Merge branch 'master' into cr1901-msp430f5529

This commit is contained in:
hathach
2020-03-22 17:19:57 +07:00
445 changed files with 35092 additions and 43542 deletions

View File

@@ -26,17 +26,27 @@
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && CFG_TUSB_MCU == OPT_MCU_SAMD51
#if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_SAMD51 || CFG_TUSB_MCU == OPT_MCU_SAMD21)
#include "device/dcd.h"
#include "sam.h"
#include "device/dcd.h"
/*------------------------------------------------------------------*/
/* MACRO TYPEDEF CONSTANT ENUM
*------------------------------------------------------------------*/
static UsbDeviceDescBank sram_registers[8][2];
static TU_ATTR_ALIGNED(4) UsbDeviceDescBank sram_registers[8][2];
static TU_ATTR_ALIGNED(4) uint8_t _setup_packet[8];
// ready for receiving SETUP packet
static inline void prepare_setup(void)
{
// Only make sure the EP0 OUT buffer is ready
sram_registers[0][0].ADDR.reg = (uint32_t) _setup_packet;
sram_registers[0][0].PCKSIZE.bit.MULTI_PACKET_SIZE = sizeof(_setup_packet);
sram_registers[0][0].PCKSIZE.bit.BYTE_COUNT = 0;
}
// Setup the control endpoint 0.
static void bus_reset(void)
{
@@ -51,7 +61,7 @@ static void bus_reset(void)
ep->EPINTENSET.reg = USB_DEVICE_EPINTENSET_TRCPT0 | USB_DEVICE_EPINTENSET_TRCPT1 | USB_DEVICE_EPINTENSET_RXSTP;
// Prepare for setup packet
dcd_edpt_xfer(0, 0, _setup_packet, sizeof(_setup_packet));
prepare_setup();
}
@@ -69,10 +79,10 @@ void dcd_init (uint8_t rhport)
USB->DEVICE.PADCAL.bit.TRANSP = (*((uint32_t*) USB_FUSES_TRANSP_ADDR) & USB_FUSES_TRANSP_Msk) >> USB_FUSES_TRANSP_Pos;
USB->DEVICE.PADCAL.bit.TRANSN = (*((uint32_t*) USB_FUSES_TRANSN_ADDR) & USB_FUSES_TRANSN_Msk) >> USB_FUSES_TRANSN_Pos;
USB->DEVICE.PADCAL.bit.TRIM = (*((uint32_t*) USB_FUSES_TRIM_ADDR) & USB_FUSES_TRIM_Msk) >> USB_FUSES_TRIM_Pos;
USB->DEVICE.PADCAL.bit.TRIM = (*((uint32_t*) USB_FUSES_TRIM_ADDR) & USB_FUSES_TRIM_Msk) >> USB_FUSES_TRIM_Pos;
USB->DEVICE.QOSCTRL.bit.CQOS = 3;
USB->DEVICE.QOSCTRL.bit.DQOS = 3;
USB->DEVICE.QOSCTRL.bit.CQOS = 3; // High Quality
USB->DEVICE.QOSCTRL.bit.DQOS = 3; // High Quality
// Configure registers
USB->DEVICE.DESCADD.reg = (uint32_t) &sram_registers;
@@ -81,9 +91,11 @@ void dcd_init (uint8_t rhport)
while (USB->DEVICE.SYNCBUSY.bit.ENABLE == 1) {}
USB->DEVICE.INTFLAG.reg |= USB->DEVICE.INTFLAG.reg; // clear pending
USB->DEVICE.INTENSET.reg = USB_DEVICE_INTENSET_SOF | USB_DEVICE_INTENSET_EORST;
USB->DEVICE.INTENSET.reg = /* USB_DEVICE_INTENSET_SOF | */ USB_DEVICE_INTENSET_EORST;
}
#if CFG_TUSB_MCU == OPT_MCU_SAMD51
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
@@ -102,15 +114,30 @@ void dcd_int_disable(uint8_t rhport)
NVIC_DisableIRQ(USB_0_IRQn);
}
#elif CFG_TUSB_MCU == OPT_MCU_SAMD21
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(USB_IRQn);
}
void dcd_int_disable(uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(USB_IRQn);
}
#endif
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
// Response with status first before changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
(void) dev_addr;
// Wait for EP0 to finish before switching the address.
while (USB->DEVICE.DeviceEndpoint[0].EPSTATUS.bit.BK1RDY == 1) {}
// Response with zlp status
dcd_edpt_xfer(rhport, 0x80, NULL, 0);
USB->DEVICE.DADD.reg = USB_DEVICE_DADD_DADD(dev_addr) | USB_DEVICE_DADD_ADDEN;
// DCD can only set address after status for this request is complete
// do it at dcd_edpt0_status_complete()
// Enable SUSPEND interrupt since the bus signal D+/D- are stable now.
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTENCLR_SUSPEND; // clear pending
@@ -135,6 +162,26 @@ void dcd_remote_wakeup(uint8_t rhport)
/* DCD Endpoint port
*------------------------------------------------------------------*/
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
(void) rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS )
{
uint8_t const dev_addr = (uint8_t) request->wValue;
USB->DEVICE.DADD.reg = USB_DEVICE_DADD_DADD(dev_addr) | USB_DEVICE_DADD_ADDEN;
}
// Just finished status stage, prepare for next setup packet
// Note: we may already prepare setup when the last EP0 OUT complete.
// but it has no harm to do it again here
prepare_setup();
}
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
(void) rhport;
@@ -181,12 +228,6 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
UsbDeviceDescBank* bank = &sram_registers[epnum][dir];
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
// A setup token can occur immediately after an OUT STATUS packet so make sure we have a valid
// buffer for the control endpoint.
if (epnum == 0 && dir == 0 && buffer == NULL) {
buffer = _setup_packet;
}
bank->ADDR.reg = (uint32_t) buffer;
if ( dir == TUSB_DIR_OUT )
{
@@ -233,39 +274,63 @@ void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
}
}
/*------------------------------------------------------------------*/
//--------------------------------------------------------------------+
// Interrupt Handler
//--------------------------------------------------------------------+
void maybe_transfer_complete(void) {
uint32_t epints = USB->DEVICE.EPINTSMRY.reg;
static bool maybe_handle_setup_packet(void) {
if (USB->DEVICE.DeviceEndpoint[0].EPINTFLAG.bit.RXSTP)
{
USB->DEVICE.DeviceEndpoint[0].EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_RXSTP;
for (uint8_t epnum = 0; epnum < USB_EPT_NUM; epnum++) {
if ((epints & (1 << epnum)) == 0) {
continue;
}
// This copies the data elsewhere so we can reuse the buffer.
dcd_event_setup_received(0, (uint8_t*) sram_registers[0][0].ADDR.reg, true);
return true;
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
uint32_t epintflag = ep->EPINTFLAG.reg;
// Handle IN completions
if ((epintflag & USB_DEVICE_EPINTFLAG_TRCPT1) != 0) {
UsbDeviceDescBank* bank = &sram_registers[epnum][TUSB_DIR_IN];
uint16_t total_transfer_size = bank->PCKSIZE.bit.BYTE_COUNT;
dcd_event_xfer_complete(0, epnum | TUSB_DIR_IN_MASK, total_transfer_size, XFER_RESULT_SUCCESS, true);
ep->EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_TRCPT1;
}
// Handle OUT completions
if ((epintflag & USB_DEVICE_EPINTFLAG_TRCPT0) != 0) {
UsbDeviceDescBank* bank = &sram_registers[epnum][TUSB_DIR_OUT];
uint16_t total_transfer_size = bank->PCKSIZE.bit.BYTE_COUNT;
// A SETUP token can occur immediately after an OUT packet
// so make sure we have a valid buffer for the control endpoint.
if (epnum == 0) {
prepare_setup();
}
dcd_event_xfer_complete(0, epnum, total_transfer_size, XFER_RESULT_SUCCESS, true);
ep->EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_TRCPT0;
}
}
return false;
}
/*
*------------------------------------------------------------------*/
/* USB_EORSM_DNRSM, USB_EORST_RST, USB_LPMSUSP_DDISC, USB_LPM_DCONN,
USB_MSOF, USB_RAMACER, USB_RXSTP_TXSTP_0, USB_RXSTP_TXSTP_1,
USB_RXSTP_TXSTP_2, USB_RXSTP_TXSTP_3, USB_RXSTP_TXSTP_4,
USB_RXSTP_TXSTP_5, USB_RXSTP_TXSTP_6, USB_RXSTP_TXSTP_7,
USB_STALL0_STALL_0, USB_STALL0_STALL_1, USB_STALL0_STALL_2,
USB_STALL0_STALL_3, USB_STALL0_STALL_4, USB_STALL0_STALL_5,
USB_STALL0_STALL_6, USB_STALL0_STALL_7, USB_STALL1_0, USB_STALL1_1,
USB_STALL1_2, USB_STALL1_3, USB_STALL1_4, USB_STALL1_5, USB_STALL1_6,
USB_STALL1_7, USB_SUSPEND, USB_TRFAIL0_TRFAIL_0, USB_TRFAIL0_TRFAIL_1,
USB_TRFAIL0_TRFAIL_2, USB_TRFAIL0_TRFAIL_3, USB_TRFAIL0_TRFAIL_4,
USB_TRFAIL0_TRFAIL_5, USB_TRFAIL0_TRFAIL_6, USB_TRFAIL0_TRFAIL_7,
USB_TRFAIL1_PERR_0, USB_TRFAIL1_PERR_1, USB_TRFAIL1_PERR_2,
USB_TRFAIL1_PERR_3, USB_TRFAIL1_PERR_4, USB_TRFAIL1_PERR_5,
USB_TRFAIL1_PERR_6, USB_TRFAIL1_PERR_7, USB_UPRSM, USB_WAKEUP */
void USB_0_Handler(void) {
void dcd_isr (uint8_t rhport)
{
(void) rhport;
uint32_t int_status = USB->DEVICE.INTFLAG.reg & USB->DEVICE.INTENSET.reg;
/*------------- Interrupt Processing -------------*/
if ( int_status & USB_DEVICE_INTFLAG_SOF )
{
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTFLAG_SOF;
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
// SAMD doesn't distinguish between Suspend and Disconnect state.
// Both condition will cause SUSPEND interrupt triggered.
// To prevent being triggered when D+/D- are not stable, SUSPEND interrupt is only
@@ -303,48 +368,44 @@ void USB_0_Handler(void) {
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
}
// Setup packet received.
maybe_handle_setup_packet();
// Handle SETUP packet
if (USB->DEVICE.DeviceEndpoint[0].EPINTFLAG.bit.RXSTP)
{
// This copies the data elsewhere so we can reuse the buffer.
dcd_event_setup_received(0, _setup_packet, true);
USB->DEVICE.DeviceEndpoint[0].EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_RXSTP;
}
// Handle complete transfer
maybe_transfer_complete();
}
#if CFG_TUSB_MCU == OPT_MCU_SAMD51
/*
*------------------------------------------------------------------*/
/* USB_EORSM_DNRSM, USB_EORST_RST, USB_LPMSUSP_DDISC, USB_LPM_DCONN,
USB_MSOF, USB_RAMACER, USB_RXSTP_TXSTP_0, USB_RXSTP_TXSTP_1,
USB_RXSTP_TXSTP_2, USB_RXSTP_TXSTP_3, USB_RXSTP_TXSTP_4,
USB_RXSTP_TXSTP_5, USB_RXSTP_TXSTP_6, USB_RXSTP_TXSTP_7,
USB_STALL0_STALL_0, USB_STALL0_STALL_1, USB_STALL0_STALL_2,
USB_STALL0_STALL_3, USB_STALL0_STALL_4, USB_STALL0_STALL_5,
USB_STALL0_STALL_6, USB_STALL0_STALL_7, USB_STALL1_0, USB_STALL1_1,
USB_STALL1_2, USB_STALL1_3, USB_STALL1_4, USB_STALL1_5, USB_STALL1_6,
USB_STALL1_7, USB_SUSPEND, USB_TRFAIL0_TRFAIL_0, USB_TRFAIL0_TRFAIL_1,
USB_TRFAIL0_TRFAIL_2, USB_TRFAIL0_TRFAIL_3, USB_TRFAIL0_TRFAIL_4,
USB_TRFAIL0_TRFAIL_5, USB_TRFAIL0_TRFAIL_6, USB_TRFAIL0_TRFAIL_7,
USB_TRFAIL1_PERR_0, USB_TRFAIL1_PERR_1, USB_TRFAIL1_PERR_2,
USB_TRFAIL1_PERR_3, USB_TRFAIL1_PERR_4, USB_TRFAIL1_PERR_5,
USB_TRFAIL1_PERR_6, USB_TRFAIL1_PERR_7, USB_UPRSM, USB_WAKEUP */
void USB_0_Handler(void) {
dcd_isr(0);
}
/* USB_SOF_HSOF */
void USB_1_Handler(void) {
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTFLAG_SOF;
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
void transfer_complete(uint8_t direction) {
uint32_t epints = USB->DEVICE.EPINTSMRY.reg;
for (uint8_t epnum = 0; epnum < USB_EPT_NUM; epnum++) {
if ((epints & (1 << epnum)) == 0) {
continue;
}
if (direction == TUSB_DIR_OUT && maybe_handle_setup_packet()) {
continue;
}
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
UsbDeviceDescBank* bank = &sram_registers[epnum][direction];
uint16_t total_transfer_size = bank->PCKSIZE.bit.BYTE_COUNT;
uint8_t ep_addr = epnum;
if (direction == TUSB_DIR_IN) {
ep_addr |= TUSB_DIR_IN_MASK;
}
dcd_event_xfer_complete(0, ep_addr, total_transfer_size, XFER_RESULT_SUCCESS, true);
// just finished status stage (total size = 0), prepare for next setup packet
if (epnum == 0 && total_transfer_size == 0) {
dcd_edpt_xfer(0, 0, _setup_packet, sizeof(_setup_packet));
}
if (direction == TUSB_DIR_IN) {
ep->EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_TRCPT1;
} else {
ep->EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_TRCPT0;
}
}
dcd_isr(0);
}
// Bank zero is for OUT and SETUP transactions.
@@ -352,7 +413,7 @@ void transfer_complete(uint8_t direction) {
USB_TRCPT0_3, USB_TRCPT0_4, USB_TRCPT0_5,
USB_TRCPT0_6, USB_TRCPT0_7 */
void USB_2_Handler(void) {
transfer_complete(TUSB_DIR_OUT);
dcd_isr(0);
}
// Bank one is used for IN transactions.
@@ -360,7 +421,15 @@ void USB_2_Handler(void) {
USB_TRCPT1_3, USB_TRCPT1_4, USB_TRCPT1_5,
USB_TRCPT1_6, USB_TRCPT1_7 */
void USB_3_Handler(void) {
transfer_complete(TUSB_DIR_IN);
dcd_isr(0);
}
#elif CFG_TUSB_MCU == OPT_MCU_SAMD21
void USB_Handler(void) {
dcd_isr(0);
}
#endif
#endif

View File

@@ -1,343 +0,0 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2018 Scott Shawcroft for Adafruit Industries
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && CFG_TUSB_MCU == OPT_MCU_SAMD21
#include "device/dcd.h"
#include "sam.h"
/*------------------------------------------------------------------*/
/* MACRO TYPEDEF CONSTANT ENUM
*------------------------------------------------------------------*/
static TU_ATTR_ALIGNED(4) UsbDeviceDescBank sram_registers[8][2];
static TU_ATTR_ALIGNED(4) uint8_t _setup_packet[8];
// Setup the control endpoint 0.
static void bus_reset(void)
{
// Max size of packets is 64 bytes.
UsbDeviceDescBank* bank_out = &sram_registers[0][TUSB_DIR_OUT];
bank_out->PCKSIZE.bit.SIZE = 0x3;
UsbDeviceDescBank* bank_in = &sram_registers[0][TUSB_DIR_IN];
bank_in->PCKSIZE.bit.SIZE = 0x3;
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[0];
ep->EPCFG.reg = USB_DEVICE_EPCFG_EPTYPE0(0x1) | USB_DEVICE_EPCFG_EPTYPE1(0x1);
ep->EPINTENSET.reg = USB_DEVICE_EPINTENSET_TRCPT0 | USB_DEVICE_EPINTENSET_TRCPT1 | USB_DEVICE_EPINTENSET_RXSTP;
// Prepare for setup packet
dcd_edpt_xfer(0, 0, _setup_packet, sizeof(_setup_packet));
}
/*------------------------------------------------------------------*/
/* Controller API
*------------------------------------------------------------------*/
void dcd_init (uint8_t rhport)
{
(void) rhport;
// Reset to get in a clean state.
USB->DEVICE.CTRLA.bit.SWRST = true;
while (USB->DEVICE.SYNCBUSY.bit.SWRST == 0) {}
while (USB->DEVICE.SYNCBUSY.bit.SWRST == 1) {}
USB->DEVICE.PADCAL.bit.TRANSP = (*((uint32_t*) USB_FUSES_TRANSP_ADDR) & USB_FUSES_TRANSP_Msk) >> USB_FUSES_TRANSP_Pos;
USB->DEVICE.PADCAL.bit.TRANSN = (*((uint32_t*) USB_FUSES_TRANSN_ADDR) & USB_FUSES_TRANSN_Msk) >> USB_FUSES_TRANSN_Pos;
USB->DEVICE.PADCAL.bit.TRIM = (*((uint32_t*) USB_FUSES_TRIM_ADDR) & USB_FUSES_TRIM_Msk) >> USB_FUSES_TRIM_Pos;
USB->DEVICE.QOSCTRL.bit.CQOS = USB_QOSCTRL_CQOS_HIGH_Val;
USB->DEVICE.QOSCTRL.bit.DQOS = USB_QOSCTRL_DQOS_HIGH_Val;
// Configure registers
USB->DEVICE.DESCADD.reg = (uint32_t) &sram_registers;
USB->DEVICE.CTRLB.reg = USB_DEVICE_CTRLB_SPDCONF_FS;
USB->DEVICE.CTRLA.reg = USB_CTRLA_MODE_DEVICE | USB_CTRLA_ENABLE | USB_CTRLA_RUNSTDBY;
while (USB->DEVICE.SYNCBUSY.bit.ENABLE == 1) {}
USB->DEVICE.INTFLAG.reg |= USB->DEVICE.INTFLAG.reg; // clear pending
USB->DEVICE.INTENSET.reg = USB_DEVICE_INTENSET_SOF | USB_DEVICE_INTENSET_EORST;
}
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(USB_IRQn);
}
void dcd_int_disable(uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(USB_IRQn);
}
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
// Response with status first before changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
// Wait for EP0 to finish before switching the address.
while (USB->DEVICE.DeviceEndpoint[0].EPSTATUS.bit.BK1RDY == 1) {}
USB->DEVICE.DADD.reg = USB_DEVICE_DADD_DADD(dev_addr) | USB_DEVICE_DADD_ADDEN;
// Enable SUSPEND interrupt since the bus signal D+/D- are stable now.
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTENCLR_SUSPEND; // clear pending
USB->DEVICE.INTENSET.reg = USB_DEVICE_INTENSET_SUSPEND;
}
void dcd_set_config (uint8_t rhport, uint8_t config_num)
{
(void) rhport;
(void) config_num;
// Nothing to do
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
USB->DEVICE.CTRLB.bit.UPRSM = 1;
}
/*------------------------------------------------------------------*/
/* DCD Endpoint port
*------------------------------------------------------------------*/
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(desc_edpt->bEndpointAddress);
UsbDeviceDescBank* bank = &sram_registers[epnum][dir];
uint32_t size_value = 0;
while (size_value < 7) {
if (1 << (size_value + 3) == desc_edpt->wMaxPacketSize.size) {
break;
}
size_value++;
}
// unsupported endpoint size
if ( size_value == 7 && desc_edpt->wMaxPacketSize.size != 1023 ) return false;
bank->PCKSIZE.bit.SIZE = size_value;
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
if ( dir == TUSB_DIR_OUT )
{
ep->EPCFG.bit.EPTYPE0 = desc_edpt->bmAttributes.xfer + 1;
ep->EPINTENSET.bit.TRCPT0 = true;
}else
{
ep->EPCFG.bit.EPTYPE1 = desc_edpt->bmAttributes.xfer + 1;
ep->EPINTENSET.bit.TRCPT1 = true;
}
return true;
}
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
UsbDeviceDescBank* bank = &sram_registers[epnum][dir];
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
// A setup token can occur immediately after an OUT STATUS packet so make sure we have a valid
// buffer for the control endpoint.
if (epnum == 0 && dir == 0 && buffer == NULL) {
buffer = _setup_packet;
}
bank->ADDR.reg = (uint32_t) buffer;
if ( dir == TUSB_DIR_OUT )
{
bank->PCKSIZE.bit.MULTI_PACKET_SIZE = total_bytes;
bank->PCKSIZE.bit.BYTE_COUNT = 0;
ep->EPSTATUSCLR.reg |= USB_DEVICE_EPSTATUSCLR_BK0RDY;
ep->EPINTFLAG.reg |= USB_DEVICE_EPINTFLAG_TRFAIL0;
} else
{
bank->PCKSIZE.bit.MULTI_PACKET_SIZE = 0;
bank->PCKSIZE.bit.BYTE_COUNT = total_bytes;
// bank->PCKSIZE.bit.AUTO_ZLP = 1;
ep->EPSTATUSSET.reg |= USB_DEVICE_EPSTATUSSET_BK1RDY;
ep->EPINTFLAG.reg |= USB_DEVICE_EPINTFLAG_TRFAIL1;
}
return true;
}
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) {
ep->EPSTATUSSET.reg = USB_DEVICE_EPSTATUSSET_STALLRQ1;
} else {
ep->EPSTATUSSET.reg = USB_DEVICE_EPSTATUSSET_STALLRQ0;
}
}
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) {
ep->EPSTATUSCLR.reg = USB_DEVICE_EPSTATUSCLR_STALLRQ1 | USB_DEVICE_EPSTATUSCLR_DTGLIN;
} else {
ep->EPSTATUSCLR.reg = USB_DEVICE_EPSTATUSCLR_STALLRQ0 | USB_DEVICE_EPSTATUSCLR_DTGLOUT;
}
}
/*------------------------------------------------------------------*/
static bool maybe_handle_setup_packet(void) {
if (USB->DEVICE.DeviceEndpoint[0].EPINTFLAG.bit.RXSTP)
{
USB->DEVICE.DeviceEndpoint[0].EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_RXSTP;
// This copies the data elsewhere so we can reuse the buffer.
dcd_event_setup_received(0, (uint8_t*) sram_registers[0][0].ADDR.reg, true);
return true;
}
return false;
}
void maybe_transfer_complete(void) {
uint32_t epints = USB->DEVICE.EPINTSMRY.reg;
for (uint8_t epnum = 0; epnum < USB_EPT_NUM; epnum++) {
if ((epints & (1 << epnum)) == 0) {
continue;
}
if (maybe_handle_setup_packet()) {
continue;
}
UsbDeviceEndpoint* ep = &USB->DEVICE.DeviceEndpoint[epnum];
uint32_t epintflag = ep->EPINTFLAG.reg;
uint16_t total_transfer_size = 0;
// Handle IN completions
if ((epintflag & USB_DEVICE_EPINTFLAG_TRCPT1) != 0) {
ep->EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_TRCPT1;
UsbDeviceDescBank* bank = &sram_registers[epnum][TUSB_DIR_IN];
total_transfer_size = bank->PCKSIZE.bit.BYTE_COUNT;
uint8_t ep_addr = epnum | TUSB_DIR_IN_MASK;
dcd_event_xfer_complete(0, ep_addr, total_transfer_size, XFER_RESULT_SUCCESS, true);
}
// Handle OUT completions
if ((epintflag & USB_DEVICE_EPINTFLAG_TRCPT0) != 0) {
ep->EPINTFLAG.reg = USB_DEVICE_EPINTFLAG_TRCPT0;
UsbDeviceDescBank* bank = &sram_registers[epnum][TUSB_DIR_OUT];
total_transfer_size = bank->PCKSIZE.bit.BYTE_COUNT;
uint8_t ep_addr = epnum;
dcd_event_xfer_complete(0, ep_addr, total_transfer_size, XFER_RESULT_SUCCESS, true);
}
// Just finished status stage (total size = 0), prepare for next setup packet
// TODO could cause issue with actual zero length data used by class such as DFU
if (epnum == 0 && total_transfer_size == 0) {
dcd_edpt_xfer(0, 0, _setup_packet, sizeof(_setup_packet));
}
}
}
void USB_Handler(void)
{
uint32_t int_status = USB->DEVICE.INTFLAG.reg & USB->DEVICE.INTENSET.reg;
USB->DEVICE.INTFLAG.reg = int_status; // clear interrupt
/*------------- Interrupt Processing -------------*/
if ( int_status & USB_DEVICE_INTFLAG_SOF )
{
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
// SAMD doesn't distinguish between Suspend and Disconnect state.
// Both condition will cause SUSPEND interrupt triggered.
// To prevent being triggered when D+/D- are not stable, SUSPEND interrupt is only
// enabled when we received SET_ADDRESS request and cleared on Bus Reset
if ( int_status & USB_DEVICE_INTFLAG_SUSPEND )
{
// Enable wakeup interrupt
USB->DEVICE.INTFLAG.reg = USB_DEVICE_INTFLAG_WAKEUP; // clear pending
USB->DEVICE.INTENSET.reg = USB_DEVICE_INTFLAG_WAKEUP;
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
}
// Wakeup interrupt is only enabled when we got suspended.
// Wakeup interrupt will disable itself
if ( int_status & USB_DEVICE_INTFLAG_WAKEUP )
{
// disable wakeup interrupt itself
USB->DEVICE.INTENCLR.reg = USB_DEVICE_INTFLAG_WAKEUP;
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
}
if ( int_status & USB_DEVICE_INTFLAG_EORST )
{
// Disable both suspend and wakeup interrupt
USB->DEVICE.INTENCLR.reg = USB_DEVICE_INTFLAG_WAKEUP | USB_DEVICE_INTFLAG_SUSPEND;
bus_reset();
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
}
// Setup packet received.
maybe_handle_setup_packet();
// Handle complete transfer
maybe_transfer_complete();
}
#endif

