt->uframe_countdown = edpt->uframe_interval - ucount;
dwc2->gintmsk |= GINTSTS_SOF;
// already halted, de-allocate channel (called from DMA isr)
channel_dealloc(dwc2, ch_id);
} else {
// disable channel first if not halted (called slave isr)
xfer->halted_sof_schedule = 1;
channel_disable(dwc2, channel);
}
} else {
// for control/bulk: retry immediately
@@ -761,13 +781,13 @@ static void handle_rxflvl_irq(uint8_t rhport) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
// Pop control word off FIFO
const dwc2_grxstsp_t grxstsp_bm = dwc2->grxstsp_bm;
const uint8_t ch_id = grxstsp_bm.ep_ch_num;
const dwc2_grxstsp_t grxstsp = {.value= dwc2->grxstsp};
const uint8_t ch_id = grxstsp.ep_ch_num;
switch (grxstsp_bm.packet_status) {
switch (grxstsp.packet_status) {
case GRXSTS_PKTSTS_RX_DATA: {
// In packet received, pop this entry --> ACK interrupt
const uint16_t byte_count = grxstsp_bm.byte_count;
const uint16_t byte_count = grxstsp.byte_count;
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
TU_ASSERT(xfer->ep_id < CFG_TUH_DWC2_ENDPOINT_MAX,);
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
@@ -801,25 +821,26 @@ static void handle_rxflvl_irq(uint8_t rhport) {
// return true if there is still pending data and need more ISR
static bool handle_txfifo_empty(dwc2_regs_t* dwc2, bool is_periodic) {
// Use period txsts for both p/np to get request queue space available (1-bit difference, it is small enough)
volatile dwc2_hptxsts_t* txsts_bm = (volatile dwc2_hptxsts_t*) (is_periodic ? &dwc2->hptxsts : &dwc2->hnptxsts);
const dwc2_hptxsts_t txsts = {.value = (is_periodic ? dwc2->hptxsts : dwc2->hnptxsts)};
const uint8_t max_channel = DWC2_CHANNEL_COUNT(dwc2);
const uint8_t max_channel = dwc2_channel_count(dwc2);
for (uint8_t ch_id = 0; ch_id < max_channel; ch_id++) {
dwc2_channel_t* channel = &dwc2->channel[ch_id];
const dwc2_channel_char_t hcchar = {.value = channel->hcchar};
// skip writing to FIFO if channel is expecting halted.
if (!(channel->hcintmsk & HCINT_HALTED) && (channel->hcchar_bm.ep_dir == TUSB_DIR_OUT)) {
if (!(channel->hcintmsk & HCINT_HALTED) && (hcchar.ep_dir == TUSB_DIR_OUT)) {
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
TU_ASSERT(xfer->ep_id < CFG_TUH_DWC2_ENDPOINT_MAX);
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
const uint16_t remain_packets = channel->hctsiz_bm.packet_count;
const dwc2_channel_tsize_t hctsiz = {.value = channel->hctsiz};
const uint16_t remain_packets = hctsiz.packet_count;
for (uint16_t i = 0; i < remain_packets; i++) {
const uint16_t remain_bytes = edpt->buflen - xfer->fifo_bytes;
const uint16_t xact_bytes = tu_min16(remain_bytes, channel->hcchar_bm.ep_size);
const uint16_t xact_bytes = tu_min16(remain_bytes, hcchar.ep_size);
// skip if there is not enough space in FIFO and RequestQueue.
