audio: update examples

Signed-off-by: HiFiPhile <admin@hifiphile.com>
This commit is contained in:
HiFiPhile
2025-06-14 19:37:10 +02:00
parent 19b5ec5fd9
commit 545690c834
18 changed files with 839 additions and 1120 deletions

View File

@@ -31,10 +31,10 @@
* $ python3 plot_audio_samples.py
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "bsp/board_api.h"
#include "tusb.h"
@@ -43,14 +43,14 @@
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF PROTYPES
//--------------------------------------------------------------------+
#define AUDIO_SAMPLE_RATE CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE
#define AUDIO_SAMPLE_RATE CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE
/* Blink pattern
* - 250 ms : device not mounted
* - 1000 ms : device mounted
* - 2500 ms : device is suspended
*/
enum {
enum {
BLINK_NOT_MOUNTED = 250,
BLINK_MOUNTED = 1000,
BLINK_SUSPENDED = 2500,
@@ -60,31 +60,29 @@ static uint32_t blink_interval_ms = BLINK_NOT_MOUNTED;
// Audio controls
// Current states
bool mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master channel 0
uint16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master channel 0
bool mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master channel 0
uint16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1];// +1 for master channel 0
uint32_t sampFreq;
uint8_t clkValid;
// Range states
audio_control_range_2_n_t(1) volumeRng[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX+1]; // Volume range state
audio_control_range_4_n_t(1) sampleFreqRng; // Sample frequency range state
audio_control_range_2_n_t(1) volumeRng[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1];// Volume range state
audio_control_range_4_n_t(1) sampleFreqRng; // Sample frequency range state
// Audio test data, 4 channels muxed together, buffer[0] for CH0, buffer[1] for CH1, buffer[2] for CH2, buffer[3] for CH3
uint16_t i2s_dummy_buffer[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX*CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE/1000];
uint16_t i2s_dummy_buffer[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX * CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE / 1000];
void led_blinking_task(void);
void audio_task(void);
/*------------- MAIN -------------*/
int main(void)
{
int main(void) {
board_init();
// init device stack on configured roothub port
tusb_rhport_init_t dev_init = {
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO
};
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO};
tusb_init(BOARD_TUD_RHPORT, &dev_init);
if (board_init_after_tusb) {
@@ -101,25 +99,23 @@ int main(void)
sampleFreqRng.subrange[0].bRes = 0;
// Generate dummy data
uint16_t * p_buff = i2s_dummy_buffer;
uint16_t *p_buff = i2s_dummy_buffer;
uint16_t dataVal = 0;
for (uint16_t cnt = 0; cnt < AUDIO_SAMPLE_RATE/1000; cnt++)
{
for (uint16_t cnt = 0; cnt < AUDIO_SAMPLE_RATE / 1000; cnt++) {
// CH0 saw wave
*p_buff++ = dataVal;
// CH1 inverted saw wave
*p_buff++ = 3200 + AUDIO_SAMPLE_RATE/1000 - dataVal;
dataVal+= 32;
*p_buff++ = 3200 + AUDIO_SAMPLE_RATE / 1000 - dataVal;
dataVal += 32;
// CH3 square wave
*p_buff++ = cnt < (AUDIO_SAMPLE_RATE/1000/2) ? 3400:5000;
*p_buff++ = cnt < (AUDIO_SAMPLE_RATE / 1000 / 2) ? 3400 : 5000;
// CH4 sinus wave
float t = 2*3.1415f * cnt / (AUDIO_SAMPLE_RATE/1000);
*p_buff++ = (uint16_t)((int16_t)(sinf(t) * 750) + 6000);
float t = 2 * 3.1415f * cnt / (AUDIO_SAMPLE_RATE / 1000);
*p_buff++ = (uint16_t) ((int16_t) (sinf(t) * 750) + 6000);
}
while (1)
{
tud_task(); // tinyusb device task
while (1) {
tud_task();// tinyusb device task
led_blinking_task();
audio_task();
}
@@ -130,29 +126,25 @@ int main(void)
//--------------------------------------------------------------------+
// Invoked when device is mounted
void tud_mount_cb(void)
{
void tud_mount_cb(void) {
blink_interval_ms = BLINK_MOUNTED;
}
// Invoked when device is unmounted
void tud_umount_cb(void)
{
void tud_umount_cb(void) {
blink_interval_ms = BLINK_NOT_MOUNTED;
}
// Invoked when usb bus is suspended
// remote_wakeup_en : if host allow us to perform remote wakeup
// Within 7ms, device must draw an average of current less than 2.5 mA from bus
void tud_suspend_cb(bool remote_wakeup_en)
{
void tud_suspend_cb(bool remote_wakeup_en) {
(void) remote_wakeup_en;
blink_interval_ms = BLINK_SUSPENDED;
}
// Invoked when usb bus is resumed
void tud_resume_cb(void)
{
void tud_resume_cb(void) {
blink_interval_ms = tud_mounted() ? BLINK_MOUNTED : BLINK_NOT_MOUNTED;
}
@@ -160,15 +152,15 @@ void tud_resume_cb(void)
// AUDIO Task
//--------------------------------------------------------------------+
void audio_task(void)
{
// Yet to be filled - e.g. read audio from I2S buffer.
// Here we simulate a I2S receive callback every 1ms.
// This task simulates an audio receive callback, one frame is received every 1ms.
// We assume that the audio data is read from an I2S buffer.
// In a real application, this would be replaced with actual I2S receive callback.
void audio_task(void) {
static uint32_t start_ms = 0;
uint32_t curr_ms = board_millis();
if ( start_ms == curr_ms ) return; // not enough time
if (start_ms == curr_ms) return;// not enough time
start_ms = curr_ms;
tud_audio_write(i2s_dummy_buffer, AUDIO_SAMPLE_RATE/1000 * CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX);
tud_audio_write(i2s_dummy_buffer, AUDIO_SAMPLE_RATE / 1000 * CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX);
}
//--------------------------------------------------------------------+
@@ -176,8 +168,7 @@ void audio_task(void)
//--------------------------------------------------------------------+
// Invoked when audio class specific set request received for an EP
bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
{
bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *pBuff) {
(void) rhport;
(void) pBuff;
@@ -189,14 +180,15 @@ bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_re
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t ep = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) ep;
(void) channelNum;
(void) ctrlSel;
(void) ep;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific set request received for an interface
bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
{
bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *pBuff) {
(void) rhport;
(void) pBuff;
@@ -208,14 +200,15 @@ bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_r
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t itf = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) itf;
(void) channelNum;
(void) ctrlSel;
(void) itf;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific set request received for an entity
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
{
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *pBuff) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -230,40 +223,37 @@ bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
TU_VERIFY(p_request->bRequest == AUDIO_CS_REQ_CUR);
// If request is for our feature unit
if ( entityID == 2 )
{
switch ( ctrlSel )
{
if (entityID == 2) {
switch (ctrlSel) {
case AUDIO_FU_CTRL_MUTE:
// Request uses format layout 1
TU_VERIFY(p_request->wLength == sizeof(audio_control_cur_1_t));
mute[channelNum] = ((audio_control_cur_1_t*) pBuff)->bCur;
mute[channelNum] = ((audio_control_cur_1_t *) pBuff)->bCur;
TU_LOG2(" Set Mute: %d of channel: %u\r\n", mute[channelNum], channelNum);
return true;
return true;
case AUDIO_FU_CTRL_VOLUME:
// Request uses format layout 2
TU_VERIFY(p_request->wLength == sizeof(audio_control_cur_2_t));
volume[channelNum] = (uint16_t) ((audio_control_cur_2_t*) pBuff)->bCur;
volume[channelNum] = (uint16_t) ((audio_control_cur_2_t *) pBuff)->bCur;
TU_LOG2(" Set Volume: %d dB of channel: %u\r\n", volume[channelNum], channelNum);
return true;
return true;
// Unknown/Unsupported control
default:
TU_BREAKPOINT();
return false;
return false;
}
}
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific get request received for an EP
bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -271,16 +261,17 @@ bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_re
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t ep = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) ep;
(void) channelNum;
(void) ctrlSel;
(void) ep;
// return tud_control_xfer(rhport, p_request, &tmp, 1);
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific get request received for an interface
bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -288,14 +279,15 @@ bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_r
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t itf = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) itf;
(void) channelNum;
(void) ctrlSel;
(void) itf;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific get request received for an entity
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -305,12 +297,9 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
uint8_t entityID = TU_U16_HIGH(p_request->wIndex);
// Input terminal (Microphone input)
if (entityID == 1)
{
switch ( ctrlSel )
{
case AUDIO_TE_CTRL_CONNECTOR:
{
if (entityID == 1) {
switch (ctrlSel) {
case AUDIO_TE_CTRL_CONNECTOR: {
// The terminal connector control only has a get request with only the CUR attribute.