View File

@@ -0,0 +1,467 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2018, hathach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUSB_MCU == OPT_MCU_SAMG
#include "sam.h"
#include "device/dcd.h"
// TODO should support (SAM3S || SAM4S || SAM4E || SAMG55)
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
#define EP_COUNT 6
// Transfer descriptor
typedef struct
{
uint8_t* buffer;
uint16_t total_len;
volatile uint16_t actual_len;
uint16_t epsize;
} xfer_desc_t;
// Endpoint 0-5, each can only be either OUT or In
xfer_desc_t _dcd_xfer[EP_COUNT];
// Indicate that DATA Toggle for Control Status is incorrect, which must always be DATA1 by USB Specs.
// However SAMG DToggle is read-only, therefore we must duplicate the status phase ( D0 then D1 )
// as walk-around to resolve this. The D0 status packet is likely to be discarded by USB Host safely.
// Note: Only needed for IN Status e.g CDC_SET_LINE_CODING, since out data is sent by host
volatile bool _walkaround_incorrect_dtoggle_control_status;
void xfer_epsize_set(xfer_desc_t* xfer, uint16_t epsize)
{
xfer->epsize = epsize;
}
void xfer_begin(xfer_desc_t* xfer, uint8_t * buffer, uint16_t total_bytes)
{
xfer->buffer = buffer;
xfer->total_len = total_bytes;
xfer->actual_len = 0;
}
void xfer_end(xfer_desc_t* xfer)
{
xfer->buffer = NULL;
xfer->total_len = 0;
xfer->actual_len = 0;
}
uint16_t xfer_packet_len(xfer_desc_t* xfer)
{
// also cover zero-length packet
return tu_min16(xfer->total_len - xfer->actual_len, xfer->epsize);
}
void xfer_packet_done(xfer_desc_t* xfer)
{
uint16_t const xact_len = xfer_packet_len(xfer);
xfer->buffer += xact_len;
xfer->actual_len += xact_len;
}
//------------- Transaction helpers -------------//
// Write data to EP FIFO, return number of written bytes
static void xact_ep_write(uint8_t epnum, uint8_t* buffer, uint16_t xact_len)
{
for(uint16_t i=0; i<xact_len; i++)
{
UDP->UDP_FDR[epnum] = (uint32_t) buffer[i];
}
}
// Read data from EP FIFO
static void xact_ep_read(uint8_t epnum, uint8_t* buffer, uint16_t xact_len)
{
for(uint16_t i=0; i<xact_len; i++)
{
buffer[i] = (uint8_t) UDP->UDP_FDR[epnum];
}
}
/*------------------------------------------------------------------*/
/* Device API
*------------------------------------------------------------------*/
// Set up endpoint 0, clear all other endpoints
static void bus_reset(void)
{
_walkaround_incorrect_dtoggle_control_status = false;
tu_memclr(_dcd_xfer, sizeof(_dcd_xfer));
xfer_epsize_set(&_dcd_xfer[0], CFG_TUD_ENDPOINT0_SIZE);
// Enable EP0 control
UDP->UDP_CSR[0] = UDP_CSR_EPEDS_Msk;
// Enable interrupt : EP0, Suspend, Resume, Wakeup
UDP->UDP_IER = UDP_IER_EP0INT_Msk | UDP_IER_RXSUSP_Msk | UDP_IER_RXRSM_Msk | UDP_IER_WAKEUP_Msk;
// Enable transceiver
UDP->UDP_TXVC &= ~UDP_TXVC_TXVDIS_Msk;
}
// Initialize controller to device mode
void dcd_init (uint8_t rhport)
{
(void) rhport;
tu_memclr(_dcd_xfer, sizeof(_dcd_xfer));
// Enable pull-up, disable transceiver
UDP->UDP_TXVC = UDP_TXVC_PUON | UDP_TXVC_TXVDIS_Msk;
}
// Enable device interrupt
void dcd_int_enable (uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(UDP_IRQn);
}
// Disable device interrupt
void dcd_int_disable (uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(UDP_IRQn);
}
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
(void) rhport;
(void) dev_addr;
// Response with zlp status
dcd_edpt_xfer(rhport, 0x80, NULL, 0);
// DCD can only set address after status for this request is complete.
// do it at dcd_edpt0_status_complete()
}
// Receive Set Configure request
void dcd_set_config (uint8_t rhport, uint8_t config_num)
{
(void) rhport;
(void) config_num;
// Configured State
// UDP->UDP_GLB_STAT |= UDP_GLB_STAT_CONFG_Msk;
}
// Wake up host
void dcd_remote_wakeup (uint8_t rhport)
{
(void) rhport;
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
(void) rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD )
{
if (request->bRequest == TUSB_REQ_SET_ADDRESS)
{
uint8_t const dev_addr = (uint8_t) request->wValue;
// Enable addressed state
UDP->UDP_GLB_STAT |= UDP_GLB_STAT_FADDEN_Msk;
// Set new address & Function enable bit
UDP->UDP_FADDR = UDP_FADDR_FEN_Msk | UDP_FADDR_FADD(dev_addr);
}
else if (request->bRequest == TUSB_REQ_SET_CONFIGURATION)
{
// Configured State
UDP->UDP_GLB_STAT |= UDP_GLB_STAT_CONFG_Msk;
}
}
}
// Configure endpoint's registers according to descriptor
// SAMG doesn't support a same endpoint number with IN and OUT
// e.g EP1 OUT & EP1 IN cannot exist together
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(ep_desc->bEndpointAddress);
// TODO Isochronous is not supported yet
TU_VERIFY(ep_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
TU_VERIFY(epnum < EP_COUNT);
// Must not already enabled
TU_ASSERT((UDP->UDP_CSR[epnum] & UDP_CSR_EPEDS_Msk) == 0);
xfer_epsize_set(&_dcd_xfer[epnum], ep_desc->wMaxPacketSize.size);
// Configure type and eanble EP
UDP->UDP_CSR[epnum] = UDP_CSR_EPEDS_Msk | UDP_CSR_EPTYPE(ep_desc->bmAttributes.xfer + 4*dir);
// Enable EP Interrupt for IN
if (dir == TUSB_DIR_IN) UDP->UDP_IER |= (1 << epnum);
return true;
}
// Submit a transfer, When complete dcd_event_xfer_complete() is invoked to notify the stack
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_desc_t* xfer = &_dcd_xfer[epnum];
xfer_begin(xfer, buffer, total_bytes);
if (dir == TUSB_DIR_OUT)
{
// Clear EP0 direction bit
if (epnum == 0) UDP->UDP_CSR[epnum] &= ~UDP_CSR_DIR_Msk;
// Enable interrupt when starting OUT transfer
if (epnum != 0) UDP->UDP_IER |= (1 << epnum);
}
else
{
if (epnum == 0)
{
// Previous EP0 direction is OUT --> This transfer is ZLP control status.
if ( !(UDP->UDP_CSR[epnum] & UDP_CSR_DIR_Msk) )
{
// Set EP0 dir bit
UDP->UDP_CSR[epnum] |= UDP_CSR_DIR_Msk;
// DATA Toggle is 0, USB Specs requires Status Stage must be DATA1
// Since SAMG DToggle is read-only, we mark this and implement the walk-around
if ( !(UDP->UDP_CSR[epnum] & UDP_CSR_DTGLE_Msk) )
{
TU_LOG2("Incorrect DATA TOGGLE, Control Status must be DATA1\n");
// DTGLE is read-only on SAMG, this statement has no effect
UDP->UDP_CSR[epnum] |= UDP_CSR_DTGLE_Msk;
// WALKROUND: duplicate IN transfer to send DATA1 status packet
// set flag for irq to skip reporting first incorrect packet
_walkaround_incorrect_dtoggle_control_status = true;
UDP->UDP_CSR[epnum] |= UDP_CSR_TXPKTRDY_Msk;
while ( UDP->UDP_CSR[epnum] & UDP_CSR_TXPKTRDY_Msk ) {}
_walkaround_incorrect_dtoggle_control_status = false;
}
}
}
xact_ep_write(epnum, xfer->buffer, xfer_packet_len(xfer));
// TX ready for transfer
UDP->UDP_CSR[epnum] |= UDP_CSR_TXPKTRDY_Msk;
}
return true;
}
// Stall endpoint
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
// Set force stall bit
UDP->UDP_CSR[epnum] |= UDP_CSR_FORCESTALL_Msk;
}
// clear stall, data toggle is also reset to DATA0
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
// clear stall
UDP->UDP_CSR[epnum] &= ~UDP_CSR_FORCESTALL_Msk;
// must also reset EP to clear data toggle
UDP->UDP_RST_EP = tu_bit_set(UDP->UDP_RST_EP, epnum);
UDP->UDP_RST_EP = tu_bit_clear(UDP->UDP_RST_EP, epnum);
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
void dcd_isr(uint8_t rhport)
{
uint32_t const intr_mask = UDP->UDP_IMR;
uint32_t const intr_status = UDP->UDP_ISR & intr_mask;
// clear interrupt
UDP->UDP_ICR = intr_status;
// Bus reset
if (intr_status & UDP_ISR_ENDBUSRES_Msk)
{
bus_reset();
dcd_event_bus_signal(rhport, DCD_EVENT_BUS_RESET, true);
}
// SOF
// if (intr_status & UDP_ISR_SOFINT_Msk) dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
// Suspend
if (intr_status & UDP_ISR_RXSUSP_Msk) dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
// Resume
if (intr_status & UDP_ISR_RXRSM_Msk) dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
// Wakeup
if (intr_status & UDP_ISR_WAKEUP_Msk) dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
//------------- Endpoints -------------//
if ( intr_status & TU_BIT(0) )
{
// setup packet
if (UDP->UDP_CSR[0] & UDP_CSR_RXSETUP)
{
// get setup from FIFO
uint8_t setup[8];
for(uint8_t i=0; i<sizeof(setup); i++)
{
setup[i] = (uint8_t) UDP->UDP_FDR[0];
}
// notify usbd
dcd_event_setup_received(rhport, setup, true);
// Set EP direction bit according to DATA stage
if (setup[0] & 0x80)
{
UDP->UDP_CSR[0] |= UDP_CSR_DIR_Msk;
}else
{
UDP->UDP_CSR[0] &= ~UDP_CSR_DIR_Msk;
}
// Clear Setup bit & stall bit if needed
UDP->UDP_CSR[0] &= ~(UDP_CSR_RXSETUP_Msk | UDP_CSR_FORCESTALL_Msk);
return;
}
}
for(uint8_t epnum = 0; epnum < EP_COUNT; epnum++)
{
if ( intr_status & TU_BIT(epnum) )
{
xfer_desc_t* xfer = &_dcd_xfer[epnum];
//------------- Endpoint IN -------------//
if (UDP->UDP_CSR[epnum] & UDP_CSR_TXCOMP_Msk)
{
xfer_packet_done(xfer);
uint16_t const xact_len = xfer_packet_len(xfer);
if (xact_len)
{
// write to EP fifo
xact_ep_write(epnum, xfer->buffer, xact_len);
// TX ready for transfer
UDP->UDP_CSR[epnum] |= UDP_CSR_TXPKTRDY_Msk;
}else
{
// WALKAROUND: Skip reporting this incorrect DATA Toggle status IN transfer
if ( !(_walkaround_incorrect_dtoggle_control_status && (epnum == 0) && (xfer->actual_len == 0)) )
{
// xfer is complete
dcd_event_xfer_complete(rhport, epnum | TUSB_DIR_IN_MASK, xfer->actual_len, XFER_RESULT_SUCCESS, true);
// Required since control OUT can happen right after before stack handle this event
xfer_end(xfer);
}
}
// Clear TX Complete bit
UDP->UDP_CSR[epnum] &= ~UDP_CSR_TXCOMP_Msk;
}
//------------- Endpoint OUT -------------//
// Ping-Pong is a MUST for Bulk/Iso
// NOTE: When both Bank0 and Bank1 are both set, there is no way to know which one comes first
uint32_t const banks_complete = UDP->UDP_CSR[epnum] & (UDP_CSR_RX_DATA_BK0_Msk | UDP_CSR_RX_DATA_BK1_Msk);
if (banks_complete)
{
uint16_t const xact_len = (uint16_t) ((UDP->UDP_CSR[epnum] & UDP_CSR_RXBYTECNT_Msk) >> UDP_CSR_RXBYTECNT_Pos);
// Read from EP fifo
xact_ep_read(epnum, xfer->buffer, xact_len);
xfer_packet_done(xfer);
if ( 0 == xfer_packet_len(xfer) )
{
// Disable OUT EP interrupt when transfer is complete
if (epnum != 0) UDP->UDP_IDR |= (1 << epnum);
dcd_event_xfer_complete(rhport, epnum, xfer->actual_len, XFER_RESULT_SUCCESS, true);
xfer_end(xfer);
}
// Clear DATA Bank0/1 bit
UDP->UDP_CSR[epnum] &= ~banks_complete;
}
// Stall sent to host
if (UDP->UDP_CSR[epnum] & UDP_CSR_STALLSENT_Msk)
{
UDP->UDP_CSR[epnum] &= ~UDP_CSR_STALLSENT_Msk;
}
}
}
}
#endif