// Packet's last word written to FIFO will trigger a request queue
if ((xact_bytes > (txsts_bm->fifo_available << 2)) || (txsts_bm->req_queue_available == 0)) {
if ((xact_bytes > (txsts.fifo_available << 2)) || (txsts.req_queue_available == 0)) {
return true;
}
@@ -836,23 +857,26 @@ static bool handle_channel_in_slave(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t h
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
dwc2_channel_t* channel = &dwc2->channel[ch_id];
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
dwc2_channel_split_t hcsplt = {.value = channel->hcsplt};
const dwc2_channel_tsize_t hctsiz = {.value = channel->hctsiz};
bool is_done = false;
// if (channel->hcsplt_bm.split_en) {
// if (hcsplt.split_en) {
// if (edpt->hcchar_bm.ep_num == 1) {
// TU_LOG1("Frame %u, ch %u: ep %u, hcint 0x%04lX ", dwc2->hfnum_bm.num, ch_id, channel->hcchar_bm.ep_num, hcint);
// TU_LOG1("Frame %u, ch %u: ep %u, hcint 0x%04lX ", dwc2->hfnum_bm.num, ch_id, hcsplt.ep_num, hcint);
// print_hcint(hcint);
// }
if (hcint & HCINT_XFER_COMPLETE) {
if (edpt->hcchar_bm.ep_num != 0) {
edpt->next_pid = channel->hctsiz_bm.pid; // save pid (already toggled)
edpt->next_pid = hctsiz.pid; // save pid (already toggled)
}
const uint16_t remain_packets = channel->hctsiz_bm.packet_count;
if (channel->hcsplt_bm.split_en && remain_packets && xfer->fifo_bytes == edpt->hcchar_bm.ep_size) {
const uint16_t remain_packets = hctsiz.packet_count;
if (hcsplt.split_en && remain_packets && xfer->fifo_bytes == edpt->hcchar_bm.ep_size) {
// Split can only complete 1 transaction (up to 1 packet) at a time, schedule more
channel->hcsplt_bm.split_compl = 0;
hcsplt.split_compl = 0;
channel->hcsplt = hcsplt.value;
} else {
xfer->result = XFER_RESULT_SUCCESS;
}
@@ -871,43 +895,44 @@ static bool handle_channel_in_slave(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t h
channel_disable(dwc2, channel);
} else if (hcint & HCINT_NYET) {
// restart complete split
channel->hcsplt_bm.split_compl = 1;
hcsplt.split_compl = 1;
channel->hcsplt = hcsplt.value;
xfer->halted_nyet = 1;
channel_disable(dwc2, channel);
} else if (hcint & HCINT_NAK) {
// NAK received, re-enable channel if request queue is available
if (channel->hcsplt_bm.split_en) {
channel->hcsplt_bm.split_compl = 0; // restart with start-split
// NAK received, disable channel to flush all posted request and try again
if (hcsplt.split_en) {
hcsplt.split_compl = 0; // restart with start-split
channel->hcsplt = hcsplt.value;
}
channel_disable(dwc2, channel);
} else if (hcint & HCINT_ACK) {
xfer->err_count = 0;
if (channel->hcsplt_bm.split_en) {
if (!channel->hcsplt_bm.split_compl) {
if (hcsplt.split_en) {
if (!hcsplt.split_compl) {
// start split is ACK --> do complete split
channel->hcintmsk |= HCINT_NYET;
channel->hcsplt_bm.split_compl = 1;
hcsplt.split_compl = 1;
channel->hcsplt = hcsplt.value;
channel_send_in_token(dwc2, channel);
} else {
// do nothing for complete split with DATA, this will trigger XferComplete and handled there
}
} else {
// ACK with data
const uint16_t remain_packets = channel->hctsiz_bm.packet_count;
const uint16_t remain_packets = hctsiz.packet_count;
if (remain_packets) {
// still more packet to receive, also reset to start split
channel->hcsplt_bm.split_compl = 0;
hcsplt.split_compl = 0;
channel->hcsplt = hcsplt.value;
channel_send_in_token(dwc2, channel);
}
}
} else if (hcint & HCINT_HALTED) {
channel->hcintmsk &= ~HCINT_HALTED;
if (xfer->halted_sof_schedule) {
// de-allocate channel but does not complete xfer, we schedule it in the SOF interrupt
channel_dealloc(dwc2, ch_id);
} else if (xfer->result != XFER_RESULT_INVALID) {
if (xfer->result != XFER_RESULT_INVALID) {
is_done = true;
