Merge remote-tracking branch 'upstream/master' into async_io

Signed-off-by: HiFiPhile <admin@hifiphile.com>
This commit is contained in:
HiFiPhile
2025-04-11 23:07:22 +02:00
196 changed files with 9070 additions and 3322 deletions

View File

@@ -163,8 +163,12 @@ void hcd_device_close(uint8_t rhport, uint8_t dev_addr);
//--------------------------------------------------------------------+
// Open an endpoint
// return true if successfully opened or endpoint is currently opened
bool hcd_edpt_open(uint8_t rhport, uint8_t daddr, tusb_desc_endpoint_t const * ep_desc);
// Close an endpoint
bool hcd_edpt_close(uint8_t rhport, uint8_t daddr, uint8_t ep_addr);
// Submit a transfer, when complete hcd_event_xfer_complete() must be invoked
bool hcd_edpt_xfer(uint8_t rhport, uint8_t daddr, uint8_t ep_addr, uint8_t * buffer, uint16_t buflen);

View File

@@ -40,29 +40,36 @@
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
typedef struct
{
typedef struct {
uint8_t itf_num;
uint8_t ep_in;
uint8_t port_count;
CFG_TUH_MEM_ALIGN uint8_t status_change;
CFG_TUH_MEM_ALIGN hub_port_status_response_t port_status;
CFG_TUH_MEM_ALIGN hub_status_response_t hub_status;
// from hub descriptor
uint8_t bNbrPorts;
uint8_t bPwrOn2PwrGood_2ms; // port power on to good, in 2ms unit
// uint16_t wHubCharacteristics;
hub_port_status_response_t port_status;
} hub_interface_t;
CFG_TUH_MEM_SECTION static hub_interface_t hub_data[CFG_TUH_HUB];
CFG_TUH_MEM_SECTION CFG_TUH_MEM_ALIGN static uint8_t _hub_buffer[sizeof(descriptor_hub_desc_t)];
typedef struct {
TUH_EPBUF_DEF(status_change, 4); // interrupt endpoint
TUH_EPBUF_DEF(ctrl_buf, CFG_TUH_HUB_BUFSIZE);
} hub_epbuf_t;
TU_ATTR_ALWAYS_INLINE
static inline hub_interface_t* get_itf(uint8_t dev_addr)
{
return &hub_data[dev_addr-1-CFG_TUH_DEVICE_MAX];
static hub_interface_t hub_itfs[CFG_TUH_HUB];
CFG_TUH_MEM_SECTION static hub_epbuf_t hub_epbufs[CFG_TUH_HUB];
TU_ATTR_ALWAYS_INLINE static inline hub_interface_t* get_hub_itf(uint8_t daddr) {
return &hub_itfs[daddr-1-CFG_TUH_DEVICE_MAX];
}
#if CFG_TUSB_DEBUG >= 2
static char const* const _hub_feature_str[] =
{
TU_ATTR_ALWAYS_INLINE static inline hub_epbuf_t* get_hub_epbuf(uint8_t daddr) {
return &hub_epbufs[daddr-1-CFG_TUH_DEVICE_MAX];
}
#if CFG_TUSB_DEBUG >= HUB_DEBUG
static char const* const _hub_feature_str[] = {
[HUB_FEATURE_PORT_CONNECTION ] = "PORT_CONNECTION",
[HUB_FEATURE_PORT_ENABLE ] = "PORT_ENABLE",
[HUB_FEATURE_PORT_SUSPEND ] = "PORT_SUSPEND",
@@ -84,12 +91,9 @@ static char const* const _hub_feature_str[] =
// HUB
//--------------------------------------------------------------------+
bool hub_port_clear_feature(uint8_t hub_addr, uint8_t hub_port, uint8_t feature,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = (hub_port == 0) ? TUSB_REQ_RCPT_DEVICE : TUSB_REQ_RCPT_OTHER,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_OUT
@@ -100,8 +104,7 @@ bool hub_port_clear_feature(uint8_t hub_addr, uint8_t hub_port, uint8_t feature,
.wLength = 0
};
tuh_xfer_t xfer =
{
tuh_xfer_t xfer = {
.daddr = hub_addr,
.ep_addr = 0,
.setup = &request,
@@ -110,18 +113,15 @@ bool hub_port_clear_feature(uint8_t hub_addr, uint8_t hub_port, uint8_t feature,
.user_data = user_data
};
TU_LOG2("HUB Clear Feature: %s, addr = %u port = %u\r\n", _hub_feature_str[feature], hub_addr, hub_port);
TU_ASSERT( tuh_control_xfer(&xfer) );
TU_LOG_DRV("HUB Clear Feature: %s, addr = %u port = %u\r\n", _hub_feature_str[feature], hub_addr, hub_port);
TU_ASSERT(tuh_control_xfer(&xfer));
return true;
}
bool hub_port_set_feature(uint8_t hub_addr, uint8_t hub_port, uint8_t feature,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = (hub_port == 0) ? TUSB_REQ_RCPT_DEVICE : TUSB_REQ_RCPT_OTHER,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_OUT
@@ -132,8 +132,7 @@ bool hub_port_set_feature(uint8_t hub_addr, uint8_t hub_port, uint8_t feature,
.wLength = 0
};
tuh_xfer_t xfer =
{
tuh_xfer_t xfer = {
.daddr = hub_addr,
.ep_addr = 0,
.setup = &request,
@@ -142,18 +141,15 @@ bool hub_port_set_feature(uint8_t hub_addr, uint8_t hub_port, uint8_t feature,
.user_data = user_data
};
TU_LOG2("HUB Set Feature: %s, addr = %u port = %u\r\n", _hub_feature_str[feature], hub_addr, hub_port);
TU_LOG_DRV("HUB Set Feature: %s, addr = %u port = %u\r\n", _hub_feature_str[feature], hub_addr, hub_port);
TU_ASSERT( tuh_control_xfer(&xfer) );
return true;
}
bool hub_port_get_status(uint8_t hub_addr, uint8_t hub_port, void* resp,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = (hub_port == 0) ? TUSB_REQ_RCPT_DEVICE : TUSB_REQ_RCPT_OTHER,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_IN
@@ -161,11 +157,10 @@ bool hub_port_get_status(uint8_t hub_addr, uint8_t hub_port, void* resp,
.bRequest = HUB_REQUEST_GET_STATUS,
.wValue = 0,
.wIndex = hub_port,
.wLength = 4
.wLength = tu_htole16(4)
};
tuh_xfer_t xfer =
{
tuh_xfer_t xfer = {
.daddr = hub_addr,
.ep_addr = 0,
.setup = &request,
@@ -174,7 +169,7 @@ bool hub_port_get_status(uint8_t hub_addr, uint8_t hub_port, void* resp,
.user_data = user_data
};
TU_LOG2("HUB Get Port Status: addr = %u port = %u\r\n", hub_addr, hub_port);
TU_LOG_DRV("HUB Get Port Status: addr = %u port = %u\r\n", hub_addr, hub_port);
TU_VERIFY( tuh_control_xfer(&xfer) );
return true;
}
@@ -183,7 +178,7 @@ bool hub_port_get_status(uint8_t hub_addr, uint8_t hub_port, void* resp,
// CLASS-USBH API (don't require to verify parameters)
//--------------------------------------------------------------------+
bool hub_init(void) {
tu_memclr(hub_data, sizeof(hub_data));
tu_memclr(hub_itfs, sizeof(hub_itfs));
return true;
}
@@ -191,40 +186,32 @@ bool hub_deinit(void) {
return true;
}
bool hub_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_interface_t const *itf_desc, uint16_t max_len)
{
bool hub_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_interface_t const *itf_desc, uint16_t max_len) {
(void) rhport;
TU_VERIFY(TUSB_CLASS_HUB == itf_desc->bInterfaceClass &&
0 == itf_desc->bInterfaceSubClass);
TU_VERIFY(itf_desc->bInterfaceProtocol <= 1); // not support multiple TT yet
// hub driver does not support multiple TT yet
TU_VERIFY(itf_desc->bInterfaceProtocol <= 1);
// msc driver length is fixed
uint16_t const drv_len = sizeof(tusb_desc_interface_t) + sizeof(tusb_desc_endpoint_t);
TU_ASSERT(drv_len <= max_len);
//------------- Interrupt Status endpoint -------------//
// Interrupt Status endpoint
tusb_desc_endpoint_t const *desc_ep = (tusb_desc_endpoint_t const *) tu_desc_next(itf_desc);
TU_ASSERT(TUSB_DESC_ENDPOINT == desc_ep->bDescriptorType &&