audio_desc_channel_cluster_t ret;
@@ -321,9 +310,8 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
TU_LOG2(" Get terminal connector\r\n");
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void*) &ret, sizeof(ret));
}
break;
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void *) &ret, sizeof(ret));
} break;
// Unknown/Unsupported control selector
default:
@@ -333,10 +321,8 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
}
// Feature unit
if (entityID == 2)
{
switch ( ctrlSel )
{
if (entityID == 2) {
switch (ctrlSel) {
case AUDIO_FU_CTRL_MUTE:
// Audio control mute cur parameter block consists of only one byte - we thus can send it right away
// There does not exist a range parameter block for mute
@@ -344,8 +330,7 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
return tud_control_xfer(rhport, p_request, &mute[channelNum], 1);
case AUDIO_FU_CTRL_VOLUME:
switch ( p_request->bRequest )
{
switch (p_request->bRequest) {
case AUDIO_CS_REQ_CUR:
TU_LOG2(" Get Volume of channel: %u\r\n", channelNum);
return tud_control_xfer(rhport, p_request, &volume[channelNum], sizeof(volume[channelNum]));
@@ -355,21 +340,21 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
// Copy values - only for testing - better is version below
audio_control_range_2_n_t(1)
ret;
ret;
ret.wNumSubRanges = 1;
ret.subrange[0].bMin = -90; // -90 dB
ret.subrange[0].bMax = 90; // +90 dB
ret.subrange[0].bRes = 1; // 1 dB steps
ret.subrange[0].bMin = -90;// -90 dB
ret.subrange[0].bMax = 90; // +90 dB
ret.subrange[0].bRes = 1; // 1 dB steps
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void*) &ret, sizeof(ret));
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void *) &ret, sizeof(ret));
// Unknown/Unsupported control
default:
TU_BREAKPOINT();
return false;
}
break;
break;
// Unknown/Unsupported control
default:
@@ -379,14 +364,11 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
}
// Clock Source unit
if ( entityID == 4 )
{
switch ( ctrlSel )
{
if (entityID == 4) {
switch (ctrlSel) {
case AUDIO_CS_CTRL_SAM_FREQ:
// channelNum is always zero in this case
switch ( p_request->bRequest )
{
switch (p_request->bRequest) {
case AUDIO_CS_REQ_CUR:
TU_LOG2(" Get Sample Freq.\r\n");
// Buffered control transfer is needed for IN flow control to work
@@ -396,12 +378,12 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
TU_LOG2(" Get Sample Freq. range\r\n");
return tud_control_xfer(rhport, p_request, &sampleFreqRng, sizeof(sampleFreqRng));
// Unknown/Unsupported control
// Unknown/Unsupported control
default:
TU_BREAKPOINT();
return false;
}
break;
break;
case AUDIO_CS_CTRL_CLK_VALID:
// Only cur attribute exists for this request
@@ -416,59 +398,20 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
}
TU_LOG2(" Unsupported entity: %d\r\n", entityID);
return false; // Yet not implemented
}
bool tud_audio_tx_done_pre_load_cb(uint8_t rhport, uint8_t itf, uint8_t ep_in, uint8_t cur_alt_setting)
{
(void) rhport;
(void) itf;
(void) ep_in;
(void) cur_alt_setting;
// In read world application data flow is driven by I2S clock,
// both tud_audio_tx_done_pre_load_cb() & tud_audio_tx_done_post_load_cb() are hardly used.
// For example in your I2S receive callback:
// void I2S_Rx_Callback(int channel, const void* data, uint16_t samples)
// {
// tud_audio_write_support_ff(channel, data, samples * N_BYTES_PER_SAMPLE * N_CHANNEL_PER_FIFO);
// }
return true;
}
bool tud_audio_tx_done_post_load_cb(uint8_t rhport, uint16_t n_bytes_copied, uint8_t itf, uint8_t ep_in, uint8_t cur_alt_setting)
{
(void) rhport;
(void) n_bytes_copied;
(void) itf;
(void) ep_in;
(void) cur_alt_setting;
return true;
}
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void) rhport;
(void) p_request;
return true;
return false;// Yet not implemented
}
//--------------------------------------------------------------------+
// BLINKING TASK
//--------------------------------------------------------------------+
void led_blinking_task(void)
{
void led_blinking_task(void) {
static uint32_t start_ms = 0;
static bool led_state = false;
// Blink every interval ms
if ( board_millis() - start_ms < blink_interval_ms) return; // not enough time
if (board_millis() - start_ms < blink_interval_ms) return;// not enough time
start_ms += blink_interval_ms;
board_led_write(led_state);
led_state = 1 - led_state; // toggle
led_state = 1 - led_state;// toggle
}

View File

@@ -31,10 +31,10 @@
* $ python3 plot_audio_samples.py
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "bsp/board_api.h"
#include "tusb.h"
@@ -43,38 +43,38 @@
// ESP-IDF need "freertos/" prefix in include path.
// CFG_TUSB_OS_INC_PATH should be defined accordingly.