} else if (xfer->err_count == HCD_XFER_ERROR_MAX) {
xfer->result = XFER_RESULT_FAILED;
@@ -927,6 +952,7 @@ static bool handle_channel_out_slave(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
dwc2_channel_t* channel = &dwc2->channel[ch_id];
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
dwc2_channel_split_t hcsplt = {.value = channel->hcsplt};
bool is_done = false;
if (hcint & HCINT_XFER_COMPLETE) {
@@ -938,9 +964,10 @@ static bool handle_channel_out_slave(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t
channel_disable(dwc2, channel);
} else if (hcint & HCINT_NYET) {
xfer->err_count = 0;
if (channel->hcsplt_bm.split_en) {
if (hcsplt.split_en) {
// retry complete split
channel->hcsplt_bm.split_compl = 1;
hcsplt.split_compl = 1;
channel->hcsplt = hcsplt.value;
channel->hcchar |= HCCHAR_CHENA;
} else {
edpt->do_ping = 1;
@@ -973,10 +1000,11 @@ static bool handle_channel_out_slave(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t
} else if (hcint & HCINT_ACK) {
xfer->err_count = 0;
channel->hcintmsk &= ~HCINT_ACK;
if (channel->hcsplt_bm.split_en) {
if(!channel->hcsplt_bm.split_compl) {
if (hcsplt.split_en) {
if (!hcsplt.split_compl) {
// start split is ACK --> do complete split
channel->hcsplt_bm.split_compl = 1;
hcsplt.split_compl = 1;
channel->hcsplt = hcsplt.value;
channel->hcchar |= HCCHAR_CHENA;
}
} else {
@@ -1001,6 +1029,9 @@ static bool handle_channel_in_dma(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t hci
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
dwc2_channel_t* channel = &dwc2->channel[ch_id];
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
dwc2_channel_char_t hcchar = {.value = channel->hcchar};
dwc2_channel_split_t hcsplt = {.value = channel->hcsplt};
const dwc2_channel_tsize_t hctsiz = {.value = channel->hctsiz};
bool is_done = false;
@@ -1008,8 +1039,8 @@ static bool handle_channel_in_dma(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t hci
if (hcint & HCINT_HALTED) {
if (hcint & (HCINT_XFER_COMPLETE | HCINT_STALL | HCINT_BABBLE_ERR)) {
const uint16_t remain_bytes = (uint16_t) channel->hctsiz_bm.xfer_size;
const uint16_t remain_packets = channel->hctsiz_bm.packet_count;
const uint16_t remain_bytes = (uint16_t) hctsiz.xfer_size;
const uint16_t remain_packets = hctsiz.packet_count;
const uint16_t actual_len = edpt->buflen - remain_bytes;
xfer->xferred_bytes += actual_len;
@@ -1019,13 +1050,14 @@ static bool handle_channel_in_dma(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t hci
xfer->result = XFER_RESULT_STALLED;
} else if (hcint & HCINT_BABBLE_ERR) {
xfer->result = XFER_RESULT_FAILED;
} else if (channel->hcsplt_bm.split_en && remain_packets && actual_len == edpt->hcchar_bm.ep_size) {
} else if (hcsplt.split_en && remain_packets && actual_len == hcchar.ep_size) {
// Split can only complete 1 transaction (up to 1 packet) at a time, schedule more
is_done = false;
edpt->buffer += actual_len;
edpt->buflen -= actual_len;
channel->hcsplt_bm.split_compl = 0;
hcsplt.split_compl = 0;
channel->hcsplt = hcsplt.value;
channel_xfer_in_retry(dwc2, ch_id, hcint);
} else {
xfer->result = XFER_RESULT_SUCCESS;
@@ -1040,33 +1072,38 @@ static bool handle_channel_in_dma(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t hci
xfer->result = XFER_RESULT_FAILED;
} else {
channel->hcintmsk |= HCINT_ACK | HCINT_NAK | HCINT_DATATOGGLE_ERR;
channel->hcsplt_bm.split_compl = 0;
hcsplt.split_compl = 0;
channel->hcsplt = hcsplt.value;
channel_xfer_in_retry(dwc2, ch_id, hcint);
}
} else if (hcint & HCINT_NYET) {
// Must handle nyet before nak or ack. Could get a nyet at the same time as either of those on a BULK/CONTROL
// OUT that started with a PING. The nyet takes precedence.