TUSB_XFER_INTERRUPT == desc_ep->bmAttributes.xfer, 0);
TU_ASSERT(tuh_edpt_open(dev_addr, desc_ep));
hub_interface_t* p_hub = get_itf(dev_addr);
hub_interface_t* p_hub = get_hub_itf(dev_addr);
p_hub->itf_num = itf_desc->bInterfaceNumber;
p_hub->ep_in = desc_ep->bEndpointAddress;
return true;
}
void hub_close(uint8_t dev_addr)
{
void hub_close(uint8_t dev_addr) {
TU_VERIFY(dev_addr > CFG_TUH_DEVICE_MAX, );
hub_interface_t* p_hub = get_itf(dev_addr);
hub_interface_t* p_hub = get_hub_itf(dev_addr);
if (p_hub->ep_in) {
TU_LOG_DRV(" HUB close addr = %d\r\n", dev_addr);
@@ -232,30 +219,33 @@ void hub_close(uint8_t dev_addr)
}
}
bool hub_edpt_status_xfer(uint8_t dev_addr)
{
hub_interface_t* hub_itf = get_itf(dev_addr);
return usbh_edpt_xfer(dev_addr, hub_itf->ep_in, &hub_itf->status_change, 1);
}
bool hub_edpt_status_xfer(uint8_t daddr) {
hub_interface_t* p_hub = get_hub_itf(daddr);
hub_epbuf_t* p_epbuf = get_hub_epbuf(daddr);
TU_VERIFY(usbh_edpt_claim(daddr, p_hub->ep_in));
if (!usbh_edpt_xfer(daddr, p_hub->ep_in, p_epbuf->status_change, 1)) {
usbh_edpt_release(daddr, p_hub->ep_in);
return false;
}
return true;
}
//--------------------------------------------------------------------+
// Set Configure
//--------------------------------------------------------------------+
static void config_set_port_power (tuh_xfer_t* xfer);
static void config_port_power_complete (tuh_xfer_t* xfer);
bool hub_set_config(uint8_t dev_addr, uint8_t itf_num)
{
hub_interface_t* p_hub = get_itf(dev_addr);
bool hub_set_config(uint8_t dev_addr, uint8_t itf_num) {
hub_interface_t* p_hub = get_hub_itf(dev_addr);
TU_ASSERT(itf_num == p_hub->itf_num);
hub_epbuf_t* p_epbuf = get_hub_epbuf(dev_addr);
// Get Hub Descriptor
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_IN
@@ -263,34 +253,33 @@ bool hub_set_config(uint8_t dev_addr, uint8_t itf_num)
.bRequest = HUB_REQUEST_GET_DESCRIPTOR,
.wValue = 0,
.wIndex = 0,
.wLength = sizeof(descriptor_hub_desc_t)
.wLength = sizeof(hub_desc_cs_t)
};
tuh_xfer_t xfer =
{
tuh_xfer_t xfer = {
.daddr = dev_addr,
.ep_addr = 0,
.setup = &request,
.buffer = _hub_buffer,
.buffer = p_epbuf->ctrl_buf,
.complete_cb = config_set_port_power,
.user_data = 0
};
TU_ASSERT( tuh_control_xfer(&xfer) );
TU_ASSERT(tuh_control_xfer(&xfer));
return true;
}
static void config_set_port_power (tuh_xfer_t* xfer)
{
static void config_set_port_power (tuh_xfer_t* xfer) {
TU_ASSERT(XFER_RESULT_SUCCESS == xfer->result, );
uint8_t const daddr = xfer->daddr;
hub_interface_t* p_hub = get_itf(daddr);
hub_interface_t* p_hub = get_hub_itf(daddr);
hub_epbuf_t* p_epbuf = get_hub_epbuf(daddr);
// only use number of ports in hub descriptor
descriptor_hub_desc_t const* desc_hub = (descriptor_hub_desc_t const*) _hub_buffer;
p_hub->port_count = desc_hub->bNbrPorts;
hub_desc_cs_t const* desc_hub = (hub_desc_cs_t const*) p_epbuf->ctrl_buf;
p_hub->bNbrPorts = desc_hub->bNbrPorts;
p_hub->bPwrOn2PwrGood_2ms = desc_hub->bPwrOn2PwrGood;
// May need to GET_STATUS
@@ -299,22 +288,21 @@ static void config_set_port_power (tuh_xfer_t* xfer)
hub_port_set_feature(daddr, hub_port, HUB_FEATURE_PORT_POWER, config_port_power_complete, 0);
}
static void config_port_power_complete (tuh_xfer_t* xfer)
{
static void config_port_power_complete (tuh_xfer_t* xfer) {
TU_ASSERT(XFER_RESULT_SUCCESS == xfer->result, );
uint8_t const daddr = xfer->daddr;
hub_interface_t* p_hub = get_itf(daddr);
hub_interface_t* p_hub = get_hub_itf(daddr);
if (xfer->setup->wIndex == p_hub->port_count)
{
if (xfer->setup->wIndex == p_hub->bNbrPorts) {
// All ports are power -> queue notification status endpoint and
// complete the SET CONFIGURATION
TU_ASSERT( usbh_edpt_xfer(daddr, p_hub->ep_in, &p_hub->status_change, 1), );
if (!hub_edpt_status_xfer(daddr)) {
TU_MESS_FAILED();
TU_BREAKPOINT();
}
usbh_driver_set_config_complete(daddr, p_hub->itf_num);
}else
{
} else {
// power next port
uint8_t const hub_port = (uint8_t) (xfer->setup->wIndex + 1);
hub_port_set_feature(daddr, hub_port, HUB_FEATURE_PORT_POWER, config_port_power_complete, 0);
@@ -324,180 +312,162 @@ static void config_port_power_complete (tuh_xfer_t* xfer)
//--------------------------------------------------------------------+
// Connection Changes
//--------------------------------------------------------------------+
static void hub_port_get_status_complete (tuh_xfer_t* xfer);
static void hub_get_status_complete (tuh_xfer_t* xfer);
static void get_status_complete (tuh_xfer_t* xfer);
static void port_get_status_complete (tuh_xfer_t* xfer);
static void port_clear_feature_complete_stub(tuh_xfer_t* xfer);
static void connection_clear_conn_change_complete (tuh_xfer_t* xfer);
static void connection_port_reset_complete (tuh_xfer_t* xfer);
// callback as response of interrupt endpoint polling
bool hub_xfer_cb(uint8_t dev_addr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) {
(void) xferred_bytes; // TODO can be more than 1 for hub with lots of ports
bool hub_xfer_cb(uint8_t daddr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) {
(void) xferred_bytes;
(void) ep_addr;
TU_VERIFY(result == XFER_RESULT_SUCCESS);
hub_interface_t* p_hub = get_itf(dev_addr);
bool processed = false; // true if new status is processed
uint8_t const status_change = p_hub->status_change;
TU_LOG2(" Hub Status Change = 0x%02X\r\n", status_change);
if (result == XFER_RESULT_SUCCESS) {
hub_interface_t* p_hub = get_hub_itf(daddr);
hub_epbuf_t *p_epbuf = get_hub_epbuf(daddr);
const uint8_t status_change = p_epbuf->status_change[0];
TU_LOG_DRV(" Hub Status Change = 0x%02X\r\n", status_change);
if ( status_change == 0 ) {
// The status change event was neither for the hub, nor for any of its ports.
// This shouldn't happen, but it does with some devices.
// Initiate the next interrupt poll here.
return hub_edpt_status_xfer(dev_addr);
}
if (tu_bit_test(status_change, 0)) {
// Hub bit 0 is for the hub device events
if (hub_port_get_status(dev_addr, 0, &p_hub->hub_status, hub_get_status_complete, 0) == false) {
//Hub status control transfer failed, retry
hub_edpt_status_xfer(dev_addr);
}
}
else {
// Hub bits 1 to n are hub port events
for (uint8_t port=1; port <= p_hub->port_count; port++) {
if ( tu_bit_test(status_change, port) ) {
if (hub_port_get_status(dev_addr, port, &p_hub->port_status, hub_port_get_status_complete, 0) == false) {
//Hub status control transfer failed, retry
hub_edpt_status_xfer(dev_addr);
if (status_change == 0) {
// The status change event was neither for the hub, nor for any of its ports.