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "freertos/task.h"
#include "freertos/timers.h"
#define USBD_STACK_SIZE 4096
#define USBD_STACK_SIZE 4096
#else
#include "FreeRTOS.h"
#include "semphr.h"
#include "queue.h"
#include "semphr.h"
#include "task.h"
#include "timers.h"
// Increase stack size when debug log is enabled
#define USBD_STACK_SIZE (4*configMINIMAL_STACK_SIZE/2) * (CFG_TUSB_DEBUG ? 2 : 1)
#define USBD_STACK_SIZE (4 * configMINIMAL_STACK_SIZE / 2) * (CFG_TUSB_DEBUG ? 2 : 1)
#endif
#define BLINKY_STACK_SIZE configMINIMAL_STACK_SIZE
#define AUDIO_STACK_SIZE configMINIMAL_STACK_SIZE
#define BLINKY_STACK_SIZE configMINIMAL_STACK_SIZE
#define AUDIO_STACK_SIZE configMINIMAL_STACK_SIZE
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF PROTYPES
//--------------------------------------------------------------------+
#define AUDIO_SAMPLE_RATE CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE
#define AUDIO_SAMPLE_RATE CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE
/* Blink pattern
* - 250 ms : device not mounted
* - 1000 ms : device mounted
* - 2500 ms : device is suspended
*/
enum {
enum {
BLINK_NOT_MOUNTED = 250,
BLINK_MOUNTED = 1000,
BLINK_SUSPENDED = 2500,
@@ -82,13 +82,13 @@ enum {
// static task
#if configSUPPORT_STATIC_ALLOCATION
StackType_t blinky_stack[BLINKY_STACK_SIZE];
StackType_t blinky_stack[BLINKY_STACK_SIZE];
StaticTask_t blinky_taskdef;
StackType_t usb_device_stack[USBD_STACK_SIZE];
StackType_t usb_device_stack[USBD_STACK_SIZE];
StaticTask_t usb_device_taskdef;
StackType_t audio_stack[AUDIO_STACK_SIZE];
StackType_t audio_stack[AUDIO_STACK_SIZE];
StaticTask_t audio_taskdef;
#endif
@@ -96,25 +96,24 @@ static uint32_t blink_interval_ms = BLINK_NOT_MOUNTED;
// Audio controls
// Current states
bool mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master channel 0
uint16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master channel 0
bool mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master channel 0
uint16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1];// +1 for master channel 0
uint32_t sampFreq;
uint8_t clkValid;
// Range states
audio_control_range_2_n_t(1) volumeRng[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX+1]; // Volume range state
audio_control_range_4_n_t(1) sampleFreqRng; // Sample frequency range state
audio_control_range_2_n_t(1) volumeRng[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1];// Volume range state
audio_control_range_4_n_t(1) sampleFreqRng; // Sample frequency range state
// Audio test data, 4 channels muxed together, buffer[0] for CH0, buffer[1] for CH1, buffer[2] for CH2, buffer[3] for CH3
uint16_t i2s_dummy_buffer[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX*CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE/1000];
uint16_t i2s_dummy_buffer[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX * CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE / 1000];
void led_blinking_task(void* param);
void usb_device_task(void* param);
void audio_task(void* param);
void led_blinking_task(void *param);
void usb_device_task(void *param);
void audio_isr_task(void *param);
/*------------- MAIN -------------*/
int main(void)
{
int main(void) {
board_init();
// Init values
@@ -127,20 +126,19 @@ int main(void)
sampleFreqRng.subrange[0].bRes = 0;
// Generate dummy data
uint16_t * p_buff = i2s_dummy_buffer;
uint16_t *p_buff = i2s_dummy_buffer;
uint16_t dataVal = 0;
for (uint16_t cnt = 0; cnt < AUDIO_SAMPLE_RATE/1000; cnt++)
{
for (uint16_t cnt = 0; cnt < AUDIO_SAMPLE_RATE / 1000; cnt++) {
// CH0 saw wave
*p_buff++ = dataVal;
// CH1 inverted saw wave
*p_buff++ = 3200 + AUDIO_SAMPLE_RATE/1000 - dataVal;
dataVal+= 32;
*p_buff++ = 3200 + AUDIO_SAMPLE_RATE / 1000 - dataVal;
dataVal += 32;
// CH3 square wave
*p_buff++ = cnt < (AUDIO_SAMPLE_RATE/1000/2) ? 3400:5000;
*p_buff++ = cnt < (AUDIO_SAMPLE_RATE / 1000 / 2) ? 3400 : 5000;
// CH4 sinus wave
float t = 2*3.1415f * cnt / (AUDIO_SAMPLE_RATE/1000);
*p_buff++ = (uint16_t)((int16_t)(sinf(t) * 750) + 6000);
float t = 2 * 3.1415f * cnt / (AUDIO_SAMPLE_RATE / 1000);
*p_buff++ = (uint16_t) ((int16_t) (sinf(t) * 750) + 6000);
}
#if configSUPPORT_STATIC_ALLOCATION
@@ -148,44 +146,42 @@ int main(void)
xTaskCreateStatic(led_blinking_task, "blinky", BLINKY_STACK_SIZE, NULL, 1, blinky_stack, &blinky_taskdef);
// Create a task for tinyusb device stack
xTaskCreateStatic(usb_device_task, "usbd", USBD_STACK_SIZE, NULL, configMAX_PRIORITIES-1, usb_device_stack, &usb_device_taskdef);
xTaskCreateStatic(usb_device_task, "usbd", USBD_STACK_SIZE, NULL, configMAX_PRIORITIES - 2, usb_device_stack, &usb_device_taskdef);
// Create a task for audio
xTaskCreateStatic(audio_task, "audio", AUDIO_STACK_SIZE, NULL, configMAX_PRIORITIES-1, audio_stack, &audio_taskdef);
// Audio receive (I2S) ISR simulation
// To simulate a ISR the priority is set to the highest
xTaskCreateStatic(audio_isr_task, "audio", AUDIO_STACK_SIZE, NULL, configMAX_PRIORITIES - 1, audio_stack, &audio_taskdef);
#else
xTaskCreate(led_blinking_task, "blinky", BLINKY_STACK_SIZE, NULL, 1, NULL);
xTaskCreate(usb_device_task, "usbd", USBD_STACK_SIZE, NULL, configMAX_PRIORITIES - 1, NULL);
xTaskCreate(audio_task, "audio", AUDIO_STACK_SIZE, NULL, configMAX_PRIORITIES - 1, NULL);
xTaskCreate(usb_device_task, "usbd", USBD_STACK_SIZE, NULL, configMAX_PRIORITIES - 2, NULL);
xTaskCreate(audio_isr_task, "audio", AUDIO_STACK_SIZE, NULL, configMAX_PRIORITIES - 1, NULL);
#endif
// skip starting scheduler (and return) for ESP32-S2 or ESP32-S3
#if !TUSB_MCU_VENDOR_ESPRESSIF
vTaskStartScheduler();
#endif
// skip starting scheduler (and return) for ESP32-S2 or ESP32-S3
#if !TUSB_MCU_VENDOR_ESPRESSIF
vTaskStartScheduler();
#endif
return 0;
}
#if TUSB_MCU_VENDOR_ESPRESSIF
void app_main(void)
{
void app_main(void) {
main();
}
#endif
// USB Device Driver task
// This top level thread process all usb events and invoke callbacks
void usb_device_task(void* param)
{
void usb_device_task(void *param) {
(void) param;
// init device stack on configured roothub port
// This should be called after scheduler/kernel is started.