View File

@@ -31,7 +31,6 @@
#include "nrf.h"
#include "nrf_clock.h"
#include "nrf_power.h"
#include "nrf_usbd.h"
#include "nrfx_usbd_errata.h"
#ifdef SOFTDEVICE_PRESENT
@@ -277,8 +276,10 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
xfer->total_len = total_bytes;
xfer->actual_len = 0;
// Control endpoint with zero-length packet --> status stage
if ( epnum == 0 && total_bytes == 0 )
// Control endpoint with zero-length packet and opposite direction to 1st request byte --> status stage
bool const control_status = (epnum == 0 && total_bytes == 0 && dir != tu_edpt_dir(NRF_USBD->BMREQUESTTYPE));
if ( control_status )
{
// Status Phase also require Easy DMA has to be free as well !!!!
edpt_dma_start(&NRF_USBD->TASKS_EP0STATUS);
@@ -498,7 +499,8 @@ void USBD_IRQHandler(void)
if ( int_status & (USBD_INTEN_EPDATA_Msk | USBD_INTEN_EP0DATADONE_Msk) )
{
uint32_t data_status = NRF_USBD->EPDATASTATUS;
nrf_usbd_epdatastatus_clear(data_status);
NRF_USBD->EPDATASTATUS = data_status;
__ISB(); __DSB();
// EP0DATADONE is set with either Control Out on IN Data
// Since EPDATASTATUS cannot be used to determine whether it is control OUT or IN.
@@ -572,7 +574,7 @@ static bool hfclk_running(void)
}
#endif
return nrf_clock_hf_is_running(NRF_CLOCK_HFCLK_HIGH_ACCURACY);
return nrf_clock_hf_is_running(NRF_CLOCK, NRF_CLOCK_HFCLK_HIGH_ACCURACY);
}
static void hfclk_enable(void)
@@ -588,8 +590,8 @@ static void hfclk_enable(void)
}
#endif
nrf_clock_event_clear(NRF_CLOCK_EVENT_HFCLKSTARTED);
nrf_clock_task_trigger(NRF_CLOCK_TASK_HFCLKSTART);
nrf_clock_event_clear(NRF_CLOCK, NRF_CLOCK_EVENT_HFCLKSTARTED);
nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_HFCLKSTART);
}
static void hfclk_disable(void)
@@ -602,7 +604,7 @@ static void hfclk_disable(void)
}
#endif
nrf_clock_task_trigger(NRF_CLOCK_TASK_HFCLKSTOP);
nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_HFCLKSTOP);
}
// Power & Clock Peripheral on nRF5x to manage USB
@@ -630,7 +632,8 @@ void tusb_hal_nrf_power_event (uint32_t event)
if ( !NRF_USBD->ENABLE )
{
/* Prepare for READY event receiving */
nrf_usbd_eventcause_clear(NRF_USBD_EVENTCAUSE_READY_MASK);
NRF_USBD->EVENTCAUSE = USBD_EVENTCAUSE_READY_Msk;
__ISB(); __DSB(); // for sync
/* Enable the peripheral */
// ERRATA 171, 187, 166
@@ -667,7 +670,8 @@ void tusb_hal_nrf_power_event (uint32_t event)
// CRITICAL_REGION_EXIT();
}
nrf_usbd_enable();
NRF_USBD->ENABLE = 1;
__ISB(); __DSB(); // for sync
// Enable HFCLK
hfclk_enable();
@@ -678,8 +682,8 @@ void tusb_hal_nrf_power_event (uint32_t event)
/* Waiting for USBD peripheral enabled */
while ( !(USBD_EVENTCAUSE_READY_Msk & NRF_USBD->EVENTCAUSE) ) { }
nrf_usbd_eventcause_clear(USBD_EVENTCAUSE_READY_Msk);
nrf_usbd_event_clear(USBD_EVENTCAUSE_READY_Msk);
NRF_USBD->EVENTCAUSE = USBD_EVENTCAUSE_READY_Msk;
__ISB(); __DSB(); // for sync
if ( nrfx_usbd_errata_171() )
{
@@ -719,11 +723,11 @@ void tusb_hal_nrf_power_event (uint32_t event)
*((volatile uint32_t *) (NRF_USBD_BASE + 0x800)) = 0x7E3;
*((volatile uint32_t *) (NRF_USBD_BASE + 0x804)) = 0x40;
__ISB();
__DSB();
__ISB(); __DSB();
}
nrf_usbd_isosplit_set(USBD_ISOSPLIT_SPLIT_HalfIN);
// ISO buffer Lower half for IN, upper half for OUT
NRF_USBD->ISOSPLIT = USBD_ISOSPLIT_SPLIT_HalfIN;
// Enable interrupt
NRF_USBD->INTENSET = USBD_INTEN_USBRESET_Msk | USBD_INTEN_EPDATA_Msk |
@@ -737,7 +741,8 @@ void tusb_hal_nrf_power_event (uint32_t event)
while ( !hfclk_running() ) { }
// Enable pull up
nrf_usbd_pullup_enable();
NRF_USBD->USBPULLUP = 1;
__ISB(); __DSB(); // for sync
break;
case USB_EVT_REMOVED:
@@ -746,7 +751,8 @@ void tusb_hal_nrf_power_event (uint32_t event)
// Abort all transfers
// Disable pull up
nrf_usbd_pullup_disable();
NRF_USBD->USBPULLUP = 0;
__ISB(); __DSB(); // for sync
// Disable Interrupt
NVIC_DisableIRQ(USBD_IRQn);
@@ -754,7 +760,9 @@ void tusb_hal_nrf_power_event (uint32_t event)
// disable all interrupt
NRF_USBD->INTENCLR = NRF_USBD->INTEN;
nrf_usbd_disable();
NRF_USBD->ENABLE = 0;
__ISB(); __DSB(); // for sync
hfclk_disable();
dcd_event_bus_signal(0, DCD_EVENT_UNPLUGGED, true);

View File

@@ -0,0 +1,433 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2019-2020 Peter Lawrence
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
/*
Theory of operation:
The NUC100/NUC120 USBD peripheral has six "EP"s, but each is simplex,
so two collectively (peripheral nomenclature of "EP0" and "EP1") are needed to
implement USB EP0. PERIPH_EP0 and PERIPH_EP1 are used by this driver for
EP0_IN and EP0_OUT respectively. This leaves up to four for user usage.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_NUC120)
#include "device/dcd.h"
#include "NUC100Series.h"
/* allocation of USBD RAM for Setup, EP0_IN, and and EP_OUT */
#define PERIPH_SETUP_BUF_BASE 0
#define PERIPH_SETUP_BUF_LEN 8
#define PERIPH_EP0_BUF_BASE (PERIPH_SETUP_BUF_BASE + PERIPH_SETUP_BUF_LEN)
#define PERIPH_EP0_BUF_LEN CFG_TUD_ENDPOINT0_SIZE
#define PERIPH_EP1_BUF_BASE (PERIPH_EP0_BUF_BASE + PERIPH_EP0_BUF_LEN)
#define PERIPH_EP1_BUF_LEN CFG_TUD_ENDPOINT0_SIZE
#define PERIPH_EP2_BUF_BASE (PERIPH_EP1_BUF_BASE + PERIPH_EP1_BUF_LEN)
/* rather important info unfortunately not provided by device include files: how much there is */
#define USBD_BUF_SIZE 512
enum ep_enum
{
PERIPH_EP0 = 0,
PERIPH_EP1 = 1,
PERIPH_EP2 = 2,
PERIPH_EP3 = 3,
PERIPH_EP4 = 4,
PERIPH_EP5 = 5,
PERIPH_MAX_EP,
};
/* set by dcd_set_address() */
static volatile uint8_t assigned_address;
/* reset by dcd_init(), this is used by dcd_edpt_open() to assign USBD peripheral buffer addresses */
static uint32_t bufseg_addr;
/* used by dcd_edpt_xfer() and the ISR to reset the data sync (DATA0/DATA1) in an EP0_IN transfer */
static bool active_ep0_xfer;
/* RAM table needed to track ongoing transfers performed by dcd_edpt_xfer(), dcd_in_xfer(), and the ISR */
static struct xfer_ctl_t
{
uint8_t *data_ptr; /* data_ptr tracks where to next copy data to (for OUT) or from (for IN) */
union {
uint16_t in_remaining_bytes; /* for IN endpoints, we track how many bytes are left to transfer */
uint16_t out_bytes_so_far; /* but for OUT endpoints, we track how many bytes we've transferred so far */
};
uint16_t max_packet_size; /* needed since device driver only finds out this at runtime */
uint16_t total_bytes; /* quantity needed to pass as argument to dcd_event_xfer_complete() (for IN endpoints) */
} xfer_table[PERIPH_MAX_EP];
/*
local helper functions
*/
static void usb_attach(void)
{
USBD->DRVSE0 &= ~USBD_DRVSE0_DRVSE0_Msk;
}
static void usb_detach(void)
{
USBD->DRVSE0 |= USBD_DRVSE0_DRVSE0_Msk;
}
static void usb_control_send_zlp(void)
{
USBD->EP[PERIPH_EP0].CFG |= USBD_CFG_DSQ_SYNC_Msk;
USBD->EP[PERIPH_EP0].MXPLD = 0;
}
/* reconstruct ep_addr from particular USB Configuration Register */
static uint8_t decode_ep_addr(USBD_EP_T *ep)
{
uint8_t ep_addr = ep->CFG & USBD_CFG_EP_NUM_Msk;
if ( USBD_CFG_EPMODE_IN == (ep->CFG & USBD_CFG_STATE_Msk) )
ep_addr |= TUSB_DIR_IN_MASK;
return ep_addr;
}
/* map 8-bit ep_addr into peripheral endpoint index (PERIPH_EP0...) */
static USBD_EP_T *ep_entry(uint8_t ep_addr, bool add)
{
USBD_EP_T *ep;
enum ep_enum ep_index;
for (ep_index = PERIPH_EP0, ep = USBD->EP; ep_index < PERIPH_MAX_EP; ep_index++, ep++)
{
if (add)
{
/* take first peripheral endpoint that is unused */
if (0 == (ep->CFG & USBD_CFG_STATE_Msk)) return ep;
}
else
{
/* find a peripheral endpoint that matches ep_addr */
uint8_t candidate_ep_addr = decode_ep_addr(ep);
if (candidate_ep_addr == ep_addr) return ep;
}
}
return NULL;
}
/* perform an IN endpoint transfer; this is called by dcd_edpt_xfer() and the ISR */
static void dcd_in_xfer(struct xfer_ctl_t *xfer, USBD_EP_T *ep)
{
uint16_t bytes_now = tu_min16(xfer->in_remaining_bytes, xfer->max_packet_size);
memcpy((uint8_t *)(USBD_BUF_BASE + ep->BUFSEG), xfer->data_ptr, bytes_now);
ep->MXPLD = bytes_now;
}
/* called by dcd_init() as well as by the ISR during a USB bus reset */
static void bus_reset(void)
{
USBD->STBUFSEG = PERIPH_SETUP_BUF_BASE;
for (enum ep_enum ep_index = PERIPH_EP0; ep_index < PERIPH_MAX_EP; ep_index++)
{
USBD->EP[ep_index].CFG = 0;
USBD->EP[ep_index].CFGP = 0;
}
/* allocate the default EP0 endpoints */
USBD->EP[PERIPH_EP0].CFG = USBD_CFG_CSTALL_Msk | USBD_CFG_EPMODE_IN;
USBD->EP[PERIPH_EP0].BUFSEG = PERIPH_EP0_BUF_BASE;
xfer_table[PERIPH_EP0].max_packet_size = PERIPH_EP0_BUF_LEN;
USBD->EP[PERIPH_EP1].CFG = USBD_CFG_CSTALL_Msk | USBD_CFG_EPMODE_OUT;
USBD->EP[PERIPH_EP1].BUFSEG = PERIPH_EP1_BUF_BASE;
xfer_table[PERIPH_EP1].max_packet_size = PERIPH_EP1_BUF_LEN;
/* USB RAM beyond what we've allocated above is available to the user */
bufseg_addr = PERIPH_EP2_BUF_BASE;
/* Reset USB device address */
USBD->FADDR = 0;
/* reset EP0_IN flag */
active_ep0_xfer = false;
}
/* centralized location for USBD interrupt enable bit mask */
static const uint32_t enabled_irqs = USBD_INTSTS_FLDET_STS_Msk | USBD_INTSTS_BUS_STS_Msk | USBD_INTSTS_SETUP_Msk | USBD_INTSTS_USB_STS_Msk;
/*
NUC100/NUC120 TinyUSB API driver implementation
*/
void dcd_init(uint8_t rhport)
{
(void) rhport;
USBD->ATTR = 0x7D0;
usb_detach();
bus_reset();
usb_attach();
USBD->INTSTS = enabled_irqs;
USBD->INTEN = enabled_irqs;
}
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(USBD_IRQn);
}
void dcd_int_disable(uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(USBD_IRQn);
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
(void) rhport;
usb_control_send_zlp(); /* SET_ADDRESS is the one exception where TinyUSB doesn't use dcd_edpt_xfer() to generate a ZLP */
assigned_address = dev_addr;
}
void dcd_set_config(uint8_t rhport, uint8_t config_num)
{
(void) rhport;
(void) config_num;
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
USBD->ATTR = USBD_ATTR_RWAKEUP_Msk;
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
(void) rhport;
USBD_EP_T *ep = ep_entry(p_endpoint_desc->bEndpointAddress, true);
TU_ASSERT(ep);
/* mine the data for the information we need */
int const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
int const size = p_endpoint_desc->wMaxPacketSize.size;
tusb_xfer_type_t const type = p_endpoint_desc->bmAttributes.xfer;
struct xfer_ctl_t *xfer = &xfer_table[ep - USBD->EP];
/* allocate buffer from USB RAM */
ep->BUFSEG = bufseg_addr;
bufseg_addr += size;
TU_ASSERT(bufseg_addr <= USBD_BUF_SIZE);
/* construct USB Configuration Register value and then write it */
uint32_t cfg = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
cfg |= (TUSB_DIR_IN == dir) ? USBD_CFG_EPMODE_IN : USBD_CFG_EPMODE_OUT;
if (TUSB_XFER_ISOCHRONOUS == type)
cfg |= USBD_CFG_TYPE_ISO;
ep->CFG = cfg;
/* make a note of the endpoint size */
xfer->max_packet_size = size;
return true;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
(void) rhport;
/* mine the data for the information we need */
tusb_dir_t dir = tu_edpt_dir(ep_addr);
USBD_EP_T *ep = ep_entry(ep_addr, false);
struct xfer_ctl_t *xfer = &xfer_table[ep - USBD->EP];
/* store away the information we'll needing now and later */
xfer->data_ptr = buffer;
xfer->in_remaining_bytes = total_bytes;
xfer->total_bytes = total_bytes;
/* for the first of one or more EP0_IN packets in a message, the first must be DATA1 */
if ( (0x80 == ep_addr) && !active_ep0_xfer ) ep->CFG |= USBD_CFG_DSQ_SYNC_Msk;
if (TUSB_DIR_IN == dir)
{
dcd_in_xfer(xfer, ep);
}
else
{
xfer->out_bytes_so_far = 0;
ep->MXPLD = xfer->max_packet_size;
}
return true;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
USBD_EP_T *ep = ep_entry(ep_addr, false);
ep->CFGP |= USBD_CFGP_SSTALL_Msk;
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
USBD_EP_T *ep = ep_entry(ep_addr, false);
ep->CFG |= USBD_CFG_CSTALL_Msk;
}
void USBD_IRQHandler(void)
{
uint32_t status = USBD->INTSTS;
uint32_t state = USBD->ATTR & 0xf;
if(status & USBD_INTSTS_FLDET_STS_Msk)
{
if(USBD->FLDET & USBD_FLDET_FLDET_Msk)
{
/* USB connect */
USBD->ATTR |= USBD_ATTR_USB_EN_Msk | USBD_ATTR_PHY_EN_Msk;
}
else
{
/* USB disconnect */
USBD->ATTR &= ~USBD_ATTR_USB_EN_Msk;
}
}
if(status & USBD_INTSTS_BUS_STS_Msk)
{
if(state & USBD_STATE_USBRST)
{
/* USB bus reset */
USBD->ATTR |= USBD_ATTR_USB_EN_Msk | USBD_ATTR_PHY_EN_Msk;
bus_reset();
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
}
if(state & USBD_STATE_SUSPEND)
{
/* Enable USB but disable PHY */
USBD->ATTR &= ~USBD_ATTR_PHY_EN_Msk;
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
}
if(state & USBD_STATE_RESUME)
{
/* Enable USB and enable PHY */
USBD->ATTR |= USBD_ATTR_USB_EN_Msk | USBD_ATTR_PHY_EN_Msk;
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
}
}
if(status & USBD_INTSTS_SETUP_Msk)
{
/* clear the data ready flag of control endpoints */
USBD->EP[PERIPH_EP0].CFGP |= USBD_CFGP_CLRRDY_Msk;
USBD->EP[PERIPH_EP1].CFGP |= USBD_CFGP_CLRRDY_Msk;
/* get SETUP packet from USB buffer */
dcd_event_setup_received(0, (uint8_t *)USBD_BUF_BASE, true);
}
if(status & USBD_INTSTS_USB_STS_Msk)
{
if (status & (1UL << USBD_INTSTS_EPEVT_Pos)) /* PERIPH_EP0 (EP0_IN) event: this is treated separately from the rest */
{
/* given ACK from host has happened, we can now set the address (if not already done) */
if((USBD->FADDR != assigned_address) && (USBD->FADDR == 0)) USBD->FADDR = assigned_address;
uint16_t const available_bytes = USBD->EP[PERIPH_EP0].MXPLD;
active_ep0_xfer = (available_bytes == xfer_table[PERIPH_EP0].max_packet_size);
dcd_event_xfer_complete(0, 0x80, available_bytes, XFER_RESULT_SUCCESS, true);
}
/* service PERIPH_EP1 through PERIPH_EP7 */
enum ep_enum ep_index;
uint32_t mask;
struct xfer_ctl_t *xfer;
USBD_EP_T *ep;
for (ep_index = PERIPH_EP1, mask = (2UL << USBD_INTSTS_EPEVT_Pos), xfer = &xfer_table[PERIPH_EP1], ep = &USBD->EP[PERIPH_EP1]; ep_index < PERIPH_MAX_EP; ep_index++, mask <<= 1, xfer++, ep++)
{
if(status & mask)
{
USBD->INTSTS = mask;
uint16_t const available_bytes = ep->MXPLD;
uint8_t const ep_addr = decode_ep_addr(ep);
bool const out_ep = !(ep_addr & TUSB_DIR_IN_MASK);
if (out_ep)
{
/* copy the data from the PC to the previously provided buffer */
memcpy(xfer->data_ptr, (uint8_t *)(USBD_BUF_BASE + ep->BUFSEG), available_bytes);
xfer->out_bytes_so_far += available_bytes;
xfer->data_ptr += available_bytes;
/* when the transfer is finished, alert TinyUSB; otherwise, accept more data */
if ( (xfer->total_bytes == xfer->out_bytes_so_far) || (available_bytes < xfer->max_packet_size) )
dcd_event_xfer_complete(0, ep_addr, xfer->out_bytes_so_far, XFER_RESULT_SUCCESS, true);
else
ep->MXPLD = xfer->max_packet_size;
}
else
{
/* update the bookkeeping to reflect the data that has now been sent to the PC */
xfer->in_remaining_bytes -= available_bytes;
xfer->data_ptr += available_bytes;
/* if more data to send, send it; otherwise, alert TinyUSB that we've finished */
if (xfer->in_remaining_bytes)
dcd_in_xfer(xfer, ep);
else
dcd_event_xfer_complete(0, ep_addr, xfer->total_bytes, XFER_RESULT_SUCCESS, true);
}
}
}
}
/* acknowledge all interrupts */
USBD->INTSTS = status & enabled_irqs;
}
void dcd_isr(uint8_t rhport)
{
(void) rhport;
USBD_IRQHandler();
}
#endif