// This shouldn't happen, but it does with some devices. Re-Initiate the interrupt poll.
processed = false;
} else if (tu_bit_test(status_change, 0)) {
// Hub bit 0 is for the hub device events
processed = hub_get_status(daddr, p_epbuf->ctrl_buf, get_status_complete, 0);
} else {
// Hub bits 1 to n are hub port events
for (uint8_t port=1; port <= p_hub->bNbrPorts; port++) {
if (tu_bit_test(status_change, port)) {
processed = hub_port_get_status(daddr, port, p_epbuf->ctrl_buf, port_get_status_complete, 0);
break; // after completely processed one port, we will re-queue the status poll and handle next one
}
break;
}
}
}
// NOTE: next status transfer is queued by usbh.c after handling this request
// If new status event is processed: next status pool is queued by usbh.c after handled this request
// Otherwise re-queue the status poll here
if (!processed) {
TU_ASSERT(hub_edpt_status_xfer(daddr));
}
return true;
}
static void hub_clear_feature_complete_stub(tuh_xfer_t* xfer)
{
TU_ASSERT(xfer->result == XFER_RESULT_SUCCESS, );
static void port_clear_feature_complete_stub(tuh_xfer_t* xfer) {
hub_edpt_status_xfer(xfer->daddr);
}
static void hub_get_status_complete (tuh_xfer_t* xfer)
{
TU_ASSERT(xfer->result == XFER_RESULT_SUCCESS, );
static void get_status_complete(tuh_xfer_t *xfer) {
const uint8_t daddr = xfer->daddr;
uint8_t const daddr = xfer->daddr;
hub_interface_t* p_hub = get_itf(daddr);
uint8_t const port_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
TU_ASSERT(port_num == 0 , );
bool processed = false; // true if new status is processed
if (xfer->result == XFER_RESULT_SUCCESS) {
hub_status_response_t hub_status = *((const hub_status_response_t *) (uintptr_t) xfer->buffer);
TU_LOG2("HUB Got hub status, addr = %u, status = %04x\r\n", daddr, p_hub->hub_status.change.value);
TU_LOG_DRV("HUB Got hub status, addr = %u, status = %04x\r\n", daddr, hub_status.change.value);
if (p_hub->hub_status.change.local_power_source)
{
TU_LOG2("HUB Local Power Change, addr = %u\r\n", daddr);
hub_port_clear_feature(daddr, port_num, HUB_FEATURE_HUB_LOCAL_POWER_CHANGE, hub_clear_feature_complete_stub, 0);
if (hub_status.change.local_power_source) {
TU_LOG_DRV(" Local Power Change\r\n");
processed = hub_clear_feature(daddr, HUB_FEATURE_HUB_LOCAL_POWER_CHANGE, port_clear_feature_complete_stub, 0);
} else if (hub_status.change.over_current) {
TU_LOG_DRV(" Over Current\r\n");
processed = hub_clear_feature(daddr, HUB_FEATURE_HUB_OVER_CURRENT_CHANGE, port_clear_feature_complete_stub, 0);
}
}
else if (p_hub->hub_status.change.over_current)
{
TU_LOG1("HUB Over Current, addr = %u\r\n", daddr);
hub_port_clear_feature(daddr, port_num, HUB_FEATURE_HUB_OVER_CURRENT_CHANGE, hub_clear_feature_complete_stub, 0);
if (!processed) {
TU_ASSERT(hub_edpt_status_xfer(daddr), );
}
}
static void hub_port_get_status_complete (tuh_xfer_t* xfer)
{
TU_ASSERT(xfer->result == XFER_RESULT_SUCCESS, );
static void port_get_status_complete(tuh_xfer_t *xfer) {
const uint8_t daddr = xfer->daddr;
bool processed = false; // true if new status is processed
uint8_t const daddr = xfer->daddr;
hub_interface_t* p_hub = get_itf(daddr);
uint8_t const port_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
if (xfer->result == XFER_RESULT_SUCCESS) {
const uint8_t port_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
hub_interface_t *p_hub = get_hub_itf(daddr);
p_hub->port_status = *((const hub_port_status_response_t *) (uintptr_t) xfer->buffer);
// Connection change
if (p_hub->port_status.change.connection)
{
// Port is powered and enabled
//TU_VERIFY(port_status.status_current.port_power && port_status.status_current.port_enable, );
// Clear port status change interrupts
if (p_hub->port_status.change.connection) {
// Connection change
// Port is powered and enabled
//TU_VERIFY(port_status.status_current.port_power && port_status.status_current.port_enable, );
// Acknowledge Port Connection Change
hub_port_clear_feature(daddr, port_num, HUB_FEATURE_PORT_CONNECTION_CHANGE, connection_clear_conn_change_complete, 0);
}else
{
// Clear other port status change interrupts. TODO Not currently handled - just cleared.
if (p_hub->port_status.change.port_enable)
{
hub_port_clear_feature(daddr, port_num, HUB_FEATURE_PORT_ENABLE_CHANGE, hub_clear_feature_complete_stub, 0);
// Acknowledge Port Connection Change
processed = hub_port_clear_feature(daddr, port_num, HUB_FEATURE_PORT_CONNECTION_CHANGE, connection_clear_conn_change_complete, 0);
} else if (p_hub->port_status.change.port_enable) {
processed = hub_port_clear_feature(daddr, port_num, HUB_FEATURE_PORT_ENABLE_CHANGE, port_clear_feature_complete_stub, 0);
} else if (p_hub->port_status.change.suspend) {
processed = hub_port_clear_feature(daddr, port_num, HUB_FEATURE_PORT_SUSPEND_CHANGE, port_clear_feature_complete_stub, 0);
} else if (p_hub->port_status.change.over_current) {
processed = hub_port_clear_feature(daddr, port_num, HUB_FEATURE_PORT_OVER_CURRENT_CHANGE, port_clear_feature_complete_stub, 0);
} else if (p_hub->port_status.change.reset) {
processed = hub_port_clear_feature(daddr, port_num, HUB_FEATURE_PORT_RESET_CHANGE, port_clear_feature_complete_stub, 0);
}
else if (p_hub->port_status.change.suspend)
{
hub_port_clear_feature(daddr, port_num, HUB_FEATURE_PORT_SUSPEND_CHANGE, hub_clear_feature_complete_stub, 0);
}
else if (p_hub->port_status.change.over_current)
{
hub_port_clear_feature(daddr, port_num, HUB_FEATURE_PORT_OVER_CURRENT_CHANGE, hub_clear_feature_complete_stub, 0);
}
else if (p_hub->port_status.change.reset)
{
hub_port_clear_feature(daddr, port_num, HUB_FEATURE_PORT_RESET_CHANGE, hub_clear_feature_complete_stub, 0);
}
// Other changes are: L1 state
// TODO clear change
}
else
{
// prepare for next hub status
// TODO continue with status_change, or maybe we can do it again with status
hub_edpt_status_xfer(daddr);
}
if (!processed) {
TU_ASSERT(hub_edpt_status_xfer(daddr), );
}
}
static void connection_clear_conn_change_complete (tuh_xfer_t* xfer)
{
TU_ASSERT(xfer->result == XFER_RESULT_SUCCESS, );
static void connection_clear_conn_change_complete (tuh_xfer_t* xfer) {
const uint8_t daddr = xfer->daddr;
uint8_t const daddr = xfer->daddr;
hub_interface_t* p_hub = get_itf(daddr);
uint8_t const port_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
if (xfer->result != XFER_RESULT_SUCCESS) {
TU_ASSERT(hub_edpt_status_xfer(daddr), );
return;
}
if ( p_hub->port_status.status.connection )
{
hub_interface_t *p_hub = get_hub_itf(daddr);
const uint8_t port_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
if (p_hub->port_status.status.connection) {
// Reset port if attach event
hub_port_reset(daddr, port_num, connection_port_reset_complete, 0);
}else
{
} else {
// submit detach event
hcd_event_t event =
{
const hcd_event_t event = {
.rhport = usbh_get_rhport(daddr),
.event_id = HCD_EVENT_DEVICE_REMOVE,
.connection =
{
.connection = {
.hub_addr = daddr,
.hub_port = port_num
}
};
hcd_event_handler(&event, false);
}
}
static void connection_port_reset_complete (tuh_xfer_t* xfer)
{
TU_ASSERT(xfer->result == XFER_RESULT_SUCCESS, );
static void connection_port_reset_complete (tuh_xfer_t* xfer) {
const uint8_t daddr = xfer->daddr;
uint8_t const daddr = xfer->daddr;
// hub_interface_t* p_hub = get_itf(daddr);
uint8_t const port_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
if (xfer->result != XFER_RESULT_SUCCESS) {
// retry port reset if failed
if (!tuh_control_xfer(xfer)) {
TU_ASSERT(hub_edpt_status_xfer(daddr), ); // back to status poll if failed to queue request
}
return;
}
const uint8_t port_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
// submit attach event
hcd_event_t event =
{
hcd_event_t event = {
.rhport = usbh_get_rhport(daddr),
.event_id = HCD_EVENT_DEVICE_ATTACH,
.connection =
{
.connection = {
.hub_addr = daddr,
.hub_port = port_num
}
};
hcd_event_handler(&event, false);
}

View File

@@ -24,17 +24,8 @@
* This file is part of the TinyUSB stack.
*/
/** \ingroup group_class
* \defgroup ClassDriver_Hub Hub (Host only)
* \details Like most PC's OS, Hub support is completely hidden from Application. In fact, application cannot determine whether
* a device is mounted directly via roothub or via a hub's port. All Hub-related procedures are performed and managed
* by tinyusb stack. Unless you are trying to develop the stack itself, there are nothing else can be used by Application.
* \note Due to my laziness, only 1-level of Hub is supported. In other way, the stack cannot mount a hub via another hub.
* @{
*/
#ifndef _TUSB_HUB_H_
#define _TUSB_HUB_H_
#ifndef TUSB_HUB_H_
#define TUSB_HUB_H_
#include "common/tusb_common.h"
@@ -42,63 +33,23 @@
extern "C" {
#endif
//D1...D0: Logical Power Switching Mode
//00: Ganged power switching (all portspower at
//once)
//01: Individual port power switching
//1X: Reserved. Used only on 1.0 compliant hubs
//that implement no power switching
//D2: Identifies a Compound Device
//0: Hub is not part of a compound device.
//1: Hub is part of a compound device.