// Otherwise it could cause kernel issue since USB IRQ handler does use RTOS queue API.
tusb_rhport_init_t dev_init = {
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO
};
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO};
tusb_init(BOARD_TUD_RHPORT, &dev_init);
if (board_init_after_tusb) {
@@ -193,8 +189,7 @@ void usb_device_task(void* param)
}
// RTOS forever loop
while (1)
{
while (1) {
// tinyusb device task
tud_task();
}
@@ -205,29 +200,25 @@ void usb_device_task(void* param)
//--------------------------------------------------------------------+
// Invoked when device is mounted
void tud_mount_cb(void)
{
void tud_mount_cb(void) {
blink_interval_ms = BLINK_MOUNTED;
}
// Invoked when device is unmounted
void tud_umount_cb(void)
{
void tud_umount_cb(void) {
blink_interval_ms = BLINK_NOT_MOUNTED;
}
// Invoked when usb bus is suspended
// remote_wakeup_en : if host allow us to perform remote wakeup
// Within 7ms, device must draw an average of current less than 2.5 mA from bus
void tud_suspend_cb(bool remote_wakeup_en)
{
void tud_suspend_cb(bool remote_wakeup_en) {
(void) remote_wakeup_en;
blink_interval_ms = BLINK_SUSPENDED;
}
// Invoked when usb bus is resumed
void tud_resume_cb(void)
{
void tud_resume_cb(void) {
blink_interval_ms = tud_mounted() ? BLINK_MOUNTED : BLINK_NOT_MOUNTED;
}
@@ -235,14 +226,14 @@ void tud_resume_cb(void)
// AUDIO Task
//--------------------------------------------------------------------+
void audio_task(void* param)
{
// This task simulates an audio receive ISR, one frame is received every 1ms.
// We assume that the audio data is read from an I2S buffer.
// In a real application, this would be replaced with actual I2S receive callback.
void audio_isr_task(void *param) {
(void) param;
// Yet to be filled - e.g. read audio from I2S buffer.
// Here we simulate a I2S receive callback every 1ms.
while (1) {
vTaskDelay(1);
tud_audio_write(i2s_dummy_buffer, AUDIO_SAMPLE_RATE/1000 * CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX);
tud_audio_write(i2s_dummy_buffer, AUDIO_SAMPLE_RATE / 1000 * CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX);
}
}
@@ -251,8 +242,7 @@ void audio_task(void* param)
//--------------------------------------------------------------------+
// Invoked when audio class specific set request received for an EP
bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
{
bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *pBuff) {
(void) rhport;
(void) pBuff;
@@ -264,14 +254,15 @@ bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_re
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t ep = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) ep;
(void) channelNum;
(void) ctrlSel;
(void) ep;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific set request received for an interface
bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
{
bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *pBuff) {
(void) rhport;
(void) pBuff;
@@ -283,14 +274,15 @@ bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_r
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t itf = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) itf;
(void) channelNum;
(void) ctrlSel;
(void) itf;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific set request received for an entity
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
{
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *pBuff) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -305,40 +297,36 @@ bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
TU_VERIFY(p_request->bRequest == AUDIO_CS_REQ_CUR);
// If request is for our feature unit
if ( entityID == 2 )
{
switch ( ctrlSel )
{
if (entityID == 2) {
switch (ctrlSel) {
case AUDIO_FU_CTRL_MUTE:
// Request uses format layout 1
TU_VERIFY(p_request->wLength == sizeof(audio_control_cur_1_t));
mute[channelNum] = ((audio_control_cur_1_t*) pBuff)->bCur;
mute[channelNum] = ((audio_control_cur_1_t *) pBuff)->bCur;
TU_LOG2(" Set Mute: %d of channel: %u\r\n", mute[channelNum], channelNum);
return true;
TU_LOG1(" Set Mute: %d of channel: %u\r\n", mute[channelNum], channelNum);
return true;
case AUDIO_FU_CTRL_VOLUME:
// Request uses format layout 2
TU_VERIFY(p_request->wLength == sizeof(audio_control_cur_2_t));
volume[channelNum] = ((audio_control_cur_2_t*) pBuff)->bCur;
TU_LOG2(" Set Volume: %d dB of channel: %u\r\n", volume[channelNum], channelNum);
return true;
volume[channelNum] = ((audio_control_cur_2_t *) pBuff)->bCur;
TU_LOG1(" Set Volume: %d dB of channel: %u\r\n", volume[channelNum], channelNum);
return true;
// Unknown/Unsupported control
default:
TU_BREAKPOINT();
return false;
return false;
}
}
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific get request received for an EP
bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -346,14 +334,15 @@ bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_re
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t ep = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) ep;
(void) channelNum;
(void) ctrlSel;
(void) ep;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific get request received for an interface
bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -361,14 +350,15 @@ bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_r
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t itf = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) itf;
(void) channelNum;
(void) ctrlSel;
(void) itf;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific get request received for an entity
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -378,12 +368,9 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
uint8_t entityID = TU_U16_HIGH(p_request->wIndex);
// Input terminal (Microphone input)
if (entityID == 1)
{
switch ( ctrlSel )
{
case AUDIO_TE_CTRL_CONNECTOR:
{
if (entityID == 1) {
switch (ctrlSel) {
case AUDIO_TE_CTRL_CONNECTOR: {
// The terminal connector control only has a get request with only the CUR attribute.
audio_desc_channel_cluster_t ret;
@@ -392,11 +379,10 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
ret.bmChannelConfig = 0;
ret.iChannelNames = 0;
TU_LOG2(" Get terminal connector\r\n");
TU_LOG1(" Get terminal connector\r\n");
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void*) &ret, sizeof(ret));
}
break;
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void *) &ret, sizeof(ret));
} break;
// Unknown/Unsupported control selector
default:
@@ -406,43 +392,39 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
}
// Feature unit
if (entityID == 2)
{
switch ( ctrlSel )
{
if (entityID == 2) {
switch (ctrlSel) {
case AUDIO_FU_CTRL_MUTE:
// Audio control mute cur parameter block consists of only one byte - we thus can send it right away
// There does not exist a range parameter block for mute
TU_LOG2(" Get Mute of channel: %u\r\n", channelNum);
TU_LOG1(" Get Mute of channel: %u\r\n", channelNum);
return tud_control_xfer(rhport, p_request, &mute[channelNum], 1);
case AUDIO_FU_CTRL_VOLUME:
switch ( p_request->bRequest )
{
switch (p_request->bRequest) {
case AUDIO_CS_REQ_CUR:
TU_LOG2(" Get Volume of channel: %u\r\n", channelNum);