View File

@@ -0,0 +1,449 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Peter Lawrence
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
/*
Theory of operation:
The NUC121/NUC125/NUC126 USBD peripheral has eight "EP"s, but each is simplex,
so two collectively (peripheral nomenclature of "EP0" and "EP1") are needed to
implement USB EP0. PERIPH_EP0 and PERIPH_EP1 are used by this driver for
EP0_IN and EP0_OUT respectively. This leaves up to six for user usage.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && ( (CFG_TUSB_MCU == OPT_MCU_NUC121) || (CFG_TUSB_MCU == OPT_MCU_NUC126) )
#include "device/dcd.h"
#include "NuMicro.h"
/* allocation of USBD RAM for Setup, EP0_IN, and and EP_OUT */
#define PERIPH_SETUP_BUF_BASE 0
#define PERIPH_SETUP_BUF_LEN 8
#define PERIPH_EP0_BUF_BASE (PERIPH_SETUP_BUF_BASE + PERIPH_SETUP_BUF_LEN)
#define PERIPH_EP0_BUF_LEN CFG_TUD_ENDPOINT0_SIZE
#define PERIPH_EP1_BUF_BASE (PERIPH_EP0_BUF_BASE + PERIPH_EP0_BUF_LEN)
#define PERIPH_EP1_BUF_LEN CFG_TUD_ENDPOINT0_SIZE
#define PERIPH_EP2_BUF_BASE (PERIPH_EP1_BUF_BASE + PERIPH_EP1_BUF_LEN)
/* rather important info unfortunately not provided by device include files: how much there is */
#define USBD_BUF_SIZE ((CFG_TUSB_MCU == OPT_MCU_NUC121) ? 768 : 512)
enum ep_enum
{
PERIPH_EP0 = 0,
PERIPH_EP1 = 1,
PERIPH_EP2 = 2,
PERIPH_EP3 = 3,
PERIPH_EP4 = 4,
PERIPH_EP5 = 5,
PERIPH_EP6 = 6,
PERIPH_EP7 = 7,
PERIPH_MAX_EP,
};
/* set by dcd_set_address() */
static volatile uint8_t assigned_address;
/* reset by dcd_init(), this is used by dcd_edpt_open() to assign USBD peripheral buffer addresses */
static uint32_t bufseg_addr;
/* used by dcd_edpt_xfer() and the ISR to reset the data sync (DATA0/DATA1) in an EP0_IN transfer */
static bool active_ep0_xfer;
/* RAM table needed to track ongoing transfers performed by dcd_edpt_xfer(), dcd_in_xfer(), and the ISR */
static struct xfer_ctl_t
{
uint8_t *data_ptr; /* data_ptr tracks where to next copy data to (for OUT) or from (for IN) */
union {
uint16_t in_remaining_bytes; /* for IN endpoints, we track how many bytes are left to transfer */
uint16_t out_bytes_so_far; /* but for OUT endpoints, we track how many bytes we've transferred so far */
};
uint16_t max_packet_size; /* needed since device driver only finds out this at runtime */
uint16_t total_bytes; /* quantity needed to pass as argument to dcd_event_xfer_complete() (for IN endpoints) */
} xfer_table[PERIPH_MAX_EP];
/*
local helper functions
*/
static void usb_attach(void)
{
USBD->SE0 &= ~USBD_SE0_SE0_Msk;
}
static void usb_detach(void)
{
USBD->SE0 |= USBD_SE0_SE0_Msk;
}
static void usb_control_send_zlp(void)
{
USBD->EP[PERIPH_EP0].CFG |= USBD_CFG_DSQSYNC_Msk;
USBD->EP[PERIPH_EP0].MXPLD = 0;
}
/* reconstruct ep_addr from particular USB Configuration Register */
static uint8_t decode_ep_addr(USBD_EP_T *ep)
{
uint8_t ep_addr = ep->CFG & USBD_CFG_EPNUM_Msk;
if ( USBD_CFG_EPMODE_IN == (ep->CFG & USBD_CFG_STATE_Msk) )
ep_addr |= TUSB_DIR_IN_MASK;
return ep_addr;
}
/* map 8-bit ep_addr into peripheral endpoint index (PERIPH_EP0...) */
static USBD_EP_T *ep_entry(uint8_t ep_addr, bool add)
{
USBD_EP_T *ep;
enum ep_enum ep_index;
for (ep_index = PERIPH_EP0, ep = USBD->EP; ep_index < PERIPH_MAX_EP; ep_index++, ep++)
{
if (add)
{
/* take first peripheral endpoint that is unused */
if (0 == (ep->CFG & USBD_CFG_STATE_Msk)) return ep;
}
else
{
/* find a peripheral endpoint that matches ep_addr */
uint8_t candidate_ep_addr = decode_ep_addr(ep);
if (candidate_ep_addr == ep_addr) return ep;
}
}
return NULL;
}
/* perform an IN endpoint transfer; this is called by dcd_edpt_xfer() and the ISR */
static void dcd_in_xfer(struct xfer_ctl_t *xfer, USBD_EP_T *ep)
{
uint16_t bytes_now = tu_min16(xfer->in_remaining_bytes, xfer->max_packet_size);
memcpy((uint8_t *)(USBD_BUF_BASE + ep->BUFSEG), xfer->data_ptr, bytes_now);
ep->MXPLD = bytes_now;
}
/* called by dcd_init() as well as by the ISR during a USB bus reset */
static void bus_reset(void)
{
USBD->STBUFSEG = PERIPH_SETUP_BUF_BASE;
for (enum ep_enum ep_index = PERIPH_EP0; ep_index < PERIPH_MAX_EP; ep_index++)
{
USBD->EP[ep_index].CFG = 0;
USBD->EP[ep_index].CFGP = 0;
}
/* allocate the default EP0 endpoints */
USBD->EP[PERIPH_EP0].CFG = USBD_CFG_CSTALL_Msk | USBD_CFG_EPMODE_IN;
USBD->EP[PERIPH_EP0].BUFSEG = PERIPH_EP0_BUF_BASE;
xfer_table[PERIPH_EP0].max_packet_size = PERIPH_EP0_BUF_LEN;
USBD->EP[PERIPH_EP1].CFG = USBD_CFG_CSTALL_Msk | USBD_CFG_EPMODE_OUT;
USBD->EP[PERIPH_EP1].BUFSEG = PERIPH_EP1_BUF_BASE;
xfer_table[PERIPH_EP1].max_packet_size = PERIPH_EP1_BUF_LEN;
/* USB RAM beyond what we've allocated above is available to the user */
bufseg_addr = PERIPH_EP2_BUF_BASE;
/* Reset USB device address */
USBD->FADDR = 0;
/* reset EP0_IN flag */
active_ep0_xfer = false;
}
/* centralized location for USBD interrupt enable bit mask */
static const uint32_t enabled_irqs = USBD_INTSTS_VBDETIF_Msk | USBD_INTSTS_BUSIF_Msk | USBD_INTSTS_SETUP_Msk | USBD_INTSTS_USBIF_Msk | USBD_INTSTS_SOFIF_Msk;
/*
NUC121/NUC125/NUC126 TinyUSB API driver implementation
*/
void dcd_init(uint8_t rhport)
{
(void) rhport;
#ifdef SUPPORT_LPM
USBD->ATTR = 0x7D0 | USBD_LPMACK;
#else
USBD->ATTR = 0x7D0;
#endif
usb_detach();
bus_reset();
usb_attach();
USBD->INTSTS = enabled_irqs;
USBD->INTEN = enabled_irqs;
}
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(USBD_IRQn);
}
void dcd_int_disable(uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(USBD_IRQn);
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
(void) rhport;
usb_control_send_zlp(); /* SET_ADDRESS is the one exception where TinyUSB doesn't use dcd_edpt_xfer() to generate a ZLP */
assigned_address = dev_addr;
}
void dcd_set_config(uint8_t rhport, uint8_t config_num)
{
(void) rhport;
(void) config_num;
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
USBD->ATTR = USBD_ATTR_RWAKEUP_Msk;
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
(void) rhport;
USBD_EP_T *ep = ep_entry(p_endpoint_desc->bEndpointAddress, true);
TU_ASSERT(ep);
/* mine the data for the information we need */
int const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
int const size = p_endpoint_desc->wMaxPacketSize.size;
tusb_xfer_type_t const type = p_endpoint_desc->bmAttributes.xfer;
struct xfer_ctl_t *xfer = &xfer_table[ep - USBD->EP];
/* allocate buffer from USB RAM */
ep->BUFSEG = bufseg_addr;
bufseg_addr += size;
TU_ASSERT(bufseg_addr <= USBD_BUF_SIZE);
/* construct USB Configuration Register value and then write it */
uint32_t cfg = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
cfg |= (TUSB_DIR_IN == dir) ? USBD_CFG_EPMODE_IN : USBD_CFG_EPMODE_OUT;
if (TUSB_XFER_ISOCHRONOUS == type)
cfg |= USBD_CFG_TYPE_ISO;
ep->CFG = cfg;
/* make a note of the endpoint size */
xfer->max_packet_size = size;
return true;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
(void) rhport;
/* mine the data for the information we need */
tusb_dir_t dir = tu_edpt_dir(ep_addr);
USBD_EP_T *ep = ep_entry(ep_addr, false);
struct xfer_ctl_t *xfer = &xfer_table[ep - USBD->EP];
/* store away the information we'll needing now and later */
xfer->data_ptr = buffer;
xfer->in_remaining_bytes = total_bytes;
xfer->total_bytes = total_bytes;
/* for the first of one or more EP0_IN packets in a message, the first must be DATA1 */
if ( (0x80 == ep_addr) && !active_ep0_xfer ) ep->CFG |= USBD_CFG_DSQSYNC_Msk;
if (TUSB_DIR_IN == dir)
{
dcd_in_xfer(xfer, ep);
}
else
{
xfer->out_bytes_so_far = 0;
ep->MXPLD = xfer->max_packet_size;
}
return true;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
USBD_EP_T *ep = ep_entry(ep_addr, false);
ep->CFGP |= USBD_CFGP_SSTALL_Msk;
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
USBD_EP_T *ep = ep_entry(ep_addr, false);
ep->CFG |= USBD_CFG_CSTALL_Msk;
}
void USBD_IRQHandler(void)
{
uint32_t status = USBD->INTSTS;
#ifdef SUPPORT_LPM
uint32_t state = USBD->ATTR & 0x300f;
#else
uint32_t state = USBD->ATTR & 0xf;
#endif
if(status & USBD_INTSTS_VBDETIF_Msk)
{
if(USBD->VBUSDET & USBD_VBUSDET_VBUSDET_Msk)
{
/* USB connect */
USBD->ATTR |= USBD_ATTR_USBEN_Msk | USBD_ATTR_PHYEN_Msk;
}
else
{
/* USB disconnect */
USBD->ATTR &= ~USBD_ATTR_USBEN_Msk;
}
}
if(status & USBD_INTSTS_BUSIF_Msk)
{
if(state & USBD_ATTR_USBRST_Msk)
{
/* USB bus reset */
USBD->ATTR |= USBD_ATTR_USBEN_Msk | USBD_ATTR_PHYEN_Msk;
bus_reset();
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
}
if(state & USBD_ATTR_SUSPEND_Msk)
{
/* Enable USB but disable PHY */
USBD->ATTR &= ~USBD_ATTR_PHYEN_Msk;
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
}
if(state & USBD_ATTR_RESUME_Msk)
{
/* Enable USB and enable PHY */
USBD->ATTR |= USBD_ATTR_USBEN_Msk | USBD_ATTR_PHYEN_Msk;
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
}
}
if(status & USBD_INTSTS_SETUP_Msk)
{
/* clear the data ready flag of control endpoints */
USBD->EP[PERIPH_EP0].CFGP |= USBD_CFGP_CLRRDY_Msk;
USBD->EP[PERIPH_EP1].CFGP |= USBD_CFGP_CLRRDY_Msk;
/* get SETUP packet from USB buffer */
dcd_event_setup_received(0, (uint8_t *)USBD_BUF_BASE, true);
}
if(status & USBD_INTSTS_USBIF_Msk)
{
if (status & USBD_INTSTS_EPEVT0_Msk) /* PERIPH_EP0 (EP0_IN) event: this is treated separately from the rest */
{
/* given ACK from host has happened, we can now set the address (if not already done) */
if((USBD->FADDR != assigned_address) && (USBD->FADDR == 0)) USBD->FADDR = assigned_address;
uint16_t const available_bytes = USBD->EP[PERIPH_EP0].MXPLD;
active_ep0_xfer = (available_bytes == xfer_table[PERIPH_EP0].max_packet_size);
dcd_event_xfer_complete(0, 0x80, available_bytes, XFER_RESULT_SUCCESS, true);
}
/* service PERIPH_EP1 through PERIPH_EP7 */
enum ep_enum ep_index;
uint32_t mask;
struct xfer_ctl_t *xfer;
USBD_EP_T *ep;
for (ep_index = PERIPH_EP1, mask = USBD_INTSTS_EPEVT1_Msk, xfer = &xfer_table[PERIPH_EP1], ep = &USBD->EP[PERIPH_EP1]; ep_index <= PERIPH_EP7; ep_index++, mask <<= 1, xfer++, ep++)
{
if(status & mask)
{
USBD->INTSTS = mask;
uint16_t const available_bytes = ep->MXPLD;
uint8_t const ep_addr = decode_ep_addr(ep);
bool const out_ep = !(ep_addr & TUSB_DIR_IN_MASK);
if (out_ep)
{
/* copy the data from the PC to the previously provided buffer */
memcpy(xfer->data_ptr, (uint8_t *)(USBD_BUF_BASE + ep->BUFSEG), available_bytes);
xfer->out_bytes_so_far += available_bytes;
xfer->data_ptr += available_bytes;
/* when the transfer is finished, alert TinyUSB; otherwise, accept more data */
if ( (xfer->total_bytes == xfer->out_bytes_so_far) || (available_bytes < xfer->max_packet_size) )
dcd_event_xfer_complete(0, ep_addr, xfer->out_bytes_so_far, XFER_RESULT_SUCCESS, true);
else
ep->MXPLD = xfer->max_packet_size;
}
else
{
/* update the bookkeeping to reflect the data that has now been sent to the PC */
xfer->in_remaining_bytes -= available_bytes;
xfer->data_ptr += available_bytes;
/* if more data to send, send it; otherwise, alert TinyUSB that we've finished */
if (xfer->in_remaining_bytes)
dcd_in_xfer(xfer, ep);
else
dcd_event_xfer_complete(0, ep_addr, xfer->total_bytes, XFER_RESULT_SUCCESS, true);
}
}
}
}
if(status & USBD_INTSTS_SOFIF_Msk)
{
/* Start-Of-Frame event */
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
/* acknowledge all interrupts */
USBD->INTSTS = status & enabled_irqs;
}
void dcd_isr(uint8_t rhport)
{
(void) rhport;
USBD_IRQHandler();
}
#endif