//D4...D3: Over-current Protection Mode
//00: Global Over-current Protection. The hub
//reports over-current as a summation of all
//portscurrent draw, without a breakdown of
//individual port over-current status.
//01: Individual Port Over-current Protection. The
//hub reports over-current on a per-port basis.
//Each port has an over-current status.
//1X: No Over-current Protection. This option is
//allowed only for bus-powered hubs that do not
//implement over-current protection.
//--------------------------------------------------------------------+
// Configuration
//--------------------------------------------------------------------+
#ifndef CFG_TUH_HUB_BUFSIZE
#define CFG_TUH_HUB_BUFSIZE 12
#endif
//--------------------------------------------------------------------+
//
//D6...D5: TT Think TIme
//00: TT requires at most 8 FS bit times of inter
//transaction gap on a full-/low-speed
//downstream bus.
//01: TT requires at most 16 FS bit times.
//10: TT requires at most 24 FS bit times.
//11: TT requires at most 32 FS bit times.
//D7: Port Indicators Supported
//0: Port Indicators are not supported on its
//downstream facing ports and the
//PORT_INDICATOR request has no effect.
//1: Port Indicators are supported on its
//downstream facing ports and the
//PORT_INDICATOR request controls the
//indicators. See Section 11.5.3.
//D15...D8: Reserved
typedef struct TU_ATTR_PACKED{
uint8_t bLength ; ///< Size of descriptor
uint8_t bDescriptorType ; ///< Other_speed_Configuration Type
uint8_t bNbrPorts;
uint16_t wHubCharacteristics;
uint8_t bPwrOn2PwrGood;
uint8_t bHubContrCurrent;
uint8_t DeviceRemovable; // bitmap each bit for a port (from bit1)
uint8_t PortPwrCtrlMask; // just for compatibility, should be 0xff
} descriptor_hub_desc_t;
TU_VERIFY_STATIC( sizeof(descriptor_hub_desc_t) == 9, "size is not correct");
//--------------------------------------------------------------------+
enum {
HUB_REQUEST_GET_STATUS = 0 ,
HUB_REQUEST_CLEAR_FEATURE = 1 ,
// 2 is reserved
HUB_REQUEST_SET_FEATURE = 3 ,
// 4-5 are reserved
HUB_REQUEST_GET_DESCRIPTOR = 6 ,
HUB_REQUEST_SET_DESCRIPTOR = 7 ,
HUB_REQUEST_CLEAR_TT_BUFFER = 8 ,
@@ -118,10 +69,10 @@ enum{
HUB_FEATURE_PORT_SUSPEND = 2,
HUB_FEATURE_PORT_OVER_CURRENT = 3,
HUB_FEATURE_PORT_RESET = 4,
// 5-7 are reserved
HUB_FEATURE_PORT_POWER = 8,
HUB_FEATURE_PORT_LOW_SPEED = 9,
// 10-15 are reserved
HUB_FEATURE_PORT_CONNECTION_CHANGE = 16,
HUB_FEATURE_PORT_ENABLE_CHANGE = 17,
HUB_FEATURE_PORT_SUSPEND_CHANGE = 18,
@@ -131,6 +82,41 @@ enum{
HUB_FEATURE_PORT_INDICATOR = 22
};
enum {
HUB_CHARS_POWER_GANGED_SWITCHING = 0,
HUB_CHARS_POWER_INDIVIDUAL_SWITCHING = 1,
};
enum {
HUB_CHARS_OVER_CURRENT_GLOBAL = 0,
HUB_CHARS_OVER_CURRENT_INDIVIDUAL = 1,
};
typedef struct TU_ATTR_PACKED{
uint8_t bLength ; ///< Size of descriptor
uint8_t bDescriptorType ; ///< Other_speed_Configuration Type
uint8_t bNbrPorts;
uint16_t wHubCharacteristics;
uint8_t bPwrOn2PwrGood;
uint8_t bHubContrCurrent;
uint8_t DeviceRemovable; // bitmap each bit for a port (from bit1)
uint8_t PortPwrCtrlMask; // just for compatibility, should be 0xff
} hub_desc_cs_t;
TU_VERIFY_STATIC(sizeof(hub_desc_cs_t) == 9, "size is not correct");
TU_VERIFY_STATIC(CFG_TUH_HUB_BUFSIZE >= sizeof(hub_desc_cs_t), "buffer is not big enough");
typedef struct TU_ATTR_PACKED {
struct TU_ATTR_PACKED {
uint8_t logical_power_switching_mode : 2; // [0..1] gannged or individual power switching
uint8_t compound_device : 1; // [2] hub is part of compound device
uint8_t over_current_protect_mode : 2; // [3..4] global or individual port over-current protection
uint8_t tt_think_time : 2; // [5..6] TT think time
uint8_t port_indicator_supported : 1; // [7] port indicator supported
};
uint8_t rsv1;
} hub_characteristics_t;
TU_VERIFY_STATIC(sizeof(hub_characteristics_t) == 2, "size is not correct");
// data in response of HUB_REQUEST_GET_STATUS, wIndex = 0 (hub)
typedef struct {
union{
@@ -143,48 +129,52 @@ typedef struct {
uint16_t value;
} status, change;
} hub_status_response_t;
TU_VERIFY_STATIC( sizeof(hub_status_response_t) == 4, "size is not correct");
// data in response of HUB_REQUEST_GET_STATUS, wIndex = Port num
typedef struct {
union {
union TU_ATTR_PACKED {
struct TU_ATTR_PACKED {
uint16_t connection : 1;
uint16_t port_enable : 1;
uint16_t suspend : 1;
uint16_t over_current : 1;
uint16_t reset : 1;
// Bit 0-4 are for change & status
uint16_t connection : 1; // [0] 0 = no device, 1 = device connected
uint16_t port_enable : 1; // [1] port is enabled
uint16_t suspend : 1; // [2]
uint16_t over_current : 1; // [3] over-current exists
uint16_t reset : 1; // [4] 0 = no reset, 1 = resetting
uint16_t : 3;
uint16_t port_power : 1;
uint16_t low_speed : 1;
uint16_t high_speed : 1;
uint16_t port_test_mode : 1;
uint16_t port_indicator_control : 1;
uint16_t TU_RESERVED : 3;
// From Bit 5 are for status only
uint16_t rsv5_7 : 3; // [5..7] reserved
uint16_t port_power : 1; // [8] 0 = port is off, 1 = port is on
uint16_t low_speed : 1; // [9] low speed device attached
uint16_t high_speed : 1; // [10] high speed device attached
uint16_t port_test_mode : 1; // [11] port in test mode
uint16_t port_indicator_control : 1; // [12] 0: default color, 1: indicator is software controlled
uint16_t TU_RESERVED : 3; // [13..15] reserved
};
uint16_t value;
} status, change;
} hub_port_status_response_t;
TU_VERIFY_STATIC( sizeof(hub_port_status_response_t) == 4, "size is not correct");
// Clear feature
bool hub_port_clear_feature (uint8_t hub_addr, uint8_t hub_port, uint8_t feature,
tuh_xfer_cb_t complete_cb, uintptr_t user_data);
//--------------------------------------------------------------------+
// HUB API
//--------------------------------------------------------------------+
// Set feature
bool hub_port_set_feature (uint8_t hub_addr, uint8_t hub_port, uint8_t feature,
tuh_xfer_cb_t complete_cb, uintptr_t user_data);
// Clear port feature
bool hub_port_clear_feature(uint8_t hub_addr, uint8_t hub_port, uint8_t feature,
tuh_xfer_cb_t complete_cb, uintptr_t user_data);
// Set port feature
bool hub_port_set_feature(uint8_t hub_addr, uint8_t hub_port, uint8_t feature,
tuh_xfer_cb_t complete_cb, uintptr_t user_data);
// Get port status
bool hub_port_get_status (uint8_t hub_addr, uint8_t hub_port, void* resp,
tuh_xfer_cb_t complete_cb, uintptr_t user_data);
bool hub_port_get_status(uint8_t hub_addr, uint8_t hub_port, void *resp,
tuh_xfer_cb_t complete_cb, uintptr_t user_data);
// Get status from Interrupt endpoint
bool hub_edpt_status_xfer(uint8_t dev_addr);
bool hub_edpt_status_xfer(uint8_t daddr);