TU_LOG1(" Get Volume of channel: %u\r\n", channelNum);
return tud_control_xfer(rhport, p_request, &volume[channelNum], sizeof(volume[channelNum]));
case AUDIO_CS_REQ_RANGE:
TU_LOG2(" Get Volume range of channel: %u\r\n", channelNum);
TU_LOG1(" Get Volume range of channel: %u\r\n", channelNum);
// Copy values - only for testing - better is version below
audio_control_range_2_n_t(1)
ret;
audio_control_range_2_n_t(1) ret;
ret.wNumSubRanges = 1;
ret.subrange[0].bMin = -90; // -90 dB
ret.subrange[0].bMax = 90; // +90 dB
ret.subrange[0].bRes = 1; // 1 dB steps
ret.subrange[0].bMin = -90;// -90 dB
ret.subrange[0].bMax = 90; // +90 dB
ret.subrange[0].bRes = 1; // 1 dB steps
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void*) &ret, sizeof(ret));
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void *) &ret, sizeof(ret));
// Unknown/Unsupported control
default:
TU_BREAKPOINT();
return false;
}
break;
break;
// Unknown/Unsupported control
default:
@@ -452,33 +434,30 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
}
// Clock Source unit
if ( entityID == 4 )
{
switch ( ctrlSel )
{
if (entityID == 4) {
switch (ctrlSel) {
case AUDIO_CS_CTRL_SAM_FREQ:
// channelNum is always zero in this case
switch ( p_request->bRequest )
{
switch (p_request->bRequest) {
case AUDIO_CS_REQ_CUR:
TU_LOG2(" Get Sample Freq.\r\n");
TU_LOG1(" Get Sample Freq.\r\n");
// Buffered control transfer is needed for IN flow control to work
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &sampFreq, sizeof(sampFreq));
case AUDIO_CS_REQ_RANGE:
TU_LOG2(" Get Sample Freq. range\r\n");
TU_LOG1(" Get Sample Freq. range\r\n");
return tud_control_xfer(rhport, p_request, &sampleFreqRng, sizeof(sampleFreqRng));
// Unknown/Unsupported control
// Unknown/Unsupported control
default:
TU_BREAKPOINT();
return false;
}
break;
break;
case AUDIO_CS_CTRL_CLK_VALID:
// Only cur attribute exists for this request
TU_LOG2(" Get Sample Freq. valid\r\n");
TU_LOG1(" Get Sample Freq. valid\r\n");
return tud_control_xfer(rhport, p_request, &clkValid, sizeof(clkValid));
// Unknown/Unsupported control
@@ -488,52 +467,14 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
}
}
TU_LOG2(" Unsupported entity: %d\r\n", entityID);
return false; // Yet not implemented
}
bool tud_audio_tx_done_pre_load_cb(uint8_t rhport, uint8_t itf, uint8_t ep_in, uint8_t cur_alt_setting)
{
(void) rhport;
(void) itf;
(void) ep_in;
(void) cur_alt_setting;
// In read world application data flow is driven by I2S clock,
// both tud_audio_tx_done_pre_load_cb() & tud_audio_tx_done_post_load_cb() are hardly used.
// For example in your I2S receive callback:
// void I2S_Rx_Callback(int channel, const void* data, uint16_t samples)
// {
// tud_audio_write_support_ff(channel, data, samples * N_BYTES_PER_SAMPLE * N_CHANNEL_PER_FIFO);
// }
return true;
}
bool tud_audio_tx_done_post_load_cb(uint8_t rhport, uint16_t n_bytes_copied, uint8_t itf, uint8_t ep_in, uint8_t cur_alt_setting)
{
(void) rhport;
(void) n_bytes_copied;
(void) itf;
(void) ep_in;
(void) cur_alt_setting;
return true;
}
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void) rhport;
(void) p_request;
return true;
TU_LOG1(" Unsupported entity: %d\r\n", entityID);
return false;// Yet not implemented
}
///--------------------------------------------------------------------+
// BLINKING TASK
//--------------------------------------------------------------------+
void led_blinking_task(void* param) {
void led_blinking_task(void *param) {
(void) param;
static uint32_t start_ms = 0;
static bool led_state = false;
@@ -544,6 +485,6 @@ void led_blinking_task(void* param) {
start_ms += blink_interval_ms;
board_led_write(led_state);
led_state = 1 - led_state; // toggle
led_state = 1 - led_state;// toggle
}
}

View File

@@ -31,8 +31,8 @@
* $ python3 plot_audio_samples.py
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "bsp/board_api.h"
@@ -47,7 +47,7 @@
* - 1000 ms : device mounted
* - 2500 ms : device is suspended
*/
enum {
enum {
BLINK_NOT_MOUNTED = 250,
BLINK_MOUNTED = 1000,
BLINK_SUSPENDED = 2500,
@@ -57,32 +57,30 @@ static uint32_t blink_interval_ms = BLINK_NOT_MOUNTED;
// Audio controls
// Current states
bool mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master channel 0
uint16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master channel 0
bool mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master channel 0
uint16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1];// +1 for master channel 0
uint32_t sampFreq;
uint8_t clkValid;
// Range states
audio_control_range_2_n_t(1) volumeRng[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX+1]; // Volume range state
audio_control_range_4_n_t(1) sampleFreqRng; // Sample frequency range state
audio_control_range_2_n_t(1) volumeRng[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1];// Volume range state
audio_control_range_4_n_t(1) sampleFreqRng; // Sample frequency range state
// Audio test data
uint16_t test_buffer_audio[(CFG_TUD_AUDIO_EP_SZ_IN - 2) / 2];
uint16_t test_buffer_audio[CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE / 1000 * CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX / 2];
uint16_t startVal = 0;
void led_blinking_task(void);
void audio_task(void);
/*------------- MAIN -------------*/
int main(void)
{
int main(void) {
board_init();
// init device stack on configured roothub port
tusb_rhport_init_t dev_init = {
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO
};
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO};
tusb_init(BOARD_TUD_RHPORT, &dev_init);
if (board_init_after_tusb) {
@@ -98,9 +96,8 @@ int main(void)
sampleFreqRng.subrange[0].bMax = CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE;
sampleFreqRng.subrange[0].bRes = 0;
while (1)
{
tud_task(); // tinyusb device task
while (1) {
tud_task();// tinyusb device task
led_blinking_task();
audio_task();
}
@@ -111,40 +108,45 @@ int main(void)
//--------------------------------------------------------------------+
// Invoked when device is mounted
void tud_mount_cb(void)
{
void tud_mount_cb(void) {
blink_interval_ms = BLINK_MOUNTED;
}
// Invoked when device is unmounted
void tud_umount_cb(void)
{
void tud_umount_cb(void) {
blink_interval_ms = BLINK_NOT_MOUNTED;
}
// Invoked when usb bus is suspended
// remote_wakeup_en : if host allow us to perform remote wakeup
// Within 7ms, device must draw an average of current less than 2.5 mA from bus
void tud_suspend_cb(bool remote_wakeup_en)
{
void tud_suspend_cb(bool remote_wakeup_en) {
(void) remote_wakeup_en;
blink_interval_ms = BLINK_SUSPENDED;
}
// Invoked when usb bus is resumed
void tud_resume_cb(void)
{
void tud_resume_cb(void) {
blink_interval_ms = tud_mounted() ? BLINK_MOUNTED : BLINK_NOT_MOUNTED;
}
//--------------------------------------------------------------------+
// AUDIO Task
//--------------------------------------------------------------------+
void audio_task(void)
{
// Yet to be filled - e.g. put meas data into TX FIFOs etc.
// asm("nop");
// This task simulates an audio receive callback, one frame is received every 1ms.
// We assume that the audio data is read from an I2S buffer.