if (channel->hcsplt_bm.split_en) {
if (hcsplt.split_en) {
// split not yet mean hub has no data, retry complete split
channel->hcsplt_bm.split_compl = 1;
hcsplt.split_compl = 1;
channel->hcsplt = hcsplt.value;
channel_xfer_in_retry(dwc2, ch_id, hcint);
}
} else if (hcint & HCINT_ACK) {
xfer->err_count = 0;
channel->hcintmsk &= ~HCINT_ACK;
if (channel->hcsplt_bm.split_en) {
if (hcsplt.split_en) {
// start split is ACK --> do complete split
// TODO: for ISO must use xact_pos to plan complete split based on microframe (up to 187.5 bytes/uframe)
channel->hcsplt_bm.split_compl = 1;
if (edpt_is_periodic(channel->hcchar_bm.ep_type)) {
channel->hcchar_bm.odd_frame = 1 - (dwc2->hfnum & 1); // transfer on next frame
hcsplt.split_compl = 1;
channel->hcsplt = hcsplt.value;
if (channel_is_periodic(channel->hcchar)) {
hcchar.odd_frame = 1 - (dwc2->hfnum & 1); // transfer on next frame
channel->hcchar = hcchar.value;
}
channel_send_in_token(dwc2, channel);
}
} else if (hcint & (HCINT_NAK | HCINT_DATATOGGLE_ERR)) {
xfer->err_count = 0;
channel->hcintmsk &= ~(HCINT_NAK | HCINT_DATATOGGLE_ERR);
channel->hcsplt_bm.split_compl = 0; // restart with start-split
hcsplt.split_compl = 0; // restart with start-split
channel->hcsplt = hcsplt.value;
channel_xfer_in_retry(dwc2, ch_id, hcint);
} else if (hcint & HCINT_FARME_OVERRUN) {
// retry start-split in next binterval
@@ -1081,6 +1118,8 @@ static bool handle_channel_out_dma(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t hc
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
dwc2_channel_t* channel = &dwc2->channel[ch_id];
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
const dwc2_channel_char_t hcchar = {.value = channel->hcchar};
dwc2_channel_split_t hcsplt = {.value = channel->hcsplt};
bool is_done = false;
@@ -1116,16 +1155,18 @@ static bool handle_channel_out_dma(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t hc
}
}
} else if (hcint & HCINT_NYET) {
if (channel->hcsplt_bm.split_en && channel->hcsplt_bm.split_compl) {
if (hcsplt.split_en && hcsplt.split_compl) {
// split not yet mean hub has no data, retry complete split
channel->hcsplt_bm.split_compl = 1;
hcsplt.split_compl = 1;
channel->hcsplt = hcsplt.value;
channel->hcchar |= HCCHAR_CHENA;
}
} else if (hcint & HCINT_ACK) {
xfer->err_count = 0;
if (channel->hcsplt_bm.split_en && !channel->hcsplt_bm.split_compl) {
if (hcsplt.split_en && !hcsplt.split_compl) {
// start split is ACK --> do complete split
channel->hcsplt_bm.split_compl = 1;
hcsplt.split_compl = 1;
channel->hcsplt = hcsplt.value;
channel->hcchar |= HCCHAR_CHENA;
}
}
@@ -1141,14 +1182,14 @@ static bool handle_channel_out_dma(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t hc
static void handle_channel_irq(uint8_t rhport, bool in_isr) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
const bool is_dma = dma_host_enabled(dwc2);