View File

@@ -0,0 +1,649 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Peter Lawrence
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
/*
Theory of operation:
The NUC505 USBD peripheral has twelve "EP"s, where each is simplex, in addition
to dedicated support for the control endpoint (EP0). The non-user endpoints
are referred to as "user" EPs in this code, and follow the datasheet
nomenclature of EPA through EPL.
*/
/*
Note on OPT_MCU_NUC505_USB_DMA: the author suggests against using this option.
The DMA functionality of the USBD peripheral does not appear to succeed with
transfer lengths that are longer (> 64 bytes) and are not a multiple of 4.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_NUC505)
#include "device/dcd.h"
#include "NUC505Series.h"
/* rather important info unfortunately not provided by device include files */
#define USBD_BUF_SIZE 2048 /* how much USB buffer space there is */
#define USBD_MAX_DMA_LEN 0x1000 /* max bytes that can be DMAed at one time */
enum ep_enum
{
PERIPH_EPA = 0,
PERIPH_EPB = 1,
PERIPH_EPC = 2,
PERIPH_EPD = 3,
PERIPH_EPE = 4,
PERIPH_EPF = 5,
PERIPH_EPG = 6,
PERIPH_EPH = 7,
PERIPH_EPI = 8,
PERIPH_EPJ = 9,
PERIPH_EPK = 10,
PERIPH_EPL = 11,
PERIPH_MAX_EP,
};
static const uint8_t epcfg_eptype_table[] =
{
[TUSB_XFER_CONTROL] = 0, /* won't happen, since control EPs have dedicated registers */
[TUSB_XFER_ISOCHRONOUS] = 3 << USBD_EPCFG_EPTYPE_Pos,
[TUSB_XFER_BULK] = 1 << USBD_EPCFG_EPTYPE_Pos,
[TUSB_XFER_INTERRUPT] = 2 << USBD_EPCFG_EPTYPE_Pos,
};
static const uint8_t eprspctl_eptype_table[] =
{
[TUSB_XFER_CONTROL] = 0, /* won't happen, since control EPs have dedicated registers */
[TUSB_XFER_ISOCHRONOUS] = 2 << USBD_EPRSPCTL_MODE_Pos, /* Fly Mode */
[TUSB_XFER_BULK] = 0 << USBD_EPRSPCTL_MODE_Pos, /* Auto-Validate Mode */
[TUSB_XFER_INTERRUPT] = 1 << USBD_EPRSPCTL_MODE_Pos, /* Manual-Validate Mode */
};
/* set by dcd_set_address() */
static volatile uint8_t assigned_address;
/* reset by bus_reset(), this is used by dcd_edpt_open() to assign USBD peripheral buffer addresses */
static uint32_t bufseg_addr;
/* RAM table needed to track ongoing transfers performed by dcd_edpt_xfer(), dcd_userEP_in_xfer(), and the ISR */
static struct xfer_ctl_t
{
uint8_t *data_ptr; /* data_ptr tracks where to next copy data to (for OUT) or from (for IN) */
union {
uint16_t in_remaining_bytes; /* for IN endpoints, we track how many bytes are left to transfer */
uint16_t out_bytes_so_far; /* but for OUT endpoints, we track how many bytes we've transferred so far */
};
uint16_t max_packet_size; /* needed since device driver only finds out this at runtime */
uint16_t total_bytes; /* quantity needed to pass as argument to dcd_event_xfer_complete() (for IN endpoints) */
uint8_t ep_addr;
bool dma_requested;
} xfer_table[PERIPH_MAX_EP];
/* in addition to xfer_table, additional bespoke bookkeeping is maintained for control EP0 IN */
static struct
{
uint8_t *data_ptr;
uint16_t in_remaining_bytes;
uint16_t total_bytes;
} ctrl_in_xfer;
static volatile bool configuration_changed;
static volatile struct xfer_ctl_t *current_dma_xfer;
/*
local helper functions
*/
static void usb_attach(void)
{
USBD->PHYCTL |= USBD_PHYCTL_DPPUEN_Msk;
}
static void usb_control_send_zlp(void)
{
USBD->CEPINTSTS = USBD_CEPINTSTS_STSDONEIF_Msk;
USBD->CEPCTL = 0; /* clear NAKCLR bit */
USBD->CEPINTEN = USBD_CEPINTEN_STSDONEIEN_Msk;
}
/* map 8-bit ep_addr into peripheral endpoint index (PERIPH_EPA...) */
static USBD_EP_T *ep_entry(uint8_t ep_addr, bool add)
{
USBD_EP_T *ep;
enum ep_enum ep_index;
struct xfer_ctl_t *xfer;
for (ep_index = PERIPH_EPA, xfer = &xfer_table[PERIPH_EPA], ep = USBD->EP; ep_index < PERIPH_MAX_EP; ep_index++, xfer++, ep++)
{
if (add)
{
/* take first peripheral endpoint that is unused */
if (0 == (ep->EPCFG & USBD_EPCFG_EPEN_Msk)) return ep;
}
else
{
/* find a peripheral endpoint that matches ep_addr */
if (xfer->ep_addr == ep_addr) return ep;
}
}
return NULL;
}
/* perform a non-control IN endpoint transfer; this is called by the ISR */
static void dcd_userEP_in_xfer(struct xfer_ctl_t *xfer, USBD_EP_T *ep)
{
uint16_t bytes_now = tu_min16(xfer->in_remaining_bytes, xfer->max_packet_size);
uint16_t countdown = bytes_now;
/* precompute what amount of data will be left */
xfer->in_remaining_bytes -= bytes_now;
/*
if there will be no more data to send, we replace the BUFEMPTYIF EP interrupt with TXPKIF;
that way, we alert TinyUSB as soon as this last packet has been sent
*/
if (0 == xfer->in_remaining_bytes)
{
ep->EPINTSTS = USBD_EPINTSTS_TXPKIF_Msk;
ep->EPINTEN = USBD_EPINTEN_TXPKIEN_Msk;
}
/* provided buffers are thankfully 32-bit aligned, allowing most data to be transfered as 32-bit */
while (countdown > 3)
{
ep->EPDAT = *(uint32_t *)xfer->data_ptr;
xfer->data_ptr += 4; countdown -= 4;
}
while (countdown--)
ep->EPDAT_BYTE = *xfer->data_ptr++;
/* for short packets, we must nudge the peripheral to say 'that's all folks' */
if (bytes_now != xfer->max_packet_size)
ep->EPRSPCTL = USBD_EPRSPCTL_SHORTTXEN_Msk;
}
/* called by dcd_init() as well as by the ISR during a USB bus reset */
static void bus_reset(void)
{
for (enum ep_enum ep_index = PERIPH_EPA; ep_index < PERIPH_MAX_EP; ep_index++)
{
USBD->EP[ep_index].EPCFG = 0;
xfer_table[ep_index].dma_requested = false;
}
USBD->DMACNT = 0;
USBD->DMACTL = USBD_DMACTL_DMARST_Msk;
USBD->DMACTL = 0;
/* allocate the default EP0 endpoints */
USBD->CEPBUFSTART = 0;
USBD->CEPBUFEND = 0 + CFG_TUD_ENDPOINT0_SIZE - 1;
/* USB RAM beyond what we've allocated above is available to the user */
bufseg_addr = CFG_TUD_ENDPOINT0_SIZE;
/* Reset USB device address */
USBD->FADDR = 0;
configuration_changed = false;
current_dma_xfer = NULL;
}
#ifdef OPT_MCU_NUC505_USB_DMA
/* this must only be called by the ISR; it does its best to share the single DMA engine across all user EPs (IN and OUT) */
static void service_dma(void)
{
if (current_dma_xfer)
return;
enum ep_enum ep_index;
struct xfer_ctl_t *xfer;
USBD_EP_T *ep;
for (ep_index = PERIPH_EPA, xfer = &xfer_table[PERIPH_EPA], ep = &USBD->EP[PERIPH_EPA]; ep_index < PERIPH_MAX_EP; ep_index++, xfer++, ep++)
{
uint16_t const available_bytes = ep->EPDATCNT & USBD_EPDATCNT_DATCNT_Msk;
if (!xfer->dma_requested || !available_bytes)
continue;
/*
instruct DMA to copy the data from the PC to the previously provided buffer
when the bus interrupt DMADONEIEN subsequently fires, the transfer will have finished
*/
USBD->DMACTL = xfer->ep_addr & USBD_DMACTL_EPNUM_Msk;
USBD->DMAADDR = (uint32_t)xfer->data_ptr;
USBD->DMACNT = available_bytes;
USBD->BUSINTSTS = USBD_BUSINTSTS_DMADONEIF_Msk;
xfer->out_bytes_so_far += available_bytes;
current_dma_xfer = xfer;
USBD->DMACTL |= USBD_DMACTL_DMAEN_Msk;
return;
}
}
#endif
/* centralized location for USBD interrupt enable bit masks */
static const uint32_t enabled_irqs = USBD_GINTEN_USBIEN_Msk | \
USBD_GINTEN_EPAIEN_Msk | USBD_GINTEN_EPBIEN_Msk | USBD_GINTEN_EPCIEN_Msk | USBD_GINTEN_EPDIEN_Msk | USBD_GINTEN_EPEIEN_Msk | USBD_GINTEN_EPFIEN_Msk | \
USBD_GINTEN_EPGIEN_Msk | USBD_GINTEN_EPHIEN_Msk | USBD_GINTEN_EPIIEN_Msk | USBD_GINTEN_EPJIEN_Msk | USBD_GINTEN_EPKIEN_Msk | USBD_GINTEN_EPLIEN_Msk | \
USBD_GINTEN_CEPIEN_Msk;
/*
NUC505 TinyUSB API driver implementation
*/
void dcd_init(uint8_t rhport)
{
(void) rhport;
/* configure interrupts in their initial state; BUSINTEN and CEPINTEN will be subsequently and dynamically re-written as needed */
USBD->GINTEN = enabled_irqs;
USBD->BUSINTEN = USBD_BUSINTEN_RSTIEN_Msk | USBD_BUSINTEN_VBUSDETIEN_Msk | USBD_BUSINTEN_RESUMEIEN_Msk | USBD_BUSINTEN_DMADONEIEN_Msk;
USBD->CEPINTEN = 0;
bus_reset();
usb_attach();
}
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(USBD_IRQn);
}
void dcd_int_disable(uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(USBD_IRQn);
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
(void) rhport;
usb_control_send_zlp(); /* SET_ADDRESS is the one exception where TinyUSB doesn't use dcd_edpt_xfer() to generate a ZLP */
assigned_address = dev_addr;
}
void dcd_set_config(uint8_t rhport, uint8_t config_num)
{
(void) rhport;
(void) config_num;
configuration_changed = true;
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
USBD->OPER |= USBD_OPER_RESUMEEN_Msk;
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
(void) rhport;
USBD_EP_T *ep = ep_entry(p_endpoint_desc->bEndpointAddress, true);
TU_ASSERT(ep);
/* mine the data for the information we need */
int const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
int const size = p_endpoint_desc->wMaxPacketSize.size;
tusb_xfer_type_t const type = p_endpoint_desc->bmAttributes.xfer;
struct xfer_ctl_t *xfer = &xfer_table[ep - USBD->EP];
/* allocate buffer from USB RAM */
ep->EPBUFSTART = bufseg_addr;
bufseg_addr += size;
ep->EPBUFEND = bufseg_addr - 1;
TU_ASSERT(bufseg_addr <= USBD_BUF_SIZE);
ep->EPMPS = size;
ep->EPRSPCTL = USB_EP_RSPCTL_FLUSH | eprspctl_eptype_table[type];
/* construct USB Configuration Register value and then write it */
uint32_t cfg = (uint32_t)tu_edpt_number(p_endpoint_desc->bEndpointAddress) << USBD_EPCFG_EPNUM_Pos;
if (TUSB_DIR_IN == dir)
cfg |= USBD_EPCFG_EPDIR_Msk;
cfg |= epcfg_eptype_table[type] | USBD_EPCFG_EPEN_Msk;
ep->EPCFG = cfg;
/* make a note of the endpoint particulars */
xfer->max_packet_size = size;
xfer->ep_addr = p_endpoint_desc->bEndpointAddress;
return true;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
(void) rhport;
if (0x80 == ep_addr) /* control EP0 IN */
{
if (total_bytes)
{
USBD->CEPCTL = USBD_CEPCTL_FLUSH_Msk;
ctrl_in_xfer.data_ptr = buffer;
ctrl_in_xfer.in_remaining_bytes = total_bytes;
ctrl_in_xfer.total_bytes = total_bytes;
USBD->CEPINTSTS = USBD_CEPINTSTS_INTKIF_Msk;
USBD->CEPINTEN = USBD_CEPINTEN_INTKIEN_Msk;
}
else
{
usb_control_send_zlp();
}
}
else if (0x00 == ep_addr) /* control EP0 OUT */
{
if (total_bytes)
{
/* if TinyUSB is asking for EP0 OUT data, it is almost certainly already in the buffer */
while (total_bytes < USBD->CEPRXCNT);
for (int count = 0; count < total_bytes; count++)
*buffer++ = USBD->CEPDAT_BYTE;
dcd_event_xfer_complete(0, ep_addr, total_bytes, XFER_RESULT_SUCCESS, true);
}
}
else
{
/* mine the data for the information we need */
tusb_dir_t dir = tu_edpt_dir(ep_addr);
USBD_EP_T *ep = ep_entry(ep_addr, false);
struct xfer_ctl_t *xfer = &xfer_table[ep - USBD->EP];
/* store away the information we'll needing now and later */
xfer->data_ptr = buffer;
xfer->in_remaining_bytes = total_bytes;
xfer->total_bytes = total_bytes;
if (TUSB_DIR_IN == dir)
{
ep->EPINTEN = USBD_EPINTEN_BUFEMPTYIEN_Msk;
}
else
{
xfer->out_bytes_so_far = 0;
ep->EPINTEN = USBD_EPINTEN_RXPKIEN_Msk;
}
}
return true;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
if (tu_edpt_number(ep_addr))
{
USBD_EP_T *ep = ep_entry(ep_addr, false);
ep->EPRSPCTL = (ep->EPRSPCTL & 0xf7) | USBD_EPRSPCTL_HALT_Msk;
}
else
{
USBD->CEPCTL = USBD_CEPCTL_STALLEN_Msk;
}
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
if (tu_edpt_number(ep_addr))
{
USBD_EP_T *ep = ep_entry(ep_addr, false);
ep->EPRSPCTL = USBD_EPRSPCTL_TOGGLE_Msk;
}
}
void USBD_IRQHandler(void)
{
uint32_t status = USBD->GINTSTS;
/* USB interrupt */
if (status & USBD_GINTSTS_USBIF_Msk)
{
uint32_t bus_state = USBD->BUSINTSTS;
if (bus_state & USBD_BUSINTSTS_SOFIF_Msk)
{
/* Start-Of-Frame event */
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
if (bus_state & USBD_BUSINTSTS_RSTIF_Msk)
{
bus_reset();
USBD->CEPINTEN = USBD_CEPINTEN_SETUPPKIEN_Msk;
USBD->BUSINTEN = USBD_BUSINTEN_RSTIEN_Msk | USBD_BUSINTEN_RESUMEIEN_Msk | USBD_BUSINTEN_SUSPENDIEN_Msk | USBD_BUSINTEN_DMADONEIEN_Msk;
USBD->CEPINTSTS = 0x1ffc;
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
}
if (bus_state & USBD_BUSINTSTS_RESUMEIF_Msk)
{
USBD->BUSINTEN = USBD_BUSINTEN_RSTIEN_Msk | USBD_BUSINTEN_SUSPENDIEN_Msk | USBD_BUSINTEN_DMADONEIEN_Msk;
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
}
if (bus_state & USBD_BUSINTSTS_SUSPENDIF_Msk)
{
USBD->BUSINTEN = USBD_BUSINTEN_RSTIEN_Msk | USBD_BUSINTEN_RESUMEIEN_Msk | USBD_BUSINTEN_DMADONEIEN_Msk;
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
}
if (bus_state & USBD_BUSINTSTS_HISPDIF_Msk)
{
USBD->CEPINTEN = USBD_CEPINTEN_SETUPPKIEN_Msk;
}
if (bus_state & USBD_BUSINTSTS_DMADONEIF_Msk)
{
#ifdef OPT_MCU_NUC505_USB_DMA
if (current_dma_xfer)
{
current_dma_xfer->dma_requested = false;
uint16_t available_bytes = USBD->DMACNT & USBD_DMACNT_DMACNT_Msk;
/* if the most recent DMA finishes the transfer, alert TinyUSB; otherwise, the next RXPKIF/INTKIF endpoint interrupt will prompt the next DMA */
if ( (current_dma_xfer->total_bytes == current_dma_xfer->out_bytes_so_far) || (available_bytes < current_dma_xfer->max_packet_size) )
{
dcd_event_xfer_complete(0, current_dma_xfer->ep_addr, current_dma_xfer->out_bytes_so_far, XFER_RESULT_SUCCESS, true);
}
current_dma_xfer = NULL;
service_dma();
}
#endif
}
if (bus_state & USBD_BUSINTSTS_VBUSDETIF_Msk)
{
if (USBD->PHYCTL & USBD_PHYCTL_VBUSDET_Msk)
{
/* USB connect */
USBD->PHYCTL |= USBD_PHYCTL_PHYEN_Msk | USBD_PHYCTL_DPPUEN_Msk;
}
else
{
/* USB disconnect */
USBD->PHYCTL &= ~USBD_PHYCTL_DPPUEN_Msk;
}
}
USBD->BUSINTSTS = bus_state & (USBD_BUSINTSTS_SOFIF_Msk | USBD_BUSINTSTS_RSTIF_Msk | USBD_BUSINTSTS_RESUMEIF_Msk | USBD_BUSINTSTS_SUSPENDIF_Msk | USBD_BUSINTSTS_HISPDIF_Msk | USBD_BUSINTSTS_DMADONEIF_Msk | USBD_BUSINTSTS_PHYCLKVLDIF_Msk | USBD_BUSINTSTS_VBUSDETIF_Msk);
}
if (status & USBD_GINTSTS_CEPIF_Msk)
{
uint32_t cep_state = USBD->CEPINTSTS & USBD->CEPINTEN;
if (cep_state & USBD_CEPINTSTS_SETUPPKIF_Msk)
{
/* get SETUP packet from USB buffer */
uint8_t setup_packet[8];
setup_packet[0] = (uint8_t)(USBD->SETUP1_0 >> 0);
setup_packet[1] = (uint8_t)(USBD->SETUP1_0 >> 8);
setup_packet[2] = (uint8_t)(USBD->SETUP3_2 >> 0);
setup_packet[3] = (uint8_t)(USBD->SETUP3_2 >> 8);
setup_packet[4] = (uint8_t)(USBD->SETUP5_4 >> 0);
setup_packet[5] = (uint8_t)(USBD->SETUP5_4 >> 8);
setup_packet[6] = (uint8_t)(USBD->SETUP7_6 >> 0);
setup_packet[7] = (uint8_t)(USBD->SETUP7_6 >> 8);
dcd_event_setup_received(0, setup_packet, true);
}
else if (cep_state & USBD_CEPINTSTS_INTKIF_Msk)
{
USBD->CEPINTSTS = USBD_CEPINTSTS_TXPKIF_Msk;
if (!(cep_state & USBD_CEPINTSTS_STSDONEIF_Msk))
{
USBD->CEPINTEN = USBD_CEPINTEN_TXPKIEN_Msk;
uint16_t bytes_now = tu_min16(ctrl_in_xfer.in_remaining_bytes, CFG_TUD_ENDPOINT0_SIZE);
for (int count = 0; count < bytes_now; count++)
USBD->CEPDAT_BYTE = *ctrl_in_xfer.data_ptr++;
ctrl_in_xfer.in_remaining_bytes -= bytes_now;
USBD_START_CEP_IN(bytes_now);
}
else
{
USBD->CEPINTEN = USBD_CEPINTEN_TXPKIEN_Msk | USBD_CEPINTEN_STSDONEIEN_Msk;
}
}
else if (cep_state & USBD_CEPINTSTS_TXPKIF_Msk)
{
USBD->CEPINTSTS = USBD_CEPINTSTS_STSDONEIF_Msk;
USBD_SET_CEP_STATE(USB_CEPCTL_NAKCLR);
/* alert TinyUSB that the EP0 IN transfer has finished */
if ( (0 == ctrl_in_xfer.in_remaining_bytes) || (0 == ctrl_in_xfer.total_bytes) )
dcd_event_xfer_complete(0, 0x80, ctrl_in_xfer.total_bytes, XFER_RESULT_SUCCESS, true);
if (ctrl_in_xfer.in_remaining_bytes)
{
USBD->CEPINTSTS = USBD_CEPINTSTS_INTKIF_Msk;
USBD->CEPINTEN = USBD_CEPINTEN_INTKIEN_Msk;
}
else
{
/* TinyUSB does its own fragmentation and ZLP for EP0; a transfer of zero means a ZLP */
if (0 == ctrl_in_xfer.total_bytes) USBD->CEPCTL = USBD_CEPCTL_ZEROLEN_Msk;
USBD->CEPINTSTS = USBD_CEPINTSTS_STSDONEIF_Msk;
USBD->CEPINTEN = USBD_CEPINTEN_SETUPPKIEN_Msk | USBD_CEPINTEN_STSDONEIEN_Msk;
}
}
else if (cep_state & USBD_CEPINTSTS_STSDONEIF_Msk)
{
/* given ACK from host has happened, we can now set the address (if not already done) */
if((USBD->FADDR != assigned_address) && (USBD->FADDR == 0)) USBD->FADDR = assigned_address;
if (configuration_changed)
{
for (enum ep_enum ep_index = PERIPH_EPA; ep_index < PERIPH_MAX_EP; ep_index++)
{
if (USBD->EP[ep_index].EPCFG & USBD_EPCFG_EPEN_Msk) USBD->EP[ep_index].EPRSPCTL = USBD_EPRSPCTL_TOGGLE_Msk;
}
configuration_changed = false;
}
USBD->CEPINTEN = USBD_CEPINTEN_SETUPPKIEN_Msk;
}
USBD->CEPINTSTS = cep_state;
return;
}
if (status & (USBD_GINTSTS_EPAIF_Msk | USBD_GINTSTS_EPBIF_Msk | USBD_GINTSTS_EPCIF_Msk | USBD_GINTSTS_EPDIF_Msk | USBD_GINTSTS_EPEIF_Msk | USBD_GINTSTS_EPFIF_Msk | USBD_GINTSTS_EPGIF_Msk | USBD_GINTSTS_EPHIF_Msk | USBD_GINTSTS_EPIIF_Msk | USBD_GINTSTS_EPJIF_Msk | USBD_GINTSTS_EPKIF_Msk | USBD_GINTSTS_EPLIF_Msk))
{
/* service PERIPH_EPA through PERIPH_EPL */
enum ep_enum ep_index;
uint32_t mask;
struct xfer_ctl_t *xfer;
USBD_EP_T *ep;
for (ep_index = PERIPH_EPA, mask = USBD_GINTSTS_EPAIF_Msk, xfer = &xfer_table[PERIPH_EPA], ep = &USBD->EP[PERIPH_EPA]; ep_index < PERIPH_MAX_EP; ep_index++, mask <<= 1, xfer++, ep++)
{
if(status & mask)
{
uint8_t const ep_addr = xfer->ep_addr;
bool const out_ep = !(ep_addr & TUSB_DIR_IN_MASK);
uint32_t ep_state = ep->EPINTSTS & ep->EPINTEN;
if (out_ep)
{
#ifdef OPT_MCU_NUC505_USB_DMA
xfer->dma_requested = true;
service_dma();
#else
uint16_t const available_bytes = ep->EPDATCNT & USBD_EPDATCNT_DATCNT_Msk;
/* copy the data from the PC to the previously provided buffer */
for (int count = 0; (count < available_bytes) && (xfer->out_bytes_so_far < xfer->total_bytes); count++, xfer->out_bytes_so_far++)
*xfer->data_ptr++ = ep->EPDAT_BYTE;
/* when the transfer is finished, alert TinyUSB; otherwise, continue accepting more data */
if ( (xfer->total_bytes == xfer->out_bytes_so_far) || (available_bytes < xfer->max_packet_size) )
dcd_event_xfer_complete(0, ep_addr, xfer->out_bytes_so_far, XFER_RESULT_SUCCESS, true);
#endif
}
else if (ep_state & USBD_EPINTSTS_BUFEMPTYIF_Msk)
{
/* send any remaining data */
dcd_userEP_in_xfer(xfer, ep);
}
else if (ep_state & USBD_EPINTSTS_TXPKIF_Msk)
{
/* alert TinyUSB that we've finished */
dcd_event_xfer_complete(0, ep_addr, xfer->total_bytes, XFER_RESULT_SUCCESS, true);
ep->EPINTEN = 0;
}
ep->EPINTSTS = ep_state;
}
}
}
}
void dcd_isr(uint8_t rhport)
{
(void) rhport;
USBD_IRQHandler();
}
#endif

View File

@@ -495,7 +495,7 @@ static void dd_complete_isr(uint8_t rhport, uint8_t ep_id)
}
// main USB IRQ handler
void hal_dcd_isr(uint8_t rhport)
void dcd_isr(uint8_t rhport)
{
uint32_t const dev_int_status = LPC_USB->DevIntSt & LPC_USB->DevIntEn;
LPC_USB->DevIntClr = dev_int_status;// Acknowledge handled interrupt

View File

@@ -1,7 +1,7 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
* Copyright (c) 2019, Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@@ -24,27 +24,12 @@
* This file is part of the TinyUSB stack.
*/
#include "common/tusb_common.h"
#include "tusb_option.h"
#if (CFG_TUSB_MCU == OPT_MCU_LPC175X_6X || CFG_TUSB_MCU == OPT_MCU_LPC40XX)
#include "chip.h"
extern void hal_hcd_isr(uint8_t hostid);
extern void hal_dcd_isr(uint8_t rhport);
void USB_IRQHandler(void)
{
#if TUSB_OPT_HOST_ENABLED
hal_hcd_isr(0);
#endif
#if TUSB_OPT_DEVICE_ENABLED
hal_dcd_isr(0);
#endif
}
//FIXME move later
void hcd_int_enable(uint8_t rhport)
{
(void) rhport;
@@ -57,5 +42,5 @@ void hcd_int_disable(uint8_t rhport)
NVIC_DisableIRQ(USB_IRQn);
}
#endif