// In a real application, this would be replaced with actual I2S receive callback.
void audio_task(void) {
static uint32_t start_ms = 0;
uint32_t curr_ms = board_millis();
if (start_ms == curr_ms) return;// not enough time
start_ms = curr_ms;
for (size_t cnt = 0; cnt < sizeof(test_buffer_audio) / 2; cnt++) {
test_buffer_audio[cnt] = startVal++;
}
tud_audio_write((uint8_t *) test_buffer_audio, sizeof(test_buffer_audio));
}
//--------------------------------------------------------------------+
@@ -152,8 +154,7 @@ void audio_task(void)
//--------------------------------------------------------------------+
// Invoked when audio class specific set request received for an EP
bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
{
bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *pBuff) {
(void) rhport;
(void) pBuff;
@@ -165,14 +166,15 @@ bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_re
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t ep = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) ep;
(void) channelNum;
(void) ctrlSel;
(void) ep;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific set request received for an interface
bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
{
bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *pBuff) {
(void) rhport;
(void) pBuff;
@@ -184,14 +186,15 @@ bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_r
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t itf = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) itf;
(void) channelNum;
(void) ctrlSel;
(void) itf;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific set request received for an entity
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
{
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *pBuff) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -206,40 +209,37 @@ bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
TU_VERIFY(p_request->bRequest == AUDIO_CS_REQ_CUR);
// If request is for our feature unit
if ( entityID == 2 )
{
switch ( ctrlSel )
{
if (entityID == 2) {
switch (ctrlSel) {
case AUDIO_FU_CTRL_MUTE:
// Request uses format layout 1
TU_VERIFY(p_request->wLength == sizeof(audio_control_cur_1_t));
mute[channelNum] = ((audio_control_cur_1_t*) pBuff)->bCur;
mute[channelNum] = ((audio_control_cur_1_t *) pBuff)->bCur;
TU_LOG2(" Set Mute: %d of channel: %u\r\n", mute[channelNum], channelNum);
return true;
return true;
case AUDIO_FU_CTRL_VOLUME:
// Request uses format layout 2
TU_VERIFY(p_request->wLength == sizeof(audio_control_cur_2_t));
volume[channelNum] = (uint16_t) ((audio_control_cur_2_t*) pBuff)->bCur;
volume[channelNum] = (uint16_t) ((audio_control_cur_2_t *) pBuff)->bCur;
TU_LOG2(" Set Volume: %d dB of channel: %u\r\n", volume[channelNum], channelNum);
return true;
return true;
// Unknown/Unsupported control
default:
TU_BREAKPOINT();
return false;
return false;
}
}
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific get request received for an EP
bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -247,16 +247,17 @@ bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_re
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t ep = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) ep;
(void) channelNum;
(void) ctrlSel;
(void) ep;
// return tud_control_xfer(rhport, p_request, &tmp, 1);
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific get request received for an interface
bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -264,14 +265,15 @@ bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_r
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t itf = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) itf;
(void) channelNum;
(void) ctrlSel;
(void) itf;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific get request received for an entity
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -281,12 +283,9 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
uint8_t entityID = TU_U16_HIGH(p_request->wIndex);
// Input terminal (Microphone input)
if (entityID == 1)
{
switch ( ctrlSel )
{
case AUDIO_TE_CTRL_CONNECTOR:
{
if (entityID == 1) {
switch (ctrlSel) {
case AUDIO_TE_CTRL_CONNECTOR: {
// The terminal connector control only has a get request with only the CUR attribute.
audio_desc_channel_cluster_t ret;
@@ -297,9 +296,8 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
TU_LOG2(" Get terminal connector\r\n");
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void*) &ret, sizeof(ret));
}
break;
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void *) &ret, sizeof(ret));
} break;
// Unknown/Unsupported control selector
default:
@@ -309,43 +307,40 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
}
// Feature unit
if (entityID == 2)
{
switch ( ctrlSel )
{
if (entityID == 2) {
switch (ctrlSel) {
case AUDIO_FU_CTRL_MUTE:
// Audio control mute cur parameter block consists of only one byte - we thus can send it right away
// There does not exist a range parameter block for mute
TU_LOG2(" Get Mute of channel: %u\r\n", channelNum);
return tud_control_xfer(rhport, p_request, &mute[channelNum], 1);
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &mute[channelNum], 1);
case AUDIO_FU_CTRL_VOLUME:
switch ( p_request->bRequest )
{
switch (p_request->bRequest) {
case AUDIO_CS_REQ_CUR:
TU_LOG2(" Get Volume of channel: %u\r\n", channelNum);
return tud_control_xfer(rhport, p_request, &volume[channelNum], sizeof(volume[channelNum]));
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &volume[channelNum], sizeof(volume[channelNum]));
case AUDIO_CS_REQ_RANGE:
TU_LOG2(" Get Volume range of channel: %u\r\n", channelNum);
// Copy values - only for testing - better is version below
audio_control_range_2_n_t(1)
ret;
ret;
ret.wNumSubRanges = 1;
ret.subrange[0].bMin = -90; // -90 dB
ret.subrange[0].bMax = 90; // +90 dB
ret.subrange[0].bRes = 1; // 1 dB steps
ret.subrange[0].bMin = -90;// -90 dB
ret.subrange[0].bMax = 90; // +90 dB
ret.subrange[0].bRes = 1; // 1 dB steps
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void*) &ret, sizeof(ret));
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void *) &ret, sizeof(ret));
// Unknown/Unsupported control
default:
TU_BREAKPOINT();
return false;
}
break;
break;
// Unknown/Unsupported control
default:
@@ -355,33 +350,30 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
}
// Clock Source unit
if ( entityID == 4 )
{
switch ( ctrlSel )
{
if (entityID == 4) {
switch (ctrlSel) {
case AUDIO_CS_CTRL_SAM_FREQ:
// channelNum is always zero in this case
switch ( p_request->bRequest )
{
switch (p_request->bRequest) {
case AUDIO_CS_REQ_CUR:
TU_LOG2(" Get Sample Freq.\r\n");
return tud_control_xfer(rhport, p_request, &sampFreq, sizeof(sampFreq));
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &sampFreq, sizeof(sampFreq));
case AUDIO_CS_REQ_RANGE:
TU_LOG2(" Get Sample Freq. range\r\n");
return tud_control_xfer(rhport, p_request, &sampleFreqRng, sizeof(sampleFreqRng));
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &sampleFreqRng, sizeof(sampleFreqRng));
// Unknown/Unsupported control
// Unknown/Unsupported control
default:
TU_BREAKPOINT();
return false;
}
break;
break;
case AUDIO_CS_CTRL_CLK_VALID:
// Only cur attribute exists for this request
TU_LOG2(" Get Sample Freq. valid\r\n");
return tud_control_xfer(rhport, p_request, &clkValid, sizeof(clkValid));
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &clkValid, sizeof(clkValid));
// Unknown/Unsupported control
default:
@@ -391,39 +383,10 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
}
TU_LOG2(" Unsupported entity: %d\r\n", entityID);
return false; // Yet not implemented
return false;// Yet not implemented
}
bool tud_audio_tx_done_pre_load_cb(uint8_t rhport, uint8_t itf, uint8_t ep_in, uint8_t cur_alt_setting)
{
(void) rhport;
(void) itf;
(void) ep_in;
(void) cur_alt_setting;
tud_audio_write ((uint8_t *)test_buffer_audio, CFG_TUD_AUDIO_EP_SZ_IN - 2);
return true;
}
bool tud_audio_tx_done_post_load_cb(uint8_t rhport, uint16_t n_bytes_copied, uint8_t itf, uint8_t ep_in, uint8_t cur_alt_setting)
{
(void) rhport;
(void) n_bytes_copied;
(void) itf;
(void) ep_in;
(void) cur_alt_setting;
for (size_t cnt = 0; cnt < (CFG_TUD_AUDIO_EP_SZ_IN - 2) / 2; cnt++)
{
test_buffer_audio[cnt] = startVal++;
}
return true;
}
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
(void) p_request;
startVal = 0;
@@ -434,15 +397,14 @@ bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const
//--------------------------------------------------------------------+
// BLINKING TASK
//--------------------------------------------------------------------+
void led_blinking_task(void)
{
void led_blinking_task(void) {
static uint32_t start_ms = 0;
static bool led_state = false;
// Blink every interval ms
if ( board_millis() - start_ms < blink_interval_ms) return; // not enough time
if (board_millis() - start_ms < blink_interval_ms) return;// not enough time
start_ms += blink_interval_ms;
board_led_write(led_state);
led_state = 1 - led_state; // toggle
led_state = 1 - led_state;// toggle
}

View File

@@ -12,11 +12,11 @@ if __name__ == '__main__':
# print(sd.query_devices())
fs = 48000 # Sample rate
duration = 100e-3 # Duration of recording
duration = 3 # Duration of recording
if platform.system() == 'Windows':
# MME is needed since there are more than one MicNode device APIs (at least in Windows)
device = 'Microphone (MicNode) MME'
device = 'Microphone (MicNode), Windows WASAPI'
elif platform.system() == 'Darwin':
device = 'MicNode'
else:

View File

@@ -117,7 +117,7 @@ extern "C" {
#define CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX 1 // Driver gets this info from the descriptors - we define it here to use it to setup the descriptors and to do calculations with it below - be aware: for different number of channels you need another descriptor!