const uint8_t max_channel = DWC2_CHANNEL_COUNT(dwc2);
const uint8_t max_channel = dwc2_channel_count(dwc2);
for (uint8_t ch_id = 0; ch_id < max_channel; ch_id++) {
if (tu_bit_test(dwc2->haint, ch_id)) {
dwc2_channel_t* channel = &dwc2->channel[ch_id];
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
TU_ASSERT(xfer->ep_id < CFG_TUH_DWC2_ENDPOINT_MAX,);
dwc2_channel_char_t hcchar_bm = channel->hcchar_bm;
dwc2_channel_char_t hcchar = {.value = channel->hcchar};
const uint32_t hcint = channel->hcint;
channel->hcint = hcint; // clear interrupt
@@ -1156,7 +1197,7 @@ static void handle_channel_irq(uint8_t rhport, bool in_isr) {
bool is_done = false;
if (is_dma) {
#if CFG_TUH_DWC2_DMA_ENABLE
if (hcchar_bm.ep_dir == TUSB_DIR_OUT) {
if (hcchar.ep_dir == TUSB_DIR_OUT) {
is_done = handle_channel_out_dma(dwc2, ch_id, hcint);
} else {
is_done = handle_channel_in_dma(dwc2, ch_id, hcint);
@@ -1168,7 +1209,7 @@ static void handle_channel_irq(uint8_t rhport, bool in_isr) {
#endif
} else {
#if CFG_TUH_DWC2_SLAVE_ENABLE
if (hcchar_bm.ep_dir == TUSB_DIR_OUT) {
if (hcchar.ep_dir == TUSB_DIR_OUT) {
is_done = handle_channel_out_slave(dwc2, ch_id, hcint);
} else {
is_done = handle_channel_in_slave(dwc2, ch_id, hcint);
@@ -1177,8 +1218,8 @@ static void handle_channel_irq(uint8_t rhport, bool in_isr) {
}
if (is_done) {
const uint8_t ep_addr = tu_edpt_addr(hcchar_bm.ep_num, hcchar_bm.ep_dir);
hcd_event_xfer_complete(hcchar_bm.dev_addr, ep_addr, xfer->xferred_bytes, xfer->result, in_isr);
const uint8_t ep_addr = tu_edpt_addr(hcchar.ep_num, hcchar.ep_dir);
hcd_event_xfer_complete(hcchar.dev_addr, ep_addr, xfer->xferred_bytes, (xfer_result_t)xfer->result, in_isr);
channel_dealloc(dwc2, ch_id);
}
}
@@ -1198,7 +1239,7 @@ static bool handle_sof_irq(uint8_t rhport, bool in_isr) {
for(uint8_t ep_id = 0; ep_id < CFG_TUH_DWC2_ENDPOINT_MAX; ep_id++) {
hcd_endpoint_t* edpt = &_hcd_data.edpt[ep_id];
if (edpt->hcchar_bm.enable && edpt_is_periodic(edpt->hcchar_bm.ep_type) && edpt->uframe_countdown > 0) {
if (edpt->hcchar_bm.enable && channel_is_periodic(edpt->hcchar) && edpt->uframe_countdown > 0) {
edpt->uframe_countdown -= tu_min32(ucount, edpt->uframe_countdown);
if (edpt->uframe_countdown == 0) {
if (!edpt_xfer_kickoff(dwc2, ep_id)) {
@@ -1217,10 +1258,10 @@ static bool handle_sof_irq(uint8_t rhport, bool in_isr) {
static void port0_enable(dwc2_regs_t* dwc2, tusb_speed_t speed) {
uint32_t hcfg = dwc2->hcfg & ~HCFG_FSLS_PHYCLK_SEL;
const dwc2_gusbcfg_t gusbcfg_bm = dwc2->gusbcfg_bm;
const dwc2_gusbcfg_t gusbcfg = {.value = dwc2->gusbcfg};
uint32_t phy_clock;
if (gusbcfg_bm.phy_sel) {
if (gusbcfg.phy_sel) {
phy_clock = 48; // dedicated FS is 48Mhz
if (speed == TUSB_SPEED_LOW) {
hcfg |= HCFG_FSLS_PHYCLK_SEL_6MHZ;
@@ -1228,11 +1269,11 @@ static void port0_enable(dwc2_regs_t* dwc2, tusb_speed_t speed) {
hcfg |= HCFG_FSLS_PHYCLK_SEL_48MHZ;