View File

@@ -1,356 +0,0 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_LPC18XX || CFG_TUSB_MCU == OPT_MCU_LPC43XX)
//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#include "common/tusb_common.h"
#include "device/dcd.h"
#include "dcd_lpc18_43.h"
#include "chip.h"
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
#define QHD_MAX 12
#define QTD_NEXT_INVALID 0x01
typedef struct {
// Must be at 2K alignment
dcd_qhd_t qhd[QHD_MAX] TU_ATTR_ALIGNED(64);
dcd_qtd_t qtd[QHD_MAX] TU_ATTR_ALIGNED(32);
}dcd_data_t;
#if (CFG_TUSB_RHPORT0_MODE & OPT_MODE_DEVICE)
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(2048) static dcd_data_t dcd_data0;
#endif
#if (CFG_TUSB_RHPORT1_MODE & OPT_MODE_DEVICE)
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(2048) static dcd_data_t dcd_data1;
#endif
static LPC_USBHS_T * const LPC_USB[2] = { LPC_USB0, LPC_USB1 };
static dcd_data_t* const dcd_data_ptr[2] =
{
#if (CFG_TUSB_RHPORT0_MODE & OPT_MODE_DEVICE)
&dcd_data0,
#else
NULL,
#endif
#if (CFG_TUSB_RHPORT1_MODE & OPT_MODE_DEVICE)
&dcd_data1
#else
NULL
#endif
};
//--------------------------------------------------------------------+
// CONTROLLER API
//--------------------------------------------------------------------+
/// follows LPC43xx User Manual 23.10.3
static void bus_reset(uint8_t rhport)
{
LPC_USBHS_T* lpc_usb = LPC_USB[rhport];
// The reset value for all endpoint types is the control endpoint. If one endpoint
// direction is enabled and the paired endpoint of opposite direction is disabled, then the
// endpoint type of the unused direction must bechanged from the control type to any other
// type (e.g. bulk). Leaving an unconfigured endpoint control will cause undefined behavior
// for the data PID tracking on the active endpoint.
// USB0 has 5 but USB1 only has 3 non-control endpoints
for( int i=1; i < (rhport ? 6 : 4); i++)
{
lpc_usb->ENDPTCTRL[i] = (TUSB_XFER_BULK << 2) | (TUSB_XFER_BULK << 18);
}
//------------- Clear All Registers -------------//
lpc_usb->ENDPTNAK = lpc_usb->ENDPTNAK;
lpc_usb->ENDPTNAKEN = 0;
lpc_usb->USBSTS_D = lpc_usb->USBSTS_D;
lpc_usb->ENDPTSETUPSTAT = lpc_usb->ENDPTSETUPSTAT;
lpc_usb->ENDPTCOMPLETE = lpc_usb->ENDPTCOMPLETE;
while (lpc_usb->ENDPTPRIME);
lpc_usb->ENDPTFLUSH = 0xFFFFFFFF;
while (lpc_usb->ENDPTFLUSH);
// read reset bit in portsc
//------------- Queue Head & Queue TD -------------//
dcd_data_t* p_dcd = dcd_data_ptr[rhport];
tu_memclr(p_dcd, sizeof(dcd_data_t));
//------------- Set up Control Endpoints (0 OUT, 1 IN) -------------//
p_dcd->qhd[0].zero_length_termination = p_dcd->qhd[1].zero_length_termination = 1;
p_dcd->qhd[0].max_package_size = p_dcd->qhd[1].max_package_size = CFG_TUD_ENDPOINT0_SIZE;
p_dcd->qhd[0].qtd_overlay.next = p_dcd->qhd[1].qtd_overlay.next = QTD_NEXT_INVALID;
p_dcd->qhd[0].int_on_setup = 1; // OUT only
}
void dcd_init(uint8_t rhport)
{
LPC_USBHS_T* const lpc_usb = LPC_USB[rhport];
dcd_data_t* p_dcd = dcd_data_ptr[rhport];
tu_memclr(p_dcd, sizeof(dcd_data_t));
lpc_usb->ENDPOINTLISTADDR = (uint32_t) p_dcd->qhd; // Endpoint List Address has to be 2K alignment
lpc_usb->USBSTS_D = lpc_usb->USBSTS_D;
lpc_usb->USBINTR_D = INT_MASK_USB | INT_MASK_ERROR | INT_MASK_PORT_CHANGE | INT_MASK_RESET | INT_MASK_SUSPEND | INT_MASK_SOF;
lpc_usb->USBCMD_D &= ~0x00FF0000; // Interrupt Threshold Interval = 0
lpc_usb->USBCMD_D |= TU_BIT(0); // connect
}
void dcd_int_enable(uint8_t rhport)
{
NVIC_EnableIRQ(rhport ? USB1_IRQn : USB0_IRQn);
}
void dcd_int_disable(uint8_t rhport)
{
NVIC_DisableIRQ(rhport ? USB1_IRQn : USB0_IRQn);
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
// Response with status first before changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
LPC_USB[rhport]->DEVICEADDR = (dev_addr << 25) | TU_BIT(24);
}
void dcd_set_config(uint8_t rhport, uint8_t config_num)
{
(void) rhport;
(void) config_num;
// nothing to do
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
}
//--------------------------------------------------------------------+
// HELPER
//--------------------------------------------------------------------+
// index to bit position in register
static inline uint8_t ep_idx2bit(uint8_t ep_idx)
{
return ep_idx/2 + ( (ep_idx%2) ? 16 : 0);
}
static void qtd_init(dcd_qtd_t* p_qtd, void * data_ptr, uint16_t total_bytes)
{
tu_memclr(p_qtd, sizeof(dcd_qtd_t));
p_qtd->next = QTD_NEXT_INVALID;
p_qtd->active = 1;
p_qtd->total_bytes = p_qtd->expected_bytes = total_bytes;
if (data_ptr != NULL)
{
p_qtd->buffer[0] = (uint32_t) data_ptr;
for(uint8_t i=1; i<5; i++)
{
p_qtd->buffer[i] |= tu_align4k( p_qtd->buffer[i-1] ) + 4096;
}
}
}
//--------------------------------------------------------------------+
// DCD Endpoint Port
//--------------------------------------------------------------------+
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
LPC_USB[rhport]->ENDPTCTRL[epnum] |= ENDPTCTRL_MASK_STALL << (dir ? 16 : 0);
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// data toggle also need to be reset
LPC_USB[rhport]->ENDPTCTRL[epnum] |= ENDPTCTRL_MASK_TOGGLE_RESET << ( dir ? 16 : 0 );
LPC_USB[rhport]->ENDPTCTRL[epnum] &= ~(ENDPTCTRL_MASK_STALL << ( dir ? 16 : 0));
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
// TODO not support ISO yet
TU_VERIFY ( p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
uint8_t const ep_idx = 2*epnum + dir;
// USB0 has 5, USB1 has 3 non-control endpoints
TU_ASSERT( epnum <= (rhport ? 3 : 5) );
//------------- Prepare Queue Head -------------//
dcd_qhd_t * p_qhd = &dcd_data_ptr[rhport]->qhd[ep_idx];
tu_memclr(p_qhd, sizeof(dcd_qhd_t));
p_qhd->zero_length_termination = 1;
p_qhd->max_package_size = p_endpoint_desc->wMaxPacketSize.size;
p_qhd->qtd_overlay.next = QTD_NEXT_INVALID;
// Enable EP Control
LPC_USB[rhport]->ENDPTCTRL[epnum] |= ((p_endpoint_desc->bmAttributes.xfer << 2) | ENDPTCTRL_MASK_ENABLE | ENDPTCTRL_MASK_TOGGLE_RESET) << (dir ? 16 : 0);
return true;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const ep_idx = 2*epnum + dir;
if ( epnum == 0 )
{
// follows UM 24.10.8.1.1 Setup packet handling using setup lockout mechanism
// wait until ENDPTSETUPSTAT before priming data/status in response TODO add time out
while(LPC_USB[rhport]->ENDPTSETUPSTAT & TU_BIT(0)) {}
}
dcd_qhd_t * p_qhd = &dcd_data_ptr[rhport]->qhd[ep_idx];
dcd_qtd_t * p_qtd = &dcd_data_ptr[rhport]->qtd[ep_idx];
//------------- Prepare qtd -------------//
qtd_init(p_qtd, buffer, total_bytes);
p_qtd->int_on_complete = true;
p_qhd->qtd_overlay.next = (uint32_t) p_qtd; // link qtd to qhd
// start transfer
LPC_USB[rhport]->ENDPTPRIME = TU_BIT( ep_idx2bit(ep_idx) ) ;
return true;
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
void hal_dcd_isr(uint8_t rhport)
{
LPC_USBHS_T* const lpc_usb = LPC_USB[rhport];
uint32_t const int_enable = lpc_usb->USBINTR_D;
uint32_t const int_status = lpc_usb->USBSTS_D & int_enable;
lpc_usb->USBSTS_D = int_status; // Acknowledge handled interrupt
if (int_status == 0) return;// disabled interrupt sources
if (int_status & INT_MASK_RESET)
{
bus_reset(rhport);
dcd_event_bus_signal(rhport, DCD_EVENT_BUS_RESET, true);
}
if (int_status & INT_MASK_SUSPEND)
{
if (lpc_usb->PORTSC1_D & PORTSC_SUSPEND_MASK)
{
// Note: Host may delay more than 3 ms before and/or after bus reset before doing enumeration.
if ((lpc_usb->DEVICEADDR >> 25) & 0x0f)
{
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
}
}
// TODO disconnection does not generate interrupt !!!!!!
// if (int_status & INT_MASK_PORT_CHANGE)
// {
// if ( !(lpc_usb->PORTSC1_D & PORTSC_CURRENT_CONNECT_STATUS_MASK) )
// {
// dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_UNPLUGGED };
// dcd_event_handler(&event, true);
// }
// }
if (int_status & INT_MASK_USB)
{
uint32_t const edpt_complete = lpc_usb->ENDPTCOMPLETE;
lpc_usb->ENDPTCOMPLETE = edpt_complete; // acknowledge
dcd_data_t* const p_dcd = dcd_data_ptr[rhport];
if (lpc_usb->ENDPTSETUPSTAT)
{
//------------- Set up Received -------------//
// 23.10.10.2 Operational model for setup transfers
lpc_usb->ENDPTSETUPSTAT = lpc_usb->ENDPTSETUPSTAT;// acknowledge
dcd_event_setup_received(rhport, (uint8_t*) &p_dcd->qhd[0].setup_request, true);
}
if ( edpt_complete )
{
for(uint8_t ep_idx = 0; ep_idx < QHD_MAX; ep_idx++)
{
if ( tu_bit_test(edpt_complete, ep_idx2bit(ep_idx)) )
{
// 23.10.12.3 Failed QTD also get ENDPTCOMPLETE set
dcd_qtd_t * p_qtd = &dcd_data_ptr[rhport]->qtd[ep_idx];
uint8_t result = p_qtd->halted ? XFER_RESULT_STALLED :
( p_qtd->xact_err ||p_qtd->buffer_err ) ? XFER_RESULT_FAILED : XFER_RESULT_SUCCESS;
uint8_t const ep_addr = (ep_idx/2) | ( (ep_idx & 0x01) ? TUSB_DIR_IN_MASK : 0 );
dcd_event_xfer_complete(rhport, ep_addr, p_qtd->expected_bytes - p_qtd->total_bytes, result, true); // only number of bytes in the IOC qtd
}
}
}
}
if (int_status & INT_MASK_SOF)
{
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
}
if (int_status & INT_MASK_NAK) {}
if (int_status & INT_MASK_ERROR) TU_ASSERT(false, );
}
#endif

View File

@@ -1,144 +0,0 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
/** \ingroup group_dcd
* \defgroup group_dcd_lpc143xx LPC43xx
* @{ */
#ifndef _TUSB_DCD_LPC43XX_H_
#define _TUSB_DCD_LPC43XX_H_
#include "common/tusb_common.h"
#ifdef __cplusplus
extern "C" {
#endif
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
/*---------- ENDPTCTRL ----------*/
enum {
ENDPTCTRL_MASK_STALL = TU_BIT(0),
ENDPTCTRL_MASK_TOGGLE_INHIBIT = TU_BIT(5), ///< used for test only
ENDPTCTRL_MASK_TOGGLE_RESET = TU_BIT(6),
ENDPTCTRL_MASK_ENABLE = TU_BIT(7)
};
/*---------- USBCMD ----------*/
enum {
USBCMD_MASK_RUN_STOP = TU_BIT(0),
USBCMD_MASK_RESET = TU_BIT(1),
USBCMD_MASK_SETUP_TRIPWIRE = TU_BIT(13),
USBCMD_MASK_ADD_QTD_TRIPWIRE = TU_BIT(14) ///< This bit is used as a semaphore to ensure the to proper addition of a new dTD to an active (primed) endpoints linked list. This bit is set and cleared by software during the process of adding a new dTD
};
// Interrupt Threshold bit 23:16
/*---------- USBSTS, USBINTR ----------*/
enum {
INT_MASK_USB = TU_BIT(0),
INT_MASK_ERROR = TU_BIT(1),
INT_MASK_PORT_CHANGE = TU_BIT(2),
INT_MASK_RESET = TU_BIT(6),
INT_MASK_SOF = TU_BIT(7),
INT_MASK_SUSPEND = TU_BIT(8),
INT_MASK_NAK = TU_BIT(16)
};
//------------- PORTSC -------------//
enum {
PORTSC_CURRENT_CONNECT_STATUS_MASK = TU_BIT(0),
PORTSC_FORCE_PORT_RESUME_MASK = TU_BIT(6),
PORTSC_SUSPEND_MASK = TU_BIT(7)
};
typedef struct
{
// Word 0: Next QTD Pointer
uint32_t next; ///< Next link pointer This field contains the physical memory address of the next dTD to be processed
// Word 1: qTQ Token
uint32_t : 3 ;
volatile uint32_t xact_err : 1 ;
uint32_t : 1 ;
volatile uint32_t buffer_err : 1 ;
volatile uint32_t halted : 1 ;
volatile uint32_t active : 1 ;
uint32_t : 2 ;
uint32_t iso_mult_override : 2 ; ///< This field can be used for transmit ISOs to override the MULT field in the dQH. This field must be zero for all packet types that are not transmit-ISO.
uint32_t : 3 ;
uint32_t int_on_complete : 1 ;
volatile uint32_t total_bytes : 15 ;
uint32_t : 0 ;
// Word 2-6: Buffer Page Pointer List, Each element in the list is a 4K page aligned, physical memory address. The lower 12 bits in each pointer are reserved (except for the first one) as each memory pointer must reference the start of a 4K page
uint32_t buffer[5]; ///< buffer1 has frame_n for TODO Isochronous
//------------- DCD Area -------------//
uint16_t expected_bytes;
uint8_t reserved[2];
} dcd_qtd_t;
TU_VERIFY_STATIC( sizeof(dcd_qtd_t) == 32, "size is not correct");
typedef struct
{
// Word 0: Capabilities and Characteristics
uint32_t : 15 ; ///< Number of packets executed per transaction descriptor 00 - Execute N transactions as demonstrated by the USB variable length protocol where N is computed using Max_packet_length and the Total_bytes field in the dTD. 01 - Execute one transaction 10 - Execute two transactions 11 - Execute three transactions Remark: Non-isochronous endpoints must set MULT = 00. Remark: Isochronous endpoints must set MULT = 01, 10, or 11 as needed.
uint32_t int_on_setup : 1 ; ///< Interrupt on setup This bit is used on control type endpoints to indicate if USBINT is set in response to a setup being received.
uint32_t max_package_size : 11 ; ///< This directly corresponds to the maximum packet size of the associated endpoint (wMaxPacketSize)
uint32_t : 2 ;
uint32_t zero_length_termination : 1 ; ///< This bit is used for non-isochronous endpoints to indicate when a zero-length packet is received to terminate transfers in case the total transfer length is “multiple”. 0 - Enable zero-length packet to terminate transfers equal to a multiple of Max_packet_length (default). 1 - Disable zero-length packet on transfers that are equal in length to a multiple Max_packet_length.
uint32_t iso_mult : 2 ; ///<
uint32_t : 0 ;
// Word 1: Current qTD Pointer
volatile uint32_t qtd_addr;
// Word 2-9: Transfer Overlay
volatile dcd_qtd_t qtd_overlay;
// Word 10-11: Setup request (control OUT only)
volatile tusb_control_request_t setup_request;
//--------------------------------------------------------------------+
/// Due to the fact QHD is 64 bytes aligned but occupies only 48 bytes
/// thus there are 16 bytes padding free that we can make use of.
//--------------------------------------------------------------------+
uint8_t reserved[16];
} dcd_qhd_t;
TU_VERIFY_STATIC( sizeof(dcd_qhd_t) == 64, "size is not correct");
#ifdef __cplusplus
}
#endif
#endif /* _TUSB_DCD_LPC43XX_H_ */
/** @} */