#define CFG_TUD_AUDIO_EP_SZ_IN TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX)
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX CFG_TUD_AUDIO_EP_SZ_IN
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ (TUD_OPT_HIGH_SPEED ? 8 : 1) * CFG_TUD_AUDIO_EP_SZ_IN // Example write FIFO every 1ms, so it should be 8 times larger for HS device
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ (TUD_OPT_HIGH_SPEED ? 32 : 4) * CFG_TUD_AUDIO_EP_SZ_IN // Example write FIFO every 1ms, so it should be 8 times larger for HS device
#ifdef __cplusplus
}

View File

@@ -31,8 +31,8 @@
* $ python3 plot_audio_samples.py
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "bsp/board_api.h"
@@ -42,25 +42,26 @@
// ESP-IDF need "freertos/" prefix in include path.
// CFG_TUSB_OS_INC_PATH should be defined accordingly.
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "freertos/task.h"
#include "freertos/timers.h"
#define USBD_STACK_SIZE 4096
#define USBD_STACK_SIZE 4096
#else
#include "FreeRTOS.h"
#include "semphr.h"
#include "queue.h"
#include "semphr.h"
#include "task.h"
#include "timers.h"
// Increase stack size when debug log is enabled
#define USBD_STACK_SIZE (4*configMINIMAL_STACK_SIZE/2) * (CFG_TUSB_DEBUG ? 2 : 1)
#define USBD_STACK_SIZE (4 * configMINIMAL_STACK_SIZE / 2) * (CFG_TUSB_DEBUG ? 2 : 1)
#endif
#define BLINKY_STACK_SIZE configMINIMAL_STACK_SIZE
#define BLINKY_STACK_SIZE configMINIMAL_STACK_SIZE
#define AUDIO_STACK_SIZE configMINIMAL_STACK_SIZE
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF PROTYPES
@@ -71,7 +72,7 @@
* - 1000 ms : device mounted
* - 2500 ms : device is suspended
*/
enum {
enum {
BLINK_NOT_MOUNTED = 250,
BLINK_MOUNTED = 1000,
BLINK_SUSPENDED = 2500,
@@ -82,34 +83,36 @@ enum {
StackType_t blinky_stack[BLINKY_STACK_SIZE];
StaticTask_t blinky_taskdef;
StackType_t usb_device_stack[USBD_STACK_SIZE];
StackType_t usb_device_stack[USBD_STACK_SIZE];
StaticTask_t usb_device_taskdef;
StackType_t audio_stack[AUDIO_STACK_SIZE];
StaticTask_t audio_taskdef;
#endif
static uint32_t blink_interval_ms = BLINK_NOT_MOUNTED;
// Audio controls
// Current states
bool mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master channel 0
uint16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master channel 0
bool mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master channel 0
uint16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1];// +1 for master channel 0
uint32_t sampFreq;
uint8_t clkValid;
// Range states
audio_control_range_2_n_t(1) volumeRng[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX+1]; // Volume range state
audio_control_range_4_n_t(1) sampleFreqRng; // Sample frequency range state
audio_control_range_2_n_t(1) volumeRng[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1];// Volume range state
audio_control_range_4_n_t(1) sampleFreqRng; // Sample frequency range state
// Audio test data
uint16_t test_buffer_audio[(CFG_TUD_AUDIO_EP_SZ_IN - 2) / 2];
uint16_t test_buffer_audio[CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE / 1000 * CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX / 2];
uint16_t startVal = 0;
void led_blinking_task(void* param);
void usb_device_task(void* param);
void audio_task(void);
void led_blinking_task(void *param);
void usb_device_task(void *param);
void audio_isr_task(void *param);
/*------------- MAIN -------------*/
int main(void)
{
int main(void) {
board_init();
// Init values
@@ -126,16 +129,21 @@ int main(void)
xTaskCreateStatic(led_blinking_task, "blinky", BLINKY_STACK_SIZE, NULL, 1, blinky_stack, &blinky_taskdef);
// Create a task for tinyusb device stack
xTaskCreateStatic(usb_device_task, "usbd", USBD_STACK_SIZE, NULL, configMAX_PRIORITIES-1, usb_device_stack, &usb_device_taskdef);
xTaskCreateStatic(usb_device_task, "usbd", USBD_STACK_SIZE, NULL, configMAX_PRIORITIES - 1, usb_device_stack, &usb_device_taskdef);
// Audio receive (I2S) ISR simulation
// To simulate a ISR the priority is set to the highest
xTaskCreateStatic(audio_isr_task, "audio", AUDIO_STACK_SIZE, NULL, configMAX_PRIORITIES - 1, audio_stack, &audio_taskdef);
#else
xTaskCreate(led_blinking_task, "blinky", BLINKY_STACK_SIZE, NULL, 1, NULL);
xTaskCreate(usb_device_task, "usbd", USBD_STACK_SIZE, NULL, configMAX_PRIORITIES - 1, NULL);
xTaskCreate(audio_isr_task, "audio", AUDIO_STACK_SIZE, NULL, configMAX_PRIORITIES - 1, NULL);
#endif
// skip starting scheduler (and return) for ESP32-S2 or ESP32-S3
#if !TUSB_MCU_VENDOR_ESPRESSIF
vTaskStartScheduler();
#endif
// skip starting scheduler (and return) for ESP32-S2 or ESP32-S3
#if !TUSB_MCU_VENDOR_ESPRESSIF
vTaskStartScheduler();
#endif
return 0;
}
@@ -148,17 +156,15 @@ void app_main(void) {
// USB Device Driver task
// This top level thread process all usb events and invoke callbacks
void usb_device_task(void* param)
{
void usb_device_task(void *param) {
(void) param;
// init device stack on configured roothub port
// This should be called after scheduler/kernel is started.