// Reset a port
TU_ATTR_ALWAYS_INLINE static inline
@@ -192,13 +182,23 @@ bool hub_port_reset(uint8_t hub_addr, uint8_t hub_port, tuh_xfer_cb_t complete_c
return hub_port_set_feature(hub_addr, hub_port, HUB_FEATURE_PORT_RESET, complete_cb, user_data);
}
// Clear Reset Change
// Clear Port Reset Change
TU_ATTR_ALWAYS_INLINE static inline
bool hub_port_clear_reset_change(uint8_t hub_addr, uint8_t hub_port, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return hub_port_clear_feature(hub_addr, hub_port, HUB_FEATURE_PORT_RESET_CHANGE, complete_cb, user_data);
}
// Get Hub status
TU_ATTR_ALWAYS_INLINE static inline
bool hub_get_status(uint8_t hub_addr, void* resp, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return hub_port_get_status(hub_addr, 0, resp, complete_cb, user_data);
}
// Clear Hub feature
TU_ATTR_ALWAYS_INLINE static inline
bool hub_clear_feature(uint8_t hub_addr, uint8_t feature, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return hub_port_clear_feature(hub_addr, 0, feature, complete_cb, user_data);
}
//--------------------------------------------------------------------+
// Internal Class Driver API
//--------------------------------------------------------------------+
@@ -206,13 +206,11 @@ bool hub_init (void);
bool hub_deinit (void);
bool hub_open (uint8_t rhport, uint8_t dev_addr, tusb_desc_interface_t const *itf_desc, uint16_t max_len);
bool hub_set_config (uint8_t dev_addr, uint8_t itf_num);
bool hub_xfer_cb (uint8_t dev_addr, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
bool hub_xfer_cb (uint8_t daddr, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void hub_close (uint8_t dev_addr);
#ifdef __cplusplus
}
#endif
#endif /* _TUSB_HUB_H_ */
/** @} */
#endif

View File

@@ -44,25 +44,33 @@
#define CFG_TUH_INTERFACE_MAX 8
#endif
enum {
USBH_CONTROL_RETRY_MAX = 3,
};
//--------------------------------------------------------------------+
// Weak stubs: invoked if no strong implementation is available
//--------------------------------------------------------------------+
TU_ATTR_WEAK bool hcd_deinit(uint8_t rhport) {
(void) rhport;
return false;
(void) rhport; return false;
}
TU_ATTR_WEAK bool hcd_configure(uint8_t rhport, uint32_t cfg_id, const void* cfg_param) {
(void) rhport;
(void) cfg_id;
(void) cfg_param;
(void) rhport; (void) cfg_id; (void) cfg_param;
return false;
}
TU_ATTR_WEAK void tuh_enum_descriptor_device_cb(uint8_t daddr, const tusb_desc_device_t *desc_device) {
(void) daddr; (void) desc_device;
}
TU_ATTR_WEAK bool tuh_enum_descriptor_configuration_cb(uint8_t daddr, uint8_t cfg_index, const tusb_desc_configuration_t *desc_config) {
(void) daddr; (void) cfg_index; (void) desc_config;
return true;
}
TU_ATTR_WEAK void tuh_event_hook_cb(uint8_t rhport, uint32_t eventid, bool in_isr) {
(void) rhport;
(void) eventid;
(void) in_isr;
(void) rhport; (void) eventid; (void) in_isr;
}
TU_ATTR_WEAK bool hcd_dcache_clean(const void* addr, uint32_t data_size) {
@@ -122,6 +130,7 @@ typedef struct {
uint8_t i_manufacturer;
uint8_t i_product;
uint8_t i_serial;
uint8_t bNumConfigurations;
// Configuration Descriptor
// uint8_t interface_count; // bNumInterfaces alias
@@ -188,6 +197,18 @@ static usbh_class_driver_t const usbh_class_drivers[] = {
},
#endif
#if CFG_TUH_MIDI
{
.name = DRIVER_NAME("MIDI"),
.init = midih_init,
.deinit = midih_deinit,
.open = midih_open,
.set_config = midih_set_config,
.xfer_cb = midih_xfer_cb,
.close = midih_close
},
#endif
#if CFG_TUH_HUB
{
.name = DRIVER_NAME("HUB"),
@@ -214,7 +235,6 @@ static usbh_class_driver_t const usbh_class_drivers[] = {
};
enum { BUILTIN_DRIVER_COUNT = TU_ARRAY_SIZE(usbh_class_drivers) };
enum { CONFIG_NUM = 1 }; // default to use configuration 1
// Additional class drivers implemented by application
tu_static usbh_class_driver_t const * _app_driver = NULL;
@@ -272,9 +292,10 @@ static struct {
tuh_xfer_cb_t complete_cb;
uintptr_t user_data;
uint8_t daddr;
volatile uint8_t stage;
uint8_t daddr;
volatile uint16_t actual_len;
uint8_t failed_count;
} _ctrl_xfer;
typedef struct {
@@ -285,7 +306,6 @@ typedef struct {
CFG_TUH_MEM_SECTION static usbh_epbuf_t _usbh_epbuf;
//------------- Helper Function -------------//
TU_ATTR_ALWAYS_INLINE static inline usbh_device_t* get_device(uint8_t dev_addr) {
TU_VERIFY(dev_addr > 0 && dev_addr <= TOTAL_DEVICES, NULL);
return &_usbh_devices[dev_addr-1];
@@ -312,6 +332,15 @@ bool tuh_mounted(uint8_t dev_addr) {
return dev->configured;
}
bool tuh_connected(uint8_t daddr) {
if (daddr == 0) {
return _dev0.enumerating; // dev0 is connected if still enumerating
} else {
const usbh_device_t* dev = get_device(daddr);
return dev && dev->connected;
}
}
bool tuh_vid_pid_get(uint8_t dev_addr, uint16_t *vid, uint16_t *pid) {
*vid = *pid = 0;
@@ -438,7 +467,9 @@ bool tuh_rhport_init(uint8_t rhport, const tusb_rhport_init_t* rh_init) {
}
bool tuh_deinit(uint8_t rhport) {
if (!tuh_rhport_is_active(rhport)) return true;
if (!tuh_rhport_is_active(rhport)) {
return true;
}
// deinit host controller
hcd_int_disable(rhport);
@@ -484,13 +515,11 @@ bool tuh_task_event_ready(void) {
* This should be called periodically within the mainloop or rtos thread.
*
@code
int main(void)
{
int main(void) {
application_init();
tusb_init(0, TUSB_ROLE_HOST);
while(1) // the mainloop
{
while(1) { // the mainloop
application_code();
tuh_task(); // tinyusb host task
}
@@ -501,12 +530,14 @@ void tuh_task_ext(uint32_t timeout_ms, bool in_isr) {
(void) in_isr; // not implemented yet
// Skip if stack is not initialized
if (!tuh_inited()) return;
if (!tuh_inited()) {
return;
}
// Loop until there is no more events in the queue
while (1) {
hcd_event_t event;
if (!osal_queue_receive(_usbh_q, &event, timeout_ms)) return;
if (!osal_queue_receive(_usbh_q, &event, timeout_ms)) { return; }
switch (event.event_id) {
case HCD_EVENT_DEVICE_ATTACH:
@@ -635,17 +666,9 @@ static void _control_blocking_complete_cb(tuh_xfer_t* xfer) {
// TODO timeout_ms is not supported yet
bool tuh_control_xfer (tuh_xfer_t* xfer) {
// EP0 with setup packet
TU_VERIFY(xfer->ep_addr == 0 && xfer->setup);
// Check if device is still connected (enumerating for dev0)
TU_VERIFY(xfer->ep_addr == 0 && xfer->setup); // EP0 with setup packet
const uint8_t daddr = xfer->daddr;
if (daddr == 0) {
TU_VERIFY(_dev0.enumerating);
} else {
const usbh_device_t* dev = get_device(daddr);
TU_VERIFY(dev && dev->connected);
}
TU_VERIFY(tuh_connected(daddr)); // Check if device is still connected (enumerating for dev0)
// pre-check to help reducing mutex lock
TU_VERIFY(_ctrl_xfer.stage == CONTROL_STAGE_IDLE);