View File

@@ -0,0 +1,579 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_LPC18XX || \
CFG_TUSB_MCU == OPT_MCU_LPC43XX || \
CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX)
//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#include "common/tusb_common.h"
#include "device/dcd.h"
#if CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX
#include "fsl_device_registers.h"
#else
// LPCOpen for 18xx & 43xx
#include "chip.h"
#endif
#if defined(__CORTEX_M) && __CORTEX_M == 7 && __DCACHE_PRESENT == 1
#define CleanInvalidateDCache_by_Addr SCB_CleanInvalidateDCache_by_Addr
#else
#define CleanInvalidateDCache_by_Addr(_addr, _dsize)
#endif
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
// ENDPTCTRL
enum {
ENDPTCTRL_STALL = TU_BIT(0),
ENDPTCTRL_TOGGLE_INHIBIT = TU_BIT(5), ///< used for test only
ENDPTCTRL_TOGGLE_RESET = TU_BIT(6),
ENDPTCTRL_ENABLE = TU_BIT(7)
};
// USBCMD
enum {
USBCMD_RUN_STOP = TU_BIT(0),
USBCMD_RESET = TU_BIT(1),
USBCMD_SETUP_TRIPWIRE = TU_BIT(13),
USBCMD_ADD_QTD_TRIPWIRE = TU_BIT(14) ///< This bit is used as a semaphore to ensure the to proper addition of a new dTD to an active (primed) endpoints linked list. This bit is set and cleared by software during the process of adding a new dTD
};
// Interrupt Threshold bit 23:16
// USBSTS, USBINTR
enum {
INTR_USB = TU_BIT(0),
INTR_ERROR = TU_BIT(1),
INTR_PORT_CHANGE = TU_BIT(2),
INTR_RESET = TU_BIT(6),
INTR_SOF = TU_BIT(7),
INTR_SUSPEND = TU_BIT(8),
INTR_NAK = TU_BIT(16)
};
// PORTSC1
enum {
PORTSC1_CURRENT_CONNECT_STATUS = TU_BIT(0),
PORTSC1_FORCE_PORT_RESUME = TU_BIT(6),
PORTSC1_SUSPEND = TU_BIT(7),
PORTSC1_FORCE_FULL_SPEED = TU_BIT(24),
};
// OTGSC
enum {
OTGSC_VBUS_DISCHARGE = TU_BIT(0),
OTGSC_VBUS_CHARGE = TU_BIT(1),
// OTGSC_HWASSIST_AUTORESET = TU_BIT(2),
OTGSC_OTG_TERMINATION = TU_BIT(3), ///< Must set to 1 when OTG go to device mode
OTGSC_DATA_PULSING = TU_BIT(4),
OTGSC_ID_PULLUP = TU_BIT(5),
// OTGSC_HWASSIT_DATA_PULSE = TU_BIT(6),
// OTGSC_HWASSIT_BDIS_ACONN = TU_BIT(7),
OTGSC_ID = TU_BIT(8), ///< 0 = A device, 1 = B Device
OTGSC_A_VBUS_VALID = TU_BIT(9),
OTGSC_A_SESSION_VALID = TU_BIT(10),
OTGSC_B_SESSION_VALID = TU_BIT(11),
OTGSC_B_SESSION_END = TU_BIT(12),
OTGSC_1MS_TOGGLE = TU_BIT(13),
OTGSC_DATA_BUS_PULSING_STATUS = TU_BIT(14),
};
// USBMode
enum {
USBMODE_CM_DEVICE = 2,
USBMODE_CM_HOST = 3,
USBMODE_SLOM = TU_BIT(3),
USBMODE_SDIS = TU_BIT(4),
USBMODE_VBUS_POWER_SELCT = TU_BIT(5), // Enable for LPC18XX/43XX in host most only
};
// Device Registers
typedef struct
{
//------------- ID + HW Parameter Registers-------------//
__I uint32_t TU_RESERVED[64]; ///< For iMX RT10xx, but not used by LPC18XX/LPC43XX
//------------- Capability Registers-------------//
__I uint8_t CAPLENGTH; ///< Capability Registers Length
__I uint8_t TU_RESERVED[1];
__I uint16_t HCIVERSION; ///< Host Controller Interface Version
__I uint32_t HCSPARAMS; ///< Host Controller Structural Parameters
__I uint32_t HCCPARAMS; ///< Host Controller Capability Parameters
__I uint32_t TU_RESERVED[5];
__I uint16_t DCIVERSION; ///< Device Controller Interface Version
__I uint8_t TU_RESERVED[2];
__I uint32_t DCCPARAMS; ///< Device Controller Capability Parameters
__I uint32_t TU_RESERVED[6];
//------------- Operational Registers -------------//
__IO uint32_t USBCMD; ///< USB Command Register
__IO uint32_t USBSTS; ///< USB Status Register
__IO uint32_t USBINTR; ///< Interrupt Enable Register
__IO uint32_t FRINDEX; ///< USB Frame Index
__I uint32_t TU_RESERVED;
__IO uint32_t DEVICEADDR; ///< Device Address
__IO uint32_t ENDPTLISTADDR; ///< Endpoint List Address
__I uint32_t TU_RESERVED;
__IO uint32_t BURSTSIZE; ///< Programmable Burst Size
__IO uint32_t TXFILLTUNING; ///< TX FIFO Fill Tuning
uint32_t TU_RESERVED[4];
__IO uint32_t ENDPTNAK; ///< Endpoint NAK
__IO uint32_t ENDPTNAKEN; ///< Endpoint NAK Enable
__I uint32_t TU_RESERVED;
__IO uint32_t PORTSC1; ///< Port Status & Control
__I uint32_t TU_RESERVED[7];
__IO uint32_t OTGSC; ///< On-The-Go Status & control
__IO uint32_t USBMODE; ///< USB Device Mode
__IO uint32_t ENDPTSETUPSTAT; ///< Endpoint Setup Status
__IO uint32_t ENDPTPRIME; ///< Endpoint Prime
__IO uint32_t ENDPTFLUSH; ///< Endpoint Flush
__I uint32_t ENDPTSTAT; ///< Endpoint Status
__IO uint32_t ENDPTCOMPLETE; ///< Endpoint Complete
__IO uint32_t ENDPTCTRL[8]; ///< Endpoint Control 0 - 7
} dcd_registers_t;
// Queue Transfer Descriptor
typedef struct
{
// Word 0: Next QTD Pointer
uint32_t next; ///< Next link pointer This field contains the physical memory address of the next dTD to be processed
// Word 1: qTQ Token
uint32_t : 3 ;
volatile uint32_t xact_err : 1 ;
uint32_t : 1 ;
volatile uint32_t buffer_err : 1 ;
volatile uint32_t halted : 1 ;
volatile uint32_t active : 1 ;
uint32_t : 2 ;
uint32_t iso_mult_override : 2 ; ///< This field can be used for transmit ISOs to override the MULT field in the dQH. This field must be zero for all packet types that are not transmit-ISO.
uint32_t : 3 ;
uint32_t int_on_complete : 1 ;
volatile uint32_t total_bytes : 15 ;
uint32_t : 0 ;
// Word 2-6: Buffer Page Pointer List, Each element in the list is a 4K page aligned, physical memory address. The lower 12 bits in each pointer are reserved (except for the first one) as each memory pointer must reference the start of a 4K page
uint32_t buffer[5]; ///< buffer1 has frame_n for TODO Isochronous
//------------- DCD Area -------------//
uint16_t expected_bytes;
uint8_t reserved[2];
} dcd_qtd_t;
TU_VERIFY_STATIC( sizeof(dcd_qtd_t) == 32, "size is not correct");
// Queue Head
typedef struct
{
// Word 0: Capabilities and Characteristics
uint32_t : 15 ; ///< Number of packets executed per transaction descriptor 00 - Execute N transactions as demonstrated by the USB variable length protocol where N is computed using Max_packet_length and the Total_bytes field in the dTD. 01 - Execute one transaction 10 - Execute two transactions 11 - Execute three transactions Remark: Non-isochronous endpoints must set MULT = 00. Remark: Isochronous endpoints must set MULT = 01, 10, or 11 as needed.
uint32_t int_on_setup : 1 ; ///< Interrupt on setup This bit is used on control type endpoints to indicate if USBINT is set in response to a setup being received.
uint32_t max_package_size : 11 ; ///< This directly corresponds to the maximum packet size of the associated endpoint (wMaxPacketSize)
uint32_t : 2 ;
uint32_t zero_length_termination : 1 ; ///< This bit is used for non-isochronous endpoints to indicate when a zero-length packet is received to terminate transfers in case the total transfer length is “multiple”. 0 - Enable zero-length packet to terminate transfers equal to a multiple of Max_packet_length (default). 1 - Disable zero-length packet on transfers that are equal in length to a multiple Max_packet_length.
uint32_t iso_mult : 2 ; ///<
uint32_t : 0 ;
// Word 1: Current qTD Pointer
volatile uint32_t qtd_addr;
// Word 2-9: Transfer Overlay
volatile dcd_qtd_t qtd_overlay;
// Word 10-11: Setup request (control OUT only)
volatile tusb_control_request_t setup_request;
//--------------------------------------------------------------------+
/// Due to the fact QHD is 64 bytes aligned but occupies only 48 bytes
/// thus there are 16 bytes padding free that we can make use of.
//--------------------------------------------------------------------+
uint8_t reserved[16];
} dcd_qhd_t;
TU_VERIFY_STATIC( sizeof(dcd_qhd_t) == 64, "size is not correct");
//--------------------------------------------------------------------+
// Variables
//--------------------------------------------------------------------+
typedef struct
{
dcd_registers_t* regs; // registers
const IRQn_Type irqnum; // IRQ number
const uint8_t ep_count; // Max bi-directional Endpoints
}dcd_controller_t;
#if CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX
// Each endpoint with direction (IN/OUT) occupies a queue head
// Therefore QHD_MAX is 2 x max endpoint count
#define QHD_MAX (8*2)
dcd_controller_t _dcd_controller[] =
{
// RT1010 and RT1020 only has 1 USB controller
#if FSL_FEATURE_SOC_USBHS_COUNT == 1
{ .regs = (dcd_registers_t*) USB_BASE , .irqnum = USB_OTG1_IRQn, .ep_count = 8 }
#else
{ .regs = (dcd_registers_t*) USB1_BASE, .irqnum = USB_OTG1_IRQn, .ep_count = 8 },
{ .regs = (dcd_registers_t*) USB2_BASE, .irqnum = USB_OTG2_IRQn, .ep_count = 8 }
#endif
};
#else
#define QHD_MAX (6*2)
dcd_controller_t _dcd_controller[] =
{
{ .regs = (dcd_registers_t*) LPC_USB0_BASE, .irqnum = USB0_IRQn, .ep_count = 6 },
{ .regs = (dcd_registers_t*) LPC_USB1_BASE, .irqnum = USB1_IRQn, .ep_count = 4 }
};
#endif
#define QTD_NEXT_INVALID 0x01
typedef struct {
// Must be at 2K alignment
dcd_qhd_t qhd[QHD_MAX] TU_ATTR_ALIGNED(64);
dcd_qtd_t qtd[QHD_MAX] TU_ATTR_ALIGNED(32); // for portability, TinyUSB only queue 1 TD for each Qhd
}dcd_data_t;
static dcd_data_t _dcd_data CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(2048);
//--------------------------------------------------------------------+
// CONTROLLER API
//--------------------------------------------------------------------+
/// follows LPC43xx User Manual 23.10.3
static void bus_reset(uint8_t rhport)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
// The reset value for all endpoint types is the control endpoint. If one endpoint
// direction is enabled and the paired endpoint of opposite direction is disabled, then the
// endpoint type of the unused direction must be changed from the control type to any other
// type (e.g. bulk). Leaving an un-configured endpoint control will cause undefined behavior
// for the data PID tracking on the active endpoint.
for( int i=1; i < _dcd_controller[rhport].ep_count; i++)
{
dcd_reg->ENDPTCTRL[i] = (TUSB_XFER_BULK << 2) | (TUSB_XFER_BULK << 18);
}
//------------- Clear All Registers -------------//
dcd_reg->ENDPTNAK = dcd_reg->ENDPTNAK;
dcd_reg->ENDPTNAKEN = 0;
dcd_reg->USBSTS = dcd_reg->USBSTS;
dcd_reg->ENDPTSETUPSTAT = dcd_reg->ENDPTSETUPSTAT;
dcd_reg->ENDPTCOMPLETE = dcd_reg->ENDPTCOMPLETE;
while (dcd_reg->ENDPTPRIME) {}
dcd_reg->ENDPTFLUSH = 0xFFFFFFFF;
while (dcd_reg->ENDPTFLUSH) {}
// read reset bit in portsc
//------------- Queue Head & Queue TD -------------//
tu_memclr(&_dcd_data, sizeof(dcd_data_t));
//------------- Set up Control Endpoints (0 OUT, 1 IN) -------------//
_dcd_data.qhd[0].zero_length_termination = _dcd_data.qhd[1].zero_length_termination = 1;
_dcd_data.qhd[0].max_package_size = _dcd_data.qhd[1].max_package_size = CFG_TUD_ENDPOINT0_SIZE;
_dcd_data.qhd[0].qtd_overlay.next = _dcd_data.qhd[1].qtd_overlay.next = QTD_NEXT_INVALID;
_dcd_data.qhd[0].int_on_setup = 1; // OUT only
}
void dcd_init(uint8_t rhport)
{
tu_memclr(&_dcd_data, sizeof(dcd_data_t));
dcd_registers_t* const dcd_reg = _dcd_controller[rhport].regs;
// Reset controller
dcd_reg->USBCMD |= USBCMD_RESET;
while( dcd_reg->USBCMD & USBCMD_RESET ) {}
// Set mode to device, must be set immediately after reset
dcd_reg->USBMODE = USBMODE_CM_DEVICE;
dcd_reg->OTGSC = OTGSC_VBUS_DISCHARGE | OTGSC_OTG_TERMINATION;
// TODO Force fullspeed on non-highspeed port
// dcd_reg->PORTSC1 = PORTSC1_FORCE_FULL_SPEED;
CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t));
dcd_reg->ENDPTLISTADDR = (uint32_t) _dcd_data.qhd; // Endpoint List Address has to be 2K alignment
dcd_reg->USBSTS = dcd_reg->USBSTS;
dcd_reg->USBINTR = INTR_USB | INTR_ERROR | INTR_PORT_CHANGE | INTR_RESET | INTR_SUSPEND /*| INTR_SOF*/;
dcd_reg->USBCMD &= ~0x00FF0000; // Interrupt Threshold Interval = 0
dcd_reg->USBCMD |= TU_BIT(0); // connect
}
void dcd_int_enable(uint8_t rhport)
{
NVIC_EnableIRQ(_dcd_controller[rhport].irqnum);
}
void dcd_int_disable(uint8_t rhport)
{
NVIC_DisableIRQ(_dcd_controller[rhport].irqnum);
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
// Response with status first before changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->DEVICEADDR = (dev_addr << 25) | TU_BIT(24);
}
void dcd_set_config(uint8_t rhport, uint8_t config_num)
{
(void) rhport;
(void) config_num;
// nothing to do
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
}
//--------------------------------------------------------------------+
// HELPER
//--------------------------------------------------------------------+
// index to bit position in register
static inline uint8_t ep_idx2bit(uint8_t ep_idx)
{
return ep_idx/2 + ( (ep_idx%2) ? 16 : 0);
}
static void qtd_init(dcd_qtd_t* p_qtd, void * data_ptr, uint16_t total_bytes)
{
tu_memclr(p_qtd, sizeof(dcd_qtd_t));
p_qtd->next = QTD_NEXT_INVALID;
p_qtd->active = 1;
p_qtd->total_bytes = p_qtd->expected_bytes = total_bytes;
if (data_ptr != NULL)
{
p_qtd->buffer[0] = (uint32_t) data_ptr;
for(uint8_t i=1; i<5; i++)
{
p_qtd->buffer[i] |= tu_align4k( p_qtd->buffer[i-1] ) + 4096;
}
}
}
//--------------------------------------------------------------------+
// DCD Endpoint Port
//--------------------------------------------------------------------+
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->ENDPTCTRL[epnum] |= ENDPTCTRL_STALL << (dir ? 16 : 0);
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// data toggle also need to be reset
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->ENDPTCTRL[epnum] |= ENDPTCTRL_TOGGLE_RESET << ( dir ? 16 : 0 );
dcd_reg->ENDPTCTRL[epnum] &= ~(ENDPTCTRL_STALL << ( dir ? 16 : 0));
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
// TODO not support ISO yet
TU_VERIFY ( p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
uint8_t const ep_idx = 2*epnum + dir;
// Must not exceed max endpoint number
TU_ASSERT( epnum < _dcd_controller[rhport].ep_count );
//------------- Prepare Queue Head -------------//
dcd_qhd_t * p_qhd = &_dcd_data.qhd[ep_idx];
tu_memclr(p_qhd, sizeof(dcd_qhd_t));
p_qhd->zero_length_termination = 1;
p_qhd->max_package_size = p_endpoint_desc->wMaxPacketSize.size;
p_qhd->qtd_overlay.next = QTD_NEXT_INVALID;
CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t));
// Enable EP Control
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
dcd_reg->ENDPTCTRL[epnum] |= ((p_endpoint_desc->bmAttributes.xfer << 2) | ENDPTCTRL_ENABLE | ENDPTCTRL_TOGGLE_RESET) << (dir ? 16 : 0);
return true;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
dcd_registers_t* dcd_reg = _dcd_controller[rhport].regs;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const ep_idx = 2*epnum + dir;
if ( epnum == 0 )
{
// follows UM 24.10.8.1.1 Setup packet handling using setup lockout mechanism
// wait until ENDPTSETUPSTAT before priming data/status in response TODO add time out
while(dcd_reg->ENDPTSETUPSTAT & TU_BIT(0)) {}
}
dcd_qhd_t * p_qhd = &_dcd_data.qhd[ep_idx];
dcd_qtd_t * p_qtd = &_dcd_data.qtd[ep_idx];
// Force the CPU to flush the buffer. We increase the size by 32 because the call aligns the
// address to 32-byte boundaries.
CleanInvalidateDCache_by_Addr((uint32_t*) buffer, total_bytes + 31);
//------------- Prepare qtd -------------//
qtd_init(p_qtd, buffer, total_bytes);
p_qtd->int_on_complete = true;
p_qhd->qtd_overlay.next = (uint32_t) p_qtd; // link qtd to qhd
CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t));
// start transfer
dcd_reg->ENDPTPRIME = TU_BIT( ep_idx2bit(ep_idx) ) ;
return true;
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
void dcd_isr(uint8_t rhport)
{
dcd_registers_t* const dcd_reg = _dcd_controller[rhport].regs;
uint32_t const int_enable = dcd_reg->USBINTR;
uint32_t const int_status = dcd_reg->USBSTS & int_enable;
dcd_reg->USBSTS = int_status; // Acknowledge handled interrupt
// disabled interrupt sources
if (int_status == 0) return;
if (int_status & INTR_RESET)
{
bus_reset(rhport);
dcd_event_bus_signal(rhport, DCD_EVENT_BUS_RESET, true);
}
if (int_status & INTR_SUSPEND)
{
if (dcd_reg->PORTSC1 & PORTSC1_SUSPEND)
{
// Note: Host may delay more than 3 ms before and/or after bus reset before doing enumeration.
if ((dcd_reg->DEVICEADDR >> 25) & 0x0f)
{
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
}
}
// Make sure we read the latest version of _dcd_data.
CleanInvalidateDCache_by_Addr((uint32_t*) &_dcd_data, sizeof(dcd_data_t));
// TODO disconnection does not generate interrupt !!!!!!
// if (int_status & INTR_PORT_CHANGE)
// {
// if ( !(dcd_reg->PORTSC1 & PORTSC1_CURRENT_CONNECT_STATUS) )
// {
// dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_UNPLUGGED };
// dcd_event_handler(&event, true);
// }
// }
if (int_status & INTR_USB)
{
uint32_t const edpt_complete = dcd_reg->ENDPTCOMPLETE;
dcd_reg->ENDPTCOMPLETE = edpt_complete; // acknowledge
if (dcd_reg->ENDPTSETUPSTAT)
{
//------------- Set up Received -------------//
// 23.10.10.2 Operational model for setup transfers
dcd_reg->ENDPTSETUPSTAT = dcd_reg->ENDPTSETUPSTAT;// acknowledge
dcd_event_setup_received(rhport, (uint8_t*) &_dcd_data.qhd[0].setup_request, true);
}
if ( edpt_complete )
{
for(uint8_t ep_idx = 0; ep_idx < QHD_MAX; ep_idx++)
{
if ( tu_bit_test(edpt_complete, ep_idx2bit(ep_idx)) )
{
// 23.10.12.3 Failed QTD also get ENDPTCOMPLETE set
dcd_qtd_t * p_qtd = &_dcd_data.qtd[ep_idx];
uint8_t result = p_qtd->halted ? XFER_RESULT_STALLED :
( p_qtd->xact_err ||p_qtd->buffer_err ) ? XFER_RESULT_FAILED : XFER_RESULT_SUCCESS;
uint8_t const ep_addr = (ep_idx/2) | ( (ep_idx & 0x01) ? TUSB_DIR_IN_MASK : 0 );
dcd_event_xfer_complete(rhport, ep_addr, p_qtd->expected_bytes - p_qtd->total_bytes, result, true); // only number of bytes in the IOC qtd
}
}
}
}
if (int_status & INTR_SOF)
{
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
}
if (int_status & INTR_NAK) {}
if (int_status & INTR_ERROR) TU_ASSERT(false, );
}
#endif

View File

@@ -30,7 +30,7 @@
/**********************************************
* This driver has been tested with the following MCUs:
* - F070, F072, L053
* - F070, F072, L053, F042F6
*
* It also should work with minimal changes for any ST MCU with an "USB A"/"PCD"/"HCD" peripheral. This
* covers:
@@ -44,6 +44,9 @@
* L4x2, L4x3 1024 byte buffer
*
* To use this driver, you must:
* - If you are using a device with crystal-less USB, set up the clock recovery system (CRS)
* - Remap pins to be D+/D- on devices that they are shared (for example: F042Fx)
* - This is different to the normal "alternate function" GPIO interface, needs to go through SYSCFG->CFGRx register
* - Enable USB clock; Perhaps use __HAL_RCC_USB_CLK_ENABLE();
* - (Optionally configure GPIO HAL to tell it the USB driver is using the USB pins)
* - call tusb_init();
@@ -172,7 +175,6 @@ static inline xfer_ctl_t* xfer_ctl_ptr(uint32_t epnum, uint32_t dir)
static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[6];
static uint8_t newDADDR; // Used to set the new device address during the CTR IRQ handler
static uint8_t remoteWakeCountdown; // When wake is requested
// EP Buffers assigned from end of memory location, to minimize their chance of crashing
@@ -295,14 +297,14 @@ void dcd_int_disable(uint8_t rhport)
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
(void)rhport;
// We cannot immediatly change it; it must be queued to change after the STATUS packet is sent.
// (CTR handler will actually change the address once it sees that the transmission is complete)
newDADDR = dev_addr;
(void) rhport;
(void) dev_addr;
// Respond with status
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
// DCD can only set address after status for this request is complete.
// do it at dcd_edpt0_status_complete()
}
// Receive Set Config request
@@ -321,29 +323,27 @@ void dcd_remote_wakeup(uint8_t rhport)
remoteWakeCountdown = 4u; // required to be 1 to 15 ms, ESOF should trigger every 1ms.
}
// I'm getting a weird warning about missing braces here that I don't
// know how to fix.
#if defined(__GNUC__) && (__GNUC__ >= 7)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wmissing-braces"
#endif
static const tusb_desc_endpoint_t ep0OUT_desc =
{
.wMaxPacketSize = CFG_TUD_ENDPOINT0_SIZE,
.bDescriptorType = TUSB_XFER_CONTROL,
.bEndpointAddress = 0x00
.bLength = sizeof(tusb_desc_endpoint_t),
.bDescriptorType = TUSB_DESC_ENDPOINT,
.bEndpointAddress = 0x00,
.bmAttributes = { .xfer = TUSB_XFER_CONTROL },
.wMaxPacketSize = { .size = CFG_TUD_ENDPOINT0_SIZE },
.bInterval = 0
};
static const tusb_desc_endpoint_t ep0IN_desc =
{
.wMaxPacketSize = CFG_TUD_ENDPOINT0_SIZE,
.bDescriptorType = TUSB_XFER_CONTROL,
.bEndpointAddress = 0x80
};
.bLength = sizeof(tusb_desc_endpoint_t),
.bDescriptorType = TUSB_DESC_ENDPOINT,
#if defined(__GNUC__) && (__GNUC__ >= 7)
#pragma GCC diagnostic pop
#endif
.bEndpointAddress = 0x80,
.bmAttributes = { .xfer = TUSB_XFER_CONTROL },
.wMaxPacketSize = { .size = CFG_TUD_ENDPOINT0_SIZE },
.bInterval = 0
};
static void dcd_handle_bus_reset(void)
{
@@ -359,7 +359,7 @@ static void dcd_handle_bus_reset(void)
ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT; // 8 bytes per endpoint (two TX and two RX words, each)
dcd_edpt_open (0, &ep0OUT_desc);
dcd_edpt_open (0, &ep0IN_desc);
newDADDR = 0u;
USB->DADDR = USB_DADDR_EF; // Set enable flag, and leaving the device address as zero.
}
@@ -395,13 +395,7 @@ static uint16_t dcd_ep_ctr_handler(void)
if((xfer->total_len == xfer->queued_len))
{
dcd_event_xfer_complete(0u, (uint8_t)(0x80 + EPindex), xfer->total_len, XFER_RESULT_SUCCESS, true);
if((newDADDR != 0) && ( xfer->total_len == 0U))
{
// Delayed setting of the DADDR after the 0-len DATA packet acking the request is sent.
reg16_clear_bits(&USB->DADDR, USB_DADDR_ADD);
USB->DADDR = (uint16_t)(USB->DADDR | newDADDR); // leave the enable bit set
newDADDR = 0;
}
if(xfer->total_len == 0) // Probably a status message?
{
pcd_clear_rx_dtog(USB,EPindex);
@@ -599,6 +593,24 @@ static void dcd_fs_irqHandler(void) {
// Endpoint API
//--------------------------------------------------------------------+
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
(void) rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS )
{
uint8_t const dev_addr = (uint8_t) request->wValue;
// Setting new address after the whole request is complete
reg16_clear_bits(&USB->DADDR, USB_DADDR_ADD);
USB->DADDR = (uint16_t)(USB->DADDR | dev_addr); // leave the enable bit set
}
}
// The STM32F0 doesn't seem to like |= or &= to manipulate the EP#R registers,
// so I'm using the #define from HAL here, instead.