// Otherwise it could cause kernel issue since USB IRQ handler does use RTOS queue API.
tusb_rhport_init_t dev_init = {
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO
};
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO};
tusb_init(BOARD_TUD_RHPORT, &dev_init);
if (board_init_after_tusb) {
@@ -166,8 +172,7 @@ void usb_device_task(void* param)
}
// RTOS forever loop
while (1)
{
while (1) {
// tinyusb device task
tud_task();
}
@@ -204,10 +209,18 @@ void tud_resume_cb(void) {
// AUDIO Task
//--------------------------------------------------------------------+
void audio_task(void)
{
// Yet to be filled - e.g. put meas data into TX FIFOs etc.
// asm("nop");
// This task simulates an audio receive ISR, one frame is received every 1ms.
// We assume that the audio data is read from an I2S buffer.
// In a real application, this would be replaced with actual I2S receive callback.
void audio_isr_task(void *param) {
(void) param;
while (1) {
vTaskDelay(1);
for (size_t cnt = 0; cnt < sizeof(test_buffer_audio) / 2; cnt++) {
test_buffer_audio[cnt] = startVal++;
}
tud_audio_write((uint8_t *) test_buffer_audio, sizeof(test_buffer_audio));
}
}
//--------------------------------------------------------------------+
@@ -215,8 +228,7 @@ void audio_task(void)
//--------------------------------------------------------------------+
// Invoked when audio class specific set request received for an EP
bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
{
bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *pBuff) {
(void) rhport;
(void) pBuff;
@@ -228,14 +240,15 @@ bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_re
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t ep = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) ep;
(void) channelNum;
(void) ctrlSel;
(void) ep;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific set request received for an interface
bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
{
bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *pBuff) {
(void) rhport;
(void) pBuff;
@@ -247,14 +260,15 @@ bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_r
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t itf = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) itf;
(void) channelNum;
(void) ctrlSel;
(void) itf;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific set request received for an entity
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
{
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *pBuff) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -269,40 +283,36 @@ bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
TU_VERIFY(p_request->bRequest == AUDIO_CS_REQ_CUR);
// If request is for our feature unit
if ( entityID == 2 )
{
switch ( ctrlSel )
{
if (entityID == 2) {
switch (ctrlSel) {
case AUDIO_FU_CTRL_MUTE:
// Request uses format layout 1
TU_VERIFY(p_request->wLength == sizeof(audio_control_cur_1_t));
mute[channelNum] = ((audio_control_cur_1_t*) pBuff)->bCur;
mute[channelNum] = ((audio_control_cur_1_t *) pBuff)->bCur;
TU_LOG2(" Set Mute: %d of channel: %u\r\n", mute[channelNum], channelNum);
return true;
TU_LOG1(" Set Mute: %d of channel: %u\r\n", mute[channelNum], channelNum);
return true;
case AUDIO_FU_CTRL_VOLUME:
// Request uses format layout 2
TU_VERIFY(p_request->wLength == sizeof(audio_control_cur_2_t));
volume[channelNum] = (uint16_t) ((audio_control_cur_2_t*) pBuff)->bCur;
TU_LOG2(" Set Volume: %d dB of channel: %u\r\n", volume[channelNum], channelNum);
return true;
volume[channelNum] = (uint16_t) ((audio_control_cur_2_t *) pBuff)->bCur;
TU_LOG1(" Set Volume: %d dB of channel: %u\r\n", volume[channelNum], channelNum);
return true;
// Unknown/Unsupported control
default:
TU_BREAKPOINT();
return false;
return false;
}
}
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific get request received for an EP
bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -310,14 +320,15 @@ bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_re
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t ep = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) ep;
(void) channelNum;
(void) ctrlSel;
(void) ep;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific get request received for an interface
bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -325,14 +336,15 @@ bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_r
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t itf = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) itf;
(void) channelNum;
(void) ctrlSel;
(void) itf;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific get request received for an entity
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -342,12 +354,9 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
uint8_t entityID = TU_U16_HIGH(p_request->wIndex);
// Input terminal (Microphone input)
if (entityID == 1)
{
switch ( ctrlSel )
{
case AUDIO_TE_CTRL_CONNECTOR:
{
if (entityID == 1) {
switch (ctrlSel) {
case AUDIO_TE_CTRL_CONNECTOR: {
// The terminal connector control only has a get request with only the CUR attribute.
audio_desc_channel_cluster_t ret;
@@ -356,11 +365,10 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
ret.bmChannelConfig = (audio_channel_config_t) 0;
ret.iChannelNames = 0;
TU_LOG2(" Get terminal connector\r\n");
TU_LOG1(" Get terminal connector\r\n");
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void*) &ret, sizeof(ret));
}
break;
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void *) &ret, sizeof(ret));
} break;
// Unknown/Unsupported control selector
default:
@@ -370,43 +378,40 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
}
// Feature unit
if (entityID == 2)
{
switch ( ctrlSel )
{
if (entityID == 2) {
switch (ctrlSel) {
case AUDIO_FU_CTRL_MUTE:
// Audio control mute cur parameter block consists of only one byte - we thus can send it right away
// There does not exist a range parameter block for mute
TU_LOG2(" Get Mute of channel: %u\r\n", channelNum);
return tud_control_xfer(rhport, p_request, &mute[channelNum], 1);
TU_LOG1(" Get Mute of channel: %u\r\n", channelNum);
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &mute[channelNum], 1);
case AUDIO_FU_CTRL_VOLUME:
switch ( p_request->bRequest )
{
switch (p_request->bRequest) {
case AUDIO_CS_REQ_CUR:
TU_LOG2(" Get Volume of channel: %u\r\n", channelNum);
return tud_control_xfer(rhport, p_request, &volume[channelNum], sizeof(volume[channelNum]));
TU_LOG1(" Get Volume of channel: %u\r\n", channelNum);
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &volume[channelNum], sizeof(volume[channelNum]));
case AUDIO_CS_REQ_RANGE:
TU_LOG2(" Get Volume range of channel: %u\r\n", channelNum);
TU_LOG1(" Get Volume range of channel: %u\r\n", channelNum);
// Copy values - only for testing - better is version below
audio_control_range_2_n_t(1)
ret;
ret;
ret.wNumSubRanges = 1;
ret.subrange[0].bMin = -90; // -90 dB
ret.subrange[0].bMax = 90; // +90 dB
ret.subrange[0].bRes = 1; // 1 dB steps
ret.subrange[0].bMin = -90;// -90 dB
ret.subrange[0].bMax = 90; // +90 dB
ret.subrange[0].bRes = 1; // 1 dB steps
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void*) &ret, sizeof(ret));
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void *) &ret, sizeof(ret));
// Unknown/Unsupported control
default:
TU_BREAKPOINT();
return false;
}
break;
break;
// Unknown/Unsupported control
default:
@@ -416,33 +421,30 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
}
// Clock Source unit
if ( entityID == 4 )
{
switch ( ctrlSel