}
} else {
if (gusbcfg_bm.ulpi_utmi_sel) {
if (gusbcfg.ulpi_utmi_sel) {
phy_clock = 60; // ULPI 8-bit is 60Mhz
} else {
// UTMI+ 16-bit is 30Mhz, 8-bit is 60Mhz
phy_clock = gusbcfg_bm.phy_if16 ? 30 : 60;
phy_clock = gusbcfg.phy_if16 ? 30 : 60;
// Enable UTMI+ low power mode 48Mhz external clock if not highspeed
if (speed == TUSB_SPEED_HIGH) {
@@ -1249,9 +1290,9 @@ static void port0_enable(dwc2_regs_t* dwc2, tusb_speed_t speed) {
uint32_t hfir = dwc2->hfir & ~HFIR_FRIVL_Msk;
if (speed == TUSB_SPEED_HIGH) {
hfir |= 125*phy_clock;
hfir |= 125*phy_clock - 1; // The "- 1" is the correct value. The Synopsys databook was corrected in 3.30a
} else {
hfir |= 1000*phy_clock;
hfir |= 1000*phy_clock - 1;
}
dwc2->hfir = hfir;
@@ -1264,21 +1305,19 @@ static void port0_enable(dwc2_regs_t* dwc2, tusb_speed_t speed) {
*/
static void handle_hprt_irq(uint8_t rhport, bool in_isr) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint32_t hprt = dwc2->hprt & ~HPRT_W1_MASK;
const dwc2_hprt_t hprt_bm = dwc2->hprt_bm;
const dwc2_hprt_t hprt_bm = {.value = dwc2->hprt};
uint32_t hprt = hprt_bm.value & ~HPRT_W1_MASK;
if (dwc2->hprt & HPRT_CONN_DETECT) {
if (hprt_bm.conn_detected) {
// Port Connect Detect
hprt |= HPRT_CONN_DETECT;
if (hprt_bm.conn_status) {
hcd_event_device_attach(rhport, in_isr);
} else {
hcd_event_device_remove(rhport, in_isr);
}
}
if (dwc2->hprt & HPRT_ENABLE_CHANGE) {
if (hprt_bm.enable_change) {
// Port enable change
hprt |= HPRT_ENABLE_CHANGE;
@@ -1337,6 +1376,14 @@ void hcd_int_handler(uint8_t rhport, bool in_isr) {
handle_channel_irq(rhport, in_isr);
}
if (gintsts & GINTSTS_DISCINT) {
// Device disconnected
dwc2->gintsts = GINTSTS_DISCINT;
if (!(dwc2->hprt & HPRT_CONN_STATUS)) {
hcd_event_device_remove(rhport, in_isr);
}
}
#if CFG_TUH_DWC2_SLAVE_ENABLE
// RxFIFO non-empty interrupt handling
if (gintsts & GINTSTS_RXFLVL) {

View File

@@ -106,6 +106,11 @@ void hcd_device_close(uint8_t rhport, uint8_t dev_addr) {
// Open an endpoint
bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc) {
(void) rhport; (void) dev_addr; (void) ep_desc;
// NOTE: ep_desc is allocated on the stack when called from usbh_edpt_control_open()
// You need to copy the data into a local variable who maintains the state of the endpoint and transfer.
// Check _hcd_data in hcd_dwc2.c for example.
return false;
}

View File

@@ -35,7 +35,7 @@
#define TUSB_VERSION_REVISION 0
#define TUSB_VERSION_NUMBER (TUSB_VERSION_MAJOR * 10000 + TUSB_VERSION_MINOR * 100 + TUSB_VERSION_REVISION)
#define TUSB_VERSION_STRING TU_STRING(TUSB_VERSION_MAJOR) "." TU_STRING(TUSB_VERSION_MINOR) "." TU_STRING(TUSB_VERSION_REVISION)
#define TUSB_VERSION_STRING TU_XSTRING(TUSB_VERSION_MAJOR) "." TU_XSTRING(TUSB_VERSION_MINOR) "." TU_XSTRING(TUSB_VERSION_REVISION)
//--------------------------------------------------------------------+
// Supported MCUs