@@ -653,14 +676,15 @@ bool tuh_control_xfer (tuh_xfer_t* xfer) {
bool const is_idle = (_ctrl_xfer.stage == CONTROL_STAGE_IDLE);
if (is_idle) {
_ctrl_xfer.stage = CONTROL_STAGE_SETUP;
_ctrl_xfer.daddr = daddr;
_ctrl_xfer.actual_len = 0;
_ctrl_xfer.stage = CONTROL_STAGE_SETUP;
_ctrl_xfer.daddr = daddr;
_ctrl_xfer.actual_len = 0;
_ctrl_xfer.failed_count = 0;
_ctrl_xfer.buffer = xfer->buffer;
_ctrl_xfer.complete_cb = xfer->complete_cb;
_ctrl_xfer.user_data = xfer->user_data;
_usbh_epbuf.request = (*xfer->setup);
_ctrl_xfer.buffer = xfer->buffer;
_ctrl_xfer.complete_cb = xfer->complete_cb;
_ctrl_xfer.user_data = xfer->user_data;
_usbh_epbuf.request = (*xfer->setup);
}
(void) osal_mutex_unlock(_usbh_mutex);
@@ -674,7 +698,7 @@ bool tuh_control_xfer (tuh_xfer_t* xfer) {
TU_LOG_BUF_USBH(xfer->setup, 8);
if (xfer->complete_cb) {
TU_ASSERT( hcd_setup_send(rhport, daddr, (uint8_t const*) &_usbh_epbuf.request) );
TU_ASSERT(hcd_setup_send(rhport, daddr, (uint8_t const *) &_usbh_epbuf.request));
}else {
// blocking if complete callback is not provided
// change callback to internal blocking, and result as user argument
@@ -684,7 +708,7 @@ bool tuh_control_xfer (tuh_xfer_t* xfer) {
_ctrl_xfer.user_data = (uintptr_t) &result;
_ctrl_xfer.complete_cb = _control_blocking_complete_cb;
TU_ASSERT( hcd_setup_send(rhport, daddr, (uint8_t*) &_usbh_epbuf.request) );
TU_ASSERT(hcd_setup_send(rhport, daddr, (uint8_t *) &_usbh_epbuf.request));
while (result == XFER_RESULT_INVALID) {
// Note: this can be called within an callback ie. part of tuh_task()
@@ -741,28 +765,46 @@ static bool usbh_control_xfer_cb (uint8_t daddr, uint8_t ep_addr, xfer_result_t
const uint8_t rhport = usbh_get_rhport(daddr);
tusb_control_request_t const * request = &_usbh_epbuf.request;
if (XFER_RESULT_SUCCESS != result) {
TU_LOG_USBH("[%u:%u] Control %s, xferred_bytes = %" PRIu32 "\r\n", rhport, daddr, result == XFER_RESULT_STALLED ? "STALLED" : "FAILED", xferred_bytes);
TU_LOG_BUF_USBH(request, 8);
switch (result) {
case XFER_RESULT_STALLED:
TU_LOG_USBH("[%u:%u] Control STALLED, xferred_bytes = %" PRIu32 "\r\n", rhport, daddr, xferred_bytes);
TU_LOG_BUF_USBH(request, 8);
_control_xfer_complete(daddr, result);
break;
// terminate transfer if any stage failed
_control_xfer_complete(daddr, result);
}else {
switch(_ctrl_xfer.stage) {
case CONTROL_STAGE_SETUP:
if (request->wLength) {
// DATA stage: initial data toggle is always 1
_set_control_xfer_stage(CONTROL_STAGE_DATA);
TU_ASSERT( hcd_edpt_xfer(rhport, daddr, tu_edpt_addr(0, request->bmRequestType_bit.direction), _ctrl_xfer.buffer, request->wLength) );
return true;
}
case XFER_RESULT_FAILED:
if (tuh_connected(daddr) && _ctrl_xfer.failed_count < USBH_CONTROL_RETRY_MAX) {
TU_LOG_USBH("[%u:%u] Control FAILED %u/%u, retrying\r\n", rhport, daddr, _ctrl_xfer.failed_count+1, USBH_CONTROL_RETRY_MAX);
(void) osal_mutex_lock(_usbh_mutex, OSAL_TIMEOUT_WAIT_FOREVER);
_ctrl_xfer.stage = CONTROL_STAGE_SETUP;
_ctrl_xfer.failed_count++;
_ctrl_xfer.actual_len = 0; // reset actual_len
(void) osal_mutex_unlock(_usbh_mutex);
TU_ASSERT(hcd_setup_send(rhport, daddr, (uint8_t const *) request));
} else {
TU_LOG_USBH("[%u:%u] Control FAILED, xferred_bytes = %" PRIu32 "\r\n", rhport, daddr, xferred_bytes);
TU_LOG_BUF_USBH(request, 8);
_control_xfer_complete(daddr, result);
}
break;
case XFER_RESULT_SUCCESS:
switch(_ctrl_xfer.stage) {
case CONTROL_STAGE_SETUP:
if (request->wLength) {
// DATA stage: initial data toggle is always 1
_set_control_xfer_stage(CONTROL_STAGE_DATA);
TU_ASSERT( hcd_edpt_xfer(rhport, daddr, tu_edpt_addr(0, request->bmRequestType_bit.direction), _ctrl_xfer.buffer, request->wLength) );
return true;
}
TU_ATTR_FALLTHROUGH;
case CONTROL_STAGE_DATA:
if (request->wLength) {
TU_LOG_USBH("[%u:%u] Control data:\r\n", rhport, daddr);
TU_LOG_MEM_USBH(_ctrl_xfer.buffer, xferred_bytes, 2);
}
case CONTROL_STAGE_DATA:
if (request->wLength) {
TU_LOG_USBH("[%u:%u] Control data:\r\n", rhport, daddr);
TU_LOG_MEM_USBH(_ctrl_xfer.buffer, xferred_bytes, 2);
}
_ctrl_xfer.actual_len = (uint16_t) xferred_bytes;
@@ -771,23 +813,26 @@ static bool usbh_control_xfer_cb (uint8_t daddr, uint8_t ep_addr, xfer_result_t
TU_ASSERT( hcd_edpt_xfer(rhport, daddr, tu_edpt_addr(0, 1 - request->bmRequestType_bit.direction), NULL, 0) );
break;
case CONTROL_STAGE_ACK: {
// Abort all pending transfers if SET_CONFIGURATION request
// NOTE: should we force closing all non-control endpoints in the future?
if (request->bRequest == TUSB_REQ_SET_CONFIGURATION && request->bmRequestType == 0x00) {
for(uint8_t epnum=1; epnum<CFG_TUH_ENDPOINT_MAX; epnum++) {
for(uint8_t dir=0; dir<2; dir++) {
tuh_edpt_abort_xfer(daddr, tu_edpt_addr(epnum, dir));
case CONTROL_STAGE_ACK: {
// Abort all pending transfers if SET_CONFIGURATION request
// NOTE: should we force closing all non-control endpoints in the future?
if (request->bRequest == TUSB_REQ_SET_CONFIGURATION && request->bmRequestType == 0x00) {
for(uint8_t epnum=1; epnum<CFG_TUH_ENDPOINT_MAX; epnum++) {
for(uint8_t dir=0; dir<2; dir++) {
tuh_edpt_abort_xfer(daddr, tu_edpt_addr(epnum, dir));
}
}
}
_control_xfer_complete(daddr, result);
break;
}
_control_xfer_complete(daddr, result);
break;
default: return false; // unsupported stage
}
break;
default: return false;
}
default: return false; // unsupported result
}
return true;
@@ -908,7 +953,6 @@ bool usbh_edpt_release(uint8_t dev_addr, uint8_t ep_addr) {
}
// Submit an transfer
// TODO call usbh_edpt_release if failed
bool usbh_edpt_xfer_with_callback(uint8_t dev_addr, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
(void) complete_cb;
@@ -963,10 +1007,16 @@ static bool usbh_edpt_control_open(uint8_t dev_addr, uint8_t max_packet_size) {
}
bool tuh_edpt_open(uint8_t dev_addr, tusb_desc_endpoint_t const* desc_ep) {
TU_ASSERT(tu_edpt_validate(desc_ep, tuh_speed_get(dev_addr)));
TU_ASSERT(tu_edpt_validate(desc_ep, tuh_speed_get(dev_addr), true));
return hcd_edpt_open(usbh_get_rhport(dev_addr), dev_addr, desc_ep);
}
bool tuh_edpt_close(uint8_t daddr, uint8_t ep_addr) {
TU_VERIFY(0 != tu_edpt_number(ep_addr)); // cannot close EP0
tuh_edpt_abort_xfer(daddr, ep_addr); // abort any pending transfer
return hcd_edpt_close(usbh_get_rhport(daddr), daddr, ep_addr);
}
bool usbh_edpt_busy(uint8_t dev_addr, uint8_t ep_addr) {
usbh_device_t* dev = get_device(dev_addr);
TU_VERIFY(dev);
@@ -1271,13 +1321,17 @@ static void process_removing_device(uint8_t rhport, uint8_t hub_addr, uint8_t hu
removing_hubs |= TU_BIT(dev_id - CFG_TUH_DEVICE_MAX);
} else {
// Invoke callback before closing driver (maybe call it later ?)