View File

@@ -207,12 +207,8 @@ void dcd_init (uint8_t rhport)
USB_OTG_GINTMSK_SOFM | USB_OTG_GINTMSK_RXFLVLM /* SB_OTG_GINTMSK_ESUSPM | \
USB_OTG_GINTMSK_USBSUSPM */;
// Enable VBUS hardware sensing, enable pullup, enable peripheral.
#ifdef USB_OTG_GCCFG_VBDEN
USB_OTG_FS->GCCFG |= USB_OTG_GCCFG_VBDEN | USB_OTG_GCCFG_PWRDWN;
#else
USB_OTG_FS->GCCFG |= USB_OTG_GCCFG_VBUSBSEN | USB_OTG_GCCFG_PWRDWN;
#endif
// Enable USB transceiver.
USB_OTG_FS->GCCFG |= USB_OTG_GCCFG_PWRDWN;
// Soft Connect -> Enable pullup on D+/D-.
// This step does not appear to be specified in the programmer's model.
@@ -236,7 +232,6 @@ void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
(void) rhport;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE;
dev->DCFG |= (dev_addr << USB_OTG_DCFG_DAD_Pos) & USB_OTG_DCFG_DAD_Msk;
// Response with status after changing device address

View File

@@ -0,0 +1,116 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2018, hathach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUSB_MCU == OPT_MCU_NONE
#include "device/dcd.h"
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
/*------------------------------------------------------------------*/
/* Device API
*------------------------------------------------------------------*/
// Initialize controller to device mode
void dcd_init (uint8_t rhport)
{
(void) rhport;
}
// Enable device interrupt
void dcd_int_enable (uint8_t rhport)
{
(void) rhport;
}
// Disable device interrupt
void dcd_int_disable (uint8_t rhport)
{
(void) rhport;
}
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
(void) rhport;
(void) dev_addr;
}
// Receive Set Configure request
void dcd_set_config (uint8_t rhport, uint8_t config_num)
{
(void) rhport;
(void) config_num;
}
// Wake up host
void dcd_remote_wakeup (uint8_t rhport)
{
(void) rhport;
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
// Configure endpoint's registers according to descriptor
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
(void) ep_desc;
return false;
}
// Submit a transfer, When complete dcd_event_xfer_complete() is invoked to notify the stack
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void) rhport;
(void) ep_addr;
(void) buffer;
(void) total_bytes;
return false;
}
// Stall endpoint
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
(void) ep_addr;
}
// clear stall, data toggle is also reset to DATA0
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
(void) ep_addr;
}
#endif

View File

@@ -0,0 +1,638 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#ifndef DEBUG
#define DEBUG 0
#endif
#ifndef LOG_USB
#define LOG_USB 0
#endif
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_VALENTYUSB_EPTRI)
#include "device/dcd.h"
#include "dcd_eptri.h"
#include "csr.h"
#include "irq.h"
void fomu_error(uint32_t line);
#if LOG_USB
struct usb_log {
uint8_t ep_num;
uint8_t size;
uint8_t data[66];
};
__attribute__((used))
struct usb_log usb_log[128];
__attribute__((used))
uint8_t usb_log_offset;
struct xfer_log {
uint8_t ep_num;
uint16_t size;
};
__attribute__((used))
struct xfer_log xfer_log[64];
__attribute__((used))
uint8_t xfer_log_offset;
__attribute__((used))
struct xfer_log queue_log[64];
__attribute__((used))
uint8_t queue_log_offset;
#endif
//--------------------------------------------------------------------+
// SIE Command
//--------------------------------------------------------------------+
#define EP_SIZE 64
uint16_t volatile rx_buffer_offset[16];
uint8_t* volatile rx_buffer[16];
uint16_t volatile rx_buffer_max[16];
volatile uint8_t tx_ep;
volatile bool tx_active;
volatile uint16_t tx_buffer_offset[16];
uint8_t* volatile tx_buffer[16];
volatile uint16_t tx_buffer_max[16];
volatile uint8_t reset_count;
#if DEBUG
__attribute__((used)) uint8_t volatile * last_tx_buffer;
__attribute__((used)) volatile uint8_t last_tx_ep;
uint8_t setup_packet_bfr[10];
#endif
//--------------------------------------------------------------------+
// PIPE HELPER
//--------------------------------------------------------------------+
static bool advance_tx_ep(void) {
// Move on to the next transmit buffer in a round-robin manner
uint8_t prev_tx_ep = tx_ep;
for (tx_ep = (tx_ep + 1) & 0xf; tx_ep != prev_tx_ep; tx_ep = ((tx_ep + 1) & 0xf)) {
if (tx_buffer[tx_ep])
return true;
}
if (!tx_buffer[tx_ep])
return false;
return true;
}
#if LOG_USB
void xfer_log_append(uint8_t ep_num, uint16_t sz) {
xfer_log[xfer_log_offset].ep_num = ep_num;
xfer_log[xfer_log_offset].size = sz;
xfer_log_offset++;
if (xfer_log_offset >= sizeof(xfer_log)/sizeof(*xfer_log))
xfer_log_offset = 0;
}
void queue_log_append(uint8_t ep_num, uint16_t sz) {
queue_log[queue_log_offset].ep_num = ep_num;
queue_log[queue_log_offset].size = sz;
queue_log_offset++;
if (queue_log_offset >= sizeof(queue_log)/sizeof(*queue_log))
queue_log_offset = 0;
}
#endif
static void tx_more_data(void) {
// Send more data
uint8_t added_bytes;
for (added_bytes = 0; (added_bytes < EP_SIZE) && (tx_buffer_offset[tx_ep] < tx_buffer_max[tx_ep]); added_bytes++) {
#if LOG_USB
usb_log[usb_log_offset].data[added_bytes] = tx_buffer[tx_ep][tx_buffer_offset[tx_ep]];
#endif
usb_in_data_write(tx_buffer[tx_ep][tx_buffer_offset[tx_ep]++]);
}
#if LOG_USB
usb_log[usb_log_offset].ep_num = tu_edpt_addr(tx_ep, TUSB_DIR_IN);
usb_log[usb_log_offset].size = added_bytes;
usb_log_offset++;
if (usb_log_offset >= sizeof(usb_log)/sizeof(*usb_log))
usb_log_offset = 0;
#endif
// Updating the epno queues the data
usb_in_ctrl_write(tx_ep & 0xf);
}
static void process_tx(void) {
#if DEBUG
// If the system isn't idle, then something is very wrong.
uint8_t in_status = usb_in_status_read();
if (!(in_status & (1 << CSR_USB_IN_STATUS_IDLE_OFFSET)))
fomu_error(__LINE__);
#endif
// If the buffer is now empty, search for the next buffer to fill.
if (!tx_buffer[tx_ep]) {
if (advance_tx_ep())
tx_more_data();
else
tx_active = false;
return;
}
if (tx_buffer_offset[tx_ep] >= tx_buffer_max[tx_ep]) {
#if DEBUG
last_tx_buffer = tx_buffer[tx_ep];
last_tx_ep = tx_ep;
#endif
tx_buffer[tx_ep] = NULL;
uint16_t xferred_bytes = tx_buffer_max[tx_ep];
uint8_t xferred_ep = tx_ep;
if (!advance_tx_ep())
tx_active = false;
#if LOG_USB
xfer_log_append(tu_edpt_addr(xferred_ep, TUSB_DIR_IN), xferred_bytes);
#endif
dcd_event_xfer_complete(0, tu_edpt_addr(xferred_ep, TUSB_DIR_IN), xferred_bytes, XFER_RESULT_SUCCESS, true);
if (!tx_active)
return;
}
tx_more_data();
return;
}
static void process_rx(void) {
uint8_t out_status = usb_out_status_read();
#if DEBUG
// If the OUT handler is still waiting to send, don't do anything.
if (!(out_status & (1 << CSR_USB_OUT_STATUS_HAVE_OFFSET)))
fomu_error(__LINE__);
// return;
#endif
uint8_t rx_ep = (out_status >> CSR_USB_OUT_STATUS_EPNO_OFFSET) & 0xf;
// If the destination buffer doesn't exist, don't drain the hardware
// fifo. Note that this can cause deadlocks if the host is waiting
// on some other endpoint's data!
#if DEBUG
if (rx_buffer[rx_ep] == NULL) {
fomu_error(__LINE__);
return;
}
#endif
// Drain the FIFO into the destination buffer
uint32_t total_read = 0;
uint32_t current_offset = rx_buffer_offset[rx_ep];
#if DEBUG
uint8_t test_buffer[256];
memset(test_buffer, 0, sizeof(test_buffer));
if (current_offset > rx_buffer_max[rx_ep])
fomu_error(__LINE__);
#endif
#if LOG_USB
usb_log[usb_log_offset].ep_num = tu_edpt_addr(rx_ep, TUSB_DIR_OUT);
usb_log[usb_log_offset].size = 0;
#endif
while (usb_out_status_read() & (1 << CSR_USB_OUT_STATUS_HAVE_OFFSET)) {
uint8_t c = usb_out_data_read();
#if DEBUG
test_buffer[total_read] = c;
#endif
total_read++;
if (current_offset < rx_buffer_max[rx_ep]) {
#if LOG_USB
usb_log[usb_log_offset].data[usb_log[usb_log_offset].size++] = c;
#endif
if (rx_buffer[rx_ep] != (volatile uint8_t *)0xffffffff)
rx_buffer[rx_ep][current_offset++] = c;
}
}
#if LOG_USB
usb_log_offset++;
if (usb_log_offset >= sizeof(usb_log)/sizeof(*usb_log))
usb_log_offset = 0;
#endif
#if DEBUG
if (total_read > 66)
fomu_error(__LINE__);
if (total_read < 2)
total_read = 2;
// fomu_error(__LINE__);
#endif
// Strip off the CRC16
rx_buffer_offset[rx_ep] += (total_read - 2);
if (rx_buffer_offset[rx_ep] > rx_buffer_max[rx_ep])
rx_buffer_offset[rx_ep] = rx_buffer_max[rx_ep];
// If there's no more data, complete the transfer to tinyusb
if ((rx_buffer_max[rx_ep] == rx_buffer_offset[rx_ep])
// ZLP with less than the total amount of data
|| ((total_read == 2) && ((rx_buffer_offset[rx_ep] & 63) == 0))
// Short read, but not a full packet
|| (((rx_buffer_offset[rx_ep] & 63) != 0) && (total_read < 66))) {
#if DEBUG
if (rx_buffer[rx_ep] == NULL)
fomu_error(__LINE__);
#endif
// Free up this buffer.
rx_buffer[rx_ep] = NULL;
uint16_t len = rx_buffer_offset[rx_ep];
#if DEBUG
// Validate that all enabled endpoints have buffers,
// and no disabled endpoints have buffers.
uint16_t ep_en_mask = usb_out_enable_status_read();
int i;
for (i = 0; i < 16; i++) {
if ((!!(ep_en_mask & (1 << i))) ^ (!!(rx_buffer[i]))) {
uint8_t new_status = usb_out_status_read();
// Another IRQ came in while we were processing, so ignore this endpoint.
if ((new_status & 0x20) && ((new_status & 0xf) == i))
continue;
fomu_error(__LINE__);
}
}
#endif
#if LOG_USB
xfer_log_append(tu_edpt_addr(rx_ep, TUSB_DIR_OUT), len);
#endif
dcd_event_xfer_complete(0, tu_edpt_addr(rx_ep, TUSB_DIR_OUT), len, XFER_RESULT_SUCCESS, true);
}
else {
// If there's more data, re-enable data reception on this endpoint
usb_out_ctrl_write((1 << CSR_USB_OUT_CTRL_ENABLE_OFFSET) | rx_ep);
}
// Now that the buffer is drained, clear the pending IRQ.
usb_out_ev_pending_write(usb_out_ev_pending_read());
}
//--------------------------------------------------------------------+
// CONTROLLER API
//--------------------------------------------------------------------+
static void dcd_reset(void)
{
reset_count++;
usb_setup_ev_enable_write(0);
usb_in_ev_enable_write(0);
usb_out_ev_enable_write(0);
usb_address_write(0);
// Reset all three FIFO handlers
usb_setup_ctrl_write(1 << CSR_USB_SETUP_CTRL_RESET_OFFSET);
usb_in_ctrl_write(1 << CSR_USB_IN_CTRL_RESET_OFFSET);
usb_out_ctrl_write(1 << CSR_USB_OUT_CTRL_RESET_OFFSET);
memset((void *)rx_buffer, 0, sizeof(rx_buffer));
memset((void *)rx_buffer_max, 0, sizeof(rx_buffer_max));
memset((void *)rx_buffer_offset, 0, sizeof(rx_buffer_offset));
memset((void *)tx_buffer, 0, sizeof(tx_buffer));
memset((void *)tx_buffer_max, 0, sizeof(tx_buffer_max));
memset((void *)tx_buffer_offset, 0, sizeof(tx_buffer_offset));
tx_ep = 0;
tx_active = false;
// Enable all event handlers and clear their contents
usb_setup_ev_pending_write(0xff);
usb_in_ev_pending_write(0xff);
usb_out_ev_pending_write(0xff);
usb_in_ev_enable_write(1);
usb_out_ev_enable_write(1);
usb_setup_ev_enable_write(3);
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
}
// Initializes the USB peripheral for device mode and enables it.
void dcd_init(uint8_t rhport)
{
(void) rhport;
usb_pullup_out_write(0);
// Enable all event handlers and clear their contents
usb_setup_ev_pending_write(usb_setup_ev_pending_read());
usb_in_ev_pending_write(usb_in_ev_pending_read());
usb_out_ev_pending_write(usb_out_ev_pending_read());
usb_in_ev_enable_write(1);
usb_out_ev_enable_write(1);
usb_setup_ev_enable_write(3);
// Turn on the external pullup
usb_pullup_out_write(1);
}
// Enables or disables the USB device interrupt(s). May be used to
// prevent concurrency issues when mutating data structures shared
// between main code and the interrupt handler.
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
irq_setmask(irq_getmask() | (1 << USB_INTERRUPT));
}
void dcd_int_disable(uint8_t rhport)
{
(void) rhport;
irq_setmask(irq_getmask() & ~(1 << USB_INTERRUPT));
}
// Called when the device is given a new bus address.
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
// Respond with ACK status first before changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
// Wait for the response packet to get sent
while (tx_active)
;
// Activate the new address
usb_address_write(dev_addr);
}
// Called when the device received SET_CONFIG request, you can leave this
// empty if your peripheral does not require any specific action.
void dcd_set_config(uint8_t rhport, uint8_t config_num)
{
(void) rhport;
(void) config_num;
}
// Called to remote wake up host when suspended (e.g hid keyboard)
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
}
//--------------------------------------------------------------------+
// DCD Endpoint Port
//--------------------------------------------------------------------+
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
(void) rhport;
uint8_t ep_num = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
uint8_t ep_dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
if (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS)
return false; // Not supported
if (ep_dir == TUSB_DIR_OUT) {
rx_buffer_offset[ep_num] = 0;
rx_buffer_max[ep_num] = 0;
rx_buffer[ep_num] = NULL;
}
else if (ep_dir == TUSB_DIR_IN) {
tx_buffer_offset[ep_num] = 0;
tx_buffer_max[ep_num] = 0;
tx_buffer[ep_num] = NULL;
}
return true;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
if (tu_edpt_dir(ep_addr) == TUSB_DIR_OUT) {
uint8_t enable = 0;
if (rx_buffer[ep_addr])
enable = 1;
usb_out_ctrl_write((1 << CSR_USB_OUT_CTRL_STALL_OFFSET) | (enable << CSR_USB_OUT_CTRL_ENABLE_OFFSET) | tu_edpt_number(ep_addr));
}
else
usb_in_ctrl_write((1 << CSR_USB_IN_CTRL_STALL_OFFSET) | tu_edpt_number(ep_addr));
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
if (tu_edpt_dir(ep_addr) == TUSB_DIR_OUT) {
uint8_t enable = 0;
if (rx_buffer[ep_addr])
enable = 1;
usb_out_ctrl_write((0 << CSR_USB_OUT_CTRL_STALL_OFFSET) | (enable << CSR_USB_OUT_CTRL_ENABLE_OFFSET) | tu_edpt_number(ep_addr));
}
// IN endpoints will get unstalled when more data is written.
}
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
(void)rhport;
uint8_t ep_num = tu_edpt_number(ep_addr);
uint8_t ep_dir = tu_edpt_dir(ep_addr);
TU_ASSERT(ep_num < 16);
// Give a nonzero buffer when we transmit 0 bytes, so that the
// system doesn't think the endpoint is idle.
if ((buffer == NULL) && (total_bytes == 0)) {
buffer = (uint8_t *)0xffffffff;
}
TU_ASSERT(buffer != NULL);
if (ep_dir == TUSB_DIR_IN) {
// Wait for the tx pipe to free up
uint8_t previous_reset_count = reset_count;
// Continue until the buffer is empty, the system is idle, and the fifo is empty.
while (tx_buffer[ep_num] != NULL)
;
dcd_int_disable(0);
#if LOG_USB
queue_log_append(ep_addr, total_bytes);
#endif
// If a reset happens while we're waiting, abort the transfer
if (previous_reset_count != reset_count)
return true;
TU_ASSERT(tx_buffer[ep_num] == NULL);
tx_buffer_offset[ep_num] = 0;
tx_buffer_max[ep_num] = total_bytes;
tx_buffer[ep_num] = buffer;
// If the current buffer is NULL, then that means the tx logic is idle.
// Update the tx_ep to point to our endpoint number and queue the data.
// Otherwise, let it be and it'll get picked up after the next transfer
// finishes.
if (!tx_active) {
tx_ep = ep_num;
tx_active = true;
tx_more_data();
}
dcd_int_enable(0);
}
else if (ep_dir == TUSB_DIR_OUT) {
while (rx_buffer[ep_num] != NULL)
;
TU_ASSERT(rx_buffer[ep_num] == NULL);
dcd_int_disable(0);
#if LOG_USB
queue_log_append(ep_addr, total_bytes);
#endif
rx_buffer[ep_num] = buffer;
rx_buffer_offset[ep_num] = 0;
rx_buffer_max[ep_num] = total_bytes;
// Enable receiving on this particular endpoint
usb_out_ctrl_write((1 << CSR_USB_OUT_CTRL_ENABLE_OFFSET) | ep_num);
#if DEBUG
uint16_t ep_en_mask = usb_out_enable_status_read();
int i;
for (i = 0; i < 16; i++) {
if ((!!(ep_en_mask & (1 << i))) ^ (!!(rx_buffer[i]))) {
if (rx_buffer[i] && usb_out_ev_pending_read() && (usb_out_status_read() & 0xf) == i)
continue;
fomu_error(__LINE__);
}
}
#endif
dcd_int_enable(0);
}
return true;
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
static void handle_out(void)
{
// An "OUT" transaction just completed so we have new data.
// (But only if we can accept the data)
#if DEBUG
if (!usb_out_ev_pending_read())
fomu_error(__LINE__);
if (!usb_out_ev_enable_read())
fomu_error(__LINE__);
#endif
process_rx();
}
static void handle_in(void)
{
#if DEBUG
if (!usb_in_ev_pending_read())
fomu_error(__LINE__);
if (!usb_in_ev_enable_read())
fomu_error(__LINE__);
#endif
usb_in_ev_pending_write(usb_in_ev_pending_read());
process_tx();
}
static void handle_reset(void)
{
#if DEBUG
uint8_t setup_pending = usb_setup_ev_pending_read() & usb_setup_ev_enable_read();
if (!(setup_pending & 2))
fomu_error(__LINE__);
#endif
usb_setup_ev_pending_write(2);
// This event means a bus reset occurred. Reset everything, and
// abandon any further processing.
dcd_reset();
}
static void handle_setup(void)
{
#if !DEBUG
uint8_t setup_packet_bfr[10];
#endif
#if DEBUG
uint8_t setup_pending = usb_setup_ev_pending_read() & usb_setup_ev_enable_read();
if (!(setup_pending & 1))
fomu_error(__LINE__);
#endif
// We got a SETUP packet. Copy it to the setup buffer and clear
// the "pending" bit.
// Setup packets are always 8 bytes, plus two bytes of crc16.
uint32_t setup_length = 0;
#if DEBUG
if (!(usb_setup_status_read() & (1 << CSR_USB_SETUP_STATUS_HAVE_OFFSET)))
fomu_error(__LINE__);
#endif
while (usb_setup_status_read() & (1 << CSR_USB_SETUP_STATUS_HAVE_OFFSET)) {
uint8_t c = usb_setup_data_read();
if (setup_length < sizeof(setup_packet_bfr))
setup_packet_bfr[setup_length] = c;
setup_length++;
}
// If we have 10 bytes, that's a full SETUP packet plus CRC16.
// Otherwise, it was an RX error.
if (setup_length == 10) {
dcd_event_setup_received(0, setup_packet_bfr, true);
}
#if DEBUG
else {
fomu_error(__LINE__);
}
#endif
usb_setup_ev_pending_write(1);
}
void hal_dcd_isr(uint8_t rhport)
{
(void)rhport;
uint8_t next_ev;
while ((next_ev = usb_next_ev_read())) {
switch (next_ev) {
case 1 << CSR_USB_NEXT_EV_IN_OFFSET:
handle_in();
break;
case 1 << CSR_USB_NEXT_EV_OUT_OFFSET:
handle_out();
break;
case 1 << CSR_USB_NEXT_EV_SETUP_OFFSET:
handle_setup();
break;
case 1 << CSR_USB_NEXT_EV_RESET_OFFSET:
handle_reset();
break;
}
}
}
#endif

View File

@@ -24,39 +24,16 @@
* This file is part of the TinyUSB stack.
*/
#include "tusb.h"
#ifndef _TUSB_DCD_VALENTYUSB_EPTRI_H_
#define _TUSB_DCD_VALENTYUSB_EPTRI_H_
#if (CFG_TUSB_MCU == OPT_MCU_LPC18XX || CFG_TUSB_MCU == OPT_MCU_LPC43XX)
#include "chip.h"
extern void hal_dcd_isr(uint8_t rhport);
extern void hal_hcd_isr(uint8_t hostid);
#if CFG_TUSB_RHPORT0_MODE
void USB0_IRQHandler(void)
{
#if TUSB_OPT_HOST_ENABLED
hal_hcd_isr(0);
#endif
#if TUSB_OPT_DEVICE_ENABLED
hal_dcd_isr(0);
#endif
}
#include "common/tusb_common.h"
#ifdef __cplusplus
extern "C" {
#endif
#if CFG_TUSB_RHPORT1_MODE
void USB1_IRQHandler(void)
{
#if TUSB_OPT_HOST_ENABLED
hal_hcd_isr(1);
#endif
#if TUSB_OPT_DEVICE_ENABLED
hal_dcd_isr(1);
#endif
}
#ifdef __cplusplus
}
#endif
#endif
#endif /* _TUSB_DCD_VALENTYUSB_EPTRI_H_ */

View File

@@ -0,0 +1,33 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "common/tusb_common.h"
#if (CFG_TUSB_MCU == OPT_MCU_VALENTYUSB_EPTRI)
// No HAL-specific stuff here!
#endif