if (tuh_umount_cb) tuh_umount_cb(daddr);
if (tuh_umount_cb) {
tuh_umount_cb(daddr);
}
}
// Close class driver
for (uint8_t drv_id = 0; drv_id < TOTAL_DRIVER_COUNT; drv_id++) {
usbh_class_driver_t const* driver = get_driver(drv_id);
if (driver) driver->close(daddr);
if (driver) {
driver->close(daddr);
}
}
hcd_device_close(rhport, daddr);
@@ -1334,39 +1388,42 @@ enum {
ENUM_HUB_GET_STATUS_2,
ENUM_HUB_CLEAR_RESET_2,
ENUM_SET_ADDR,
ENUM_GET_DEVICE_DESC,
ENUM_GET_STRING_LANGUAGE_ID,
ENUM_GET_STRING_MANUFACTURER,
ENUM_GET_STRING_PRODUCT,
ENUM_GET_STRING_SERIAL,
ENUM_GET_9BYTE_CONFIG_DESC,
ENUM_GET_FULL_CONFIG_DESC,
ENUM_SET_CONFIG,
ENUM_CONFIG_DRIVER
};
static bool enum_request_set_addr(void);
static bool _parse_configuration_descriptor (uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg);
static bool enum_request_set_addr(tusb_desc_device_t const* desc_device);
static bool enum_parse_configuration_desc (uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg);
static void enum_full_complete(void);
// process device enumeration
static void process_enumeration(tuh_xfer_t* xfer) {
// Retry a few times with transfers in enumeration since device can be unstable when starting up
enum {
ATTEMPT_COUNT_MAX = 3,
ATTEMPT_DELAY_MS = 100
};
// Retry a few times while enumerating since device can be unstable when starting up
static uint8_t failed_count = 0;
if (XFER_RESULT_FAILED == xfer->result) {
enum {
ATTEMPT_COUNT_MAX = 3,
ATTEMPT_DELAY_MS = 100
};
if (XFER_RESULT_SUCCESS != xfer->result) {
// retry if not reaching max attempt
failed_count++;
bool retry = _dev0.enumerating && (failed_count < ATTEMPT_COUNT_MAX);
if ( retry ) {
failed_count++;
if (retry) {
tusb_time_delay_ms_api(ATTEMPT_DELAY_MS); // delay a bit
TU_LOG1("Enumeration attempt %u\r\n", failed_count);
TU_LOG1("Enumeration attempt %u/%u\r\n", failed_count+1, ATTEMPT_COUNT_MAX);
retry = tuh_control_xfer(xfer);
}
if (!retry) {
enum_full_complete();
enum_full_complete(); // complete as failed
}
return;
@@ -1375,6 +1432,8 @@ static void process_enumeration(tuh_xfer_t* xfer) {
uint8_t const daddr = xfer->daddr;
uintptr_t const state = xfer->user_data;
usbh_device_t* dev = get_device(daddr);
uint16_t langid = 0x0409; // default is English
switch (state) {
#if CFG_TUH_HUB
@@ -1457,7 +1516,7 @@ static void process_enumeration(tuh_xfer_t* xfer) {
#endif
case ENUM_SET_ADDR:
enum_request_set_addr();
enum_request_set_addr((tusb_desc_device_t*) _usbh_epbuf.ctrl);
break;
case ENUM_GET_DEVICE_DESC: {
@@ -1465,7 +1524,6 @@ static void process_enumeration(tuh_xfer_t* xfer) {
tusb_time_delay_ms_api(2);
const uint8_t new_addr = (uint8_t) tu_le16toh(xfer->setup->wValue);
usbh_device_t* new_dev = get_device(new_addr);
TU_ASSERT(new_dev,);
new_dev->addressed = 1;
@@ -1479,24 +1537,75 @@ static void process_enumeration(tuh_xfer_t* xfer) {
// Get full device descriptor
TU_LOG_USBH("Get Device Descriptor\r\n");
TU_ASSERT(tuh_descriptor_get_device(new_addr, _usbh_epbuf.ctrl, sizeof(tusb_desc_device_t),
process_enumeration, ENUM_GET_9BYTE_CONFIG_DESC),);
process_enumeration, ENUM_GET_STRING_LANGUAGE_ID),);
break;
}
case ENUM_GET_9BYTE_CONFIG_DESC: {
tusb_desc_device_t const* desc_device = (tusb_desc_device_t const*) _usbh_epbuf.ctrl;
usbh_device_t* dev = get_device(daddr);
case ENUM_GET_STRING_LANGUAGE_ID: {
// save the received device descriptor
TU_ASSERT(dev,);
tusb_desc_device_t const* desc_device = (tusb_desc_device_t const*) _usbh_epbuf.ctrl;
dev->vid = desc_device->idVendor;
dev->pid = desc_device->idProduct;
dev->i_manufacturer = desc_device->iManufacturer;
dev->i_product = desc_device->iProduct;
dev->i_serial = desc_device->iSerialNumber;
dev->bNumConfigurations = desc_device->bNumConfigurations;
tuh_enum_descriptor_device_cb(daddr, desc_device); // callback
tuh_descriptor_get_string_langid(daddr, _usbh_epbuf.ctrl, CFG_TUH_ENUMERATION_BUFSIZE,
process_enumeration, ENUM_GET_STRING_MANUFACTURER);
break;
}
case ENUM_GET_STRING_MANUFACTURER: {
TU_ASSERT(dev,);
const tusb_desc_string_t* desc_langid = (tusb_desc_string_t const*) _usbh_epbuf.ctrl;
if (desc_langid->bLength >= 4) {
langid = tu_le16toh(desc_langid->utf16le[0]);
}
if (dev->i_manufacturer != 0) {
tuh_descriptor_get_string(daddr, dev->i_manufacturer, langid, _usbh_epbuf.ctrl, CFG_TUH_ENUMERATION_BUFSIZE,
process_enumeration, ENUM_GET_STRING_PRODUCT);
break;
} else {
TU_ATTR_FALLTHROUGH;
}
}
case ENUM_GET_STRING_PRODUCT: {
TU_ASSERT(dev,);
if (state == ENUM_GET_STRING_PRODUCT) {
langid = tu_le16toh(xfer->setup->wIndex); // if not fall through, get langid from previous setup packet
}
if (dev->i_product != 0) {
tuh_descriptor_get_string(daddr, dev->i_product, 0x0409, _usbh_epbuf.ctrl, CFG_TUH_ENUMERATION_BUFSIZE,
process_enumeration, ENUM_GET_STRING_SERIAL);
break;
} else {
TU_ATTR_FALLTHROUGH;
}
}
case ENUM_GET_STRING_SERIAL: {
TU_ASSERT(dev,);
if (state == ENUM_GET_STRING_SERIAL) {
langid = tu_le16toh(xfer->setup->wIndex); // if not fall through, get langid from previous setup packet
}
if (dev->i_serial != 0) {
tuh_descriptor_get_string(daddr, dev->i_serial, langid, _usbh_epbuf.ctrl, CFG_TUH_ENUMERATION_BUFSIZE,
process_enumeration, ENUM_GET_9BYTE_CONFIG_DESC);
break;
} else {
TU_ATTR_FALLTHROUGH;
}
}
case ENUM_GET_9BYTE_CONFIG_DESC: {
// Get 9-byte for total length
uint8_t const config_idx = CONFIG_NUM - 1;
TU_LOG_USBH("Get Configuration[0] Descriptor (9 bytes)\r\n");
uint8_t const config_idx = 0;
TU_LOG_USBH("Get Configuration[%u] Descriptor (9 bytes)\r\n", config_idx);
TU_ASSERT(tuh_descriptor_get_configuration(daddr, config_idx, _usbh_epbuf.ctrl, 9,
process_enumeration, ENUM_GET_FULL_CONFIG_DESC),);
break;
@@ -1506,34 +1615,42 @@ static void process_enumeration(tuh_xfer_t* xfer) {
uint8_t const* desc_config = _usbh_epbuf.ctrl;
// Use offsetof to avoid pointer to the odd/misaligned address
uint16_t const total_len = tu_le16toh(
tu_unaligned_read16(desc_config + offsetof(tusb_desc_configuration_t, wTotalLength)));
uint16_t const total_len = tu_le16toh(tu_unaligned_read16(desc_config + offsetof(tusb_desc_configuration_t, wTotalLength)));
// TODO not enough buffer to hold configuration descriptor
TU_ASSERT(total_len <= CFG_TUH_ENUMERATION_BUFSIZE,);
// Get full configuration descriptor
uint8_t const config_idx = CONFIG_NUM - 1;
TU_LOG_USBH("Get Configuration[0] Descriptor\r\n");
uint8_t const config_idx = (uint8_t) tu_le16toh(xfer->setup->wIndex);
TU_LOG_USBH("Get Configuration[%u] Descriptor\r\n", config_idx);
TU_ASSERT(tuh_descriptor_get_configuration(daddr, config_idx, _usbh_epbuf.ctrl, total_len,
process_enumeration, ENUM_SET_CONFIG),);
break;
}
case ENUM_SET_CONFIG:
TU_ASSERT(tuh_configuration_set(daddr, CONFIG_NUM, process_enumeration, ENUM_CONFIG_DRIVER),);
case ENUM_SET_CONFIG: {
uint8_t config_idx = (uint8_t) tu_le16toh(xfer->setup->wIndex);
if (tuh_enum_descriptor_configuration_cb(daddr, config_idx, (const tusb_desc_configuration_t*) _usbh_epbuf.ctrl)) {
TU_ASSERT(tuh_configuration_set(daddr, config_idx+1, process_enumeration, ENUM_CONFIG_DRIVER),);
} else {
config_idx++;
TU_ASSERT(config_idx < dev->bNumConfigurations,);
TU_LOG_USBH("Get Configuration[%u] Descriptor (9 bytes)\r\n", config_idx);
TU_ASSERT(tuh_descriptor_get_configuration(daddr, config_idx, _usbh_epbuf.ctrl, 9,
process_enumeration, ENUM_GET_FULL_CONFIG_DESC),);
}
break;
}
case ENUM_CONFIG_DRIVER: {
TU_LOG_USBH("Device configured\r\n");
usbh_device_t* dev = get_device(daddr);
TU_ASSERT(dev,);
dev->configured = 1;
// Parse configuration & set up drivers
// driver_open() must not make any usb transfer
TU_ASSERT(_parse_configuration_descriptor(daddr, (tusb_desc_configuration_t*) _usbh_epbuf.ctrl),);
TU_ASSERT(enum_parse_configuration_desc(daddr, (tusb_desc_configuration_t*) _usbh_epbuf.ctrl),);
// Start the Set Configuration process for interfaces (itf = TUSB_INDEX_INVALID_8)
// Since driver can perform control transfer within its set_config, this is done asynchronously.
@@ -1544,14 +1661,11 @@ static void process_enumeration(tuh_xfer_t* xfer) {
}
default:
// stop enumeration if unknown state
enum_full_complete();
enum_full_complete(); // stop enumeration if unknown state
break;
}
}
static bool enum_new_device(hcd_event_t* event) {
_dev0.rhport = event->rhport;
_dev0.hub_addr = event->connection.hub_addr;
@@ -1621,9 +1735,7 @@ static uint8_t get_new_address(bool is_hub) {
return 0; // invalid address
}
static bool enum_request_set_addr(void) {
tusb_desc_device_t const* desc_device = (tusb_desc_device_t const*) _usbh_epbuf.ctrl;
static bool enum_request_set_addr(tusb_desc_device_t const* desc_device) {
// Get new address
uint8_t const new_addr = get_new_address(desc_device->bDeviceClass == TUSB_CLASS_HUB);
TU_ASSERT(new_addr != 0);
@@ -1661,7 +1773,7 @@ static bool enum_request_set_addr(void) {
return true;
}
static bool _parse_configuration_descriptor(uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg) {
static bool enum_parse_configuration_desc(uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg) {
usbh_device_t* dev = get_device(dev_addr);
uint16_t const total_len = tu_le16toh(desc_cfg->wTotalLength);
uint8_t const* desc_end = ((uint8_t const*) desc_cfg) + total_len;
@@ -1674,7 +1786,7 @@ static bool _parse_configuration_descriptor(uint8_t dev_addr, tusb_desc_configur
if ( 0 == tu_desc_len(p_desc) ) {
// A zero length descriptor indicates that the device is off spec (e.g. wrong wTotalLength).
// Parsed interfaces should still be usable
TU_LOG_USBH("Encountered a zero-length descriptor after %u bytes\r\n", (uint32_t)p_desc - (uint32_t)desc_cfg);
TU_LOG_USBH("Encountered a zero-length descriptor after %" PRIu32 " bytes\r\n", (uint32_t)p_desc - (uint32_t)desc_cfg);
break;
}
@@ -1778,7 +1890,9 @@ void usbh_driver_set_config_complete(uint8_t dev_addr, uint8_t itf_num) {
TU_LOG_USBH("HUB address = %u is mounted\r\n", dev_addr);
}else {
// Invoke callback if available
if (tuh_mount_cb) tuh_mount_cb(dev_addr);
if (tuh_mount_cb) {
tuh_mount_cb(dev_addr);
}
}
}
}
@@ -1788,8 +1902,9 @@ static void enum_full_complete(void) {
_dev0.enumerating = 0;
#if CFG_TUH_HUB
// get next hub status
if (_dev0.hub_addr) hub_edpt_status_xfer(_dev0.hub_addr);
if (_dev0.hub_addr) {
hub_edpt_status_xfer(_dev0.hub_addr); // get next hub status
}
#endif
}

View File

@@ -33,10 +33,17 @@
#include "common/tusb_common.h"
#if CFG_TUH_MAX3421
#include "portable/analog/max3421/hcd_max3421.h"
#endif
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
// Endpoint Bulk size depending on host mx speed
#define TUH_EPSIZE_BULK_MPS (TUD_OPT_HIGH_SPEED ? TUSB_EPSIZE_BULK_HS : TUSB_EPSIZE_BULK_FS)
// forward declaration
struct tuh_xfer_s;
typedef struct tuh_xfer_s tuh_xfer_t;
@@ -96,6 +103,15 @@ typedef union {
// APPLICATION CALLBACK
//--------------------------------------------------------------------+
// Invoked when enumeration get device descriptor
// Device is not ready to communicate yet, application can copy the descriptor if needed
void tuh_enum_descriptor_device_cb(uint8_t daddr, const tusb_desc_device_t *desc_device);
// Invoked when enumeration get configuration descriptor
// For multi-configuration device return false to skip, true to proceed with this configuration (may not be implemented yet)
// Device is not ready to communicate yet, application can copy the descriptor if needed
bool tuh_enum_descriptor_configuration_cb(uint8_t daddr, uint8_t cfg_index, const tusb_desc_configuration_t *desc_config);
// Invoked when a device is mounted (configured)
TU_ATTR_WEAK void tuh_mount_cb (uint8_t daddr);
@@ -146,8 +162,7 @@ bool tuh_inited(void);
void tuh_task_ext(uint32_t timeout_ms, bool in_isr);
// Task function should be called in main/rtos loop
TU_ATTR_ALWAYS_INLINE static inline
void tuh_task(void) {
TU_ATTR_ALWAYS_INLINE static inline void tuh_task(void) {
tuh_task_ext(UINT32_MAX, false);
}
@@ -183,17 +198,19 @@ tusb_speed_t tuh_speed_get(uint8_t daddr);
// Check if device is connected and configured
bool tuh_mounted(uint8_t daddr);
// Check if device is connected which mean device has at least 1 successful transfer
// Note: It may not be addressed/configured/mounted yet
bool tuh_connected(uint8_t daddr);
// Check if device is suspended
TU_ATTR_ALWAYS_INLINE static inline
bool tuh_suspended(uint8_t daddr) {
TU_ATTR_ALWAYS_INLINE static inline bool tuh_suspended(uint8_t daddr) {
// TODO implement suspend & resume on host
(void) daddr;
return false;
}
// Check if device is ready to communicate with
TU_ATTR_ALWAYS_INLINE static inline
bool tuh_ready(uint8_t daddr) {
TU_ATTR_ALWAYS_INLINE static inline bool tuh_ready(uint8_t daddr) {
return tuh_mounted(daddr) && !tuh_suspended(daddr);
}
@@ -214,6 +231,9 @@ bool tuh_edpt_xfer(tuh_xfer_t* xfer);
// Open a non-control endpoint
bool tuh_edpt_open(uint8_t daddr, tusb_desc_endpoint_t const * desc_ep);
// Close a non-control endpoint, it will abort any pending transfer
bool tuh_edpt_close(uint8_t daddr, uint8_t ep_addr);
// Abort a queued transfer. Note: it can only abort transfer that has not been started
// Return true if a queued transfer is aborted, false if there is no transfer to abort
bool tuh_edpt_abort_xfer(uint8_t daddr, uint8_t ep_addr);
@@ -261,6 +281,13 @@ bool tuh_descriptor_get_hid_report(uint8_t daddr, uint8_t itf_num, uint8_t desc_
bool tuh_descriptor_get_string(uint8_t daddr, uint8_t index, uint16_t language_id, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data);
// Get language id string descriptor (control transfer)
TU_ATTR_ALWAYS_INLINE static inline
bool tuh_descriptor_get_string_langid(uint8_t daddr, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return tuh_descriptor_get_string(daddr, 0, 0, buffer, len, complete_cb, user_data);
}
// Get manufacturer string descriptor (control transfer)
// true on success, false if there is on-going control transfer or incorrect parameters
bool tuh_descriptor_get_manufacturer_string(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len,
@@ -300,6 +327,12 @@ uint8_t tuh_descriptor_get_hid_report_sync(uint8_t daddr, uint8_t itf_num, uint8
// return transfer result
uint8_t tuh_descriptor_get_string_sync(uint8_t daddr, uint8_t index, uint16_t language_id, void* buffer, uint16_t len);
// Sync (blocking) version of tuh_descriptor_get_string_langid()
TU_ATTR_ALWAYS_INLINE static inline
uint8_t tuh_descriptor_get_string_langid_sync(uint8_t daddr, void* buffer, uint16_t len) {
return tuh_descriptor_get_string_sync(daddr, 0, 0, buffer, len);
}
// Sync (blocking) version of tuh_descriptor_get_manufacturer_string()
// return transfer result
uint8_t tuh_descriptor_get_manufacturer_string_sync(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len);

View File

@@ -41,10 +41,6 @@
#define TU_LOG_INT_USBH(...) TU_LOG_INT(CFG_TUH_LOG_LEVEL, __VA_ARGS__)
#define TU_LOG_HEX_USBH(...) TU_LOG_HEX(CFG_TUH_LOG_LEVEL, __VA_ARGS__)
enum {
USBH_EPSIZE_BULK_MAX = (TUH_OPT_HIGH_SPEED ? TUSB_EPSIZE_BULK_HS : TUSB_EPSIZE_BULK_FS)
};
//--------------------------------------------------------------------+
// Class Driver API
//--------------------------------------------------------------------+
@@ -83,8 +79,8 @@ void usbh_defer_func(osal_task_func_t func, void *param, bool in_isr);
bool usbh_edpt_xfer_with_callback(uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes,
tuh_xfer_cb_t complete_cb, uintptr_t user_data);
TU_ATTR_ALWAYS_INLINE
static inline bool usbh_edpt_xfer(uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) {
TU_ATTR_ALWAYS_INLINE static inline
bool usbh_edpt_xfer(uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) {
return usbh_edpt_xfer_with_callback(dev_addr, ep_addr, buffer, total_bytes, NULL, 0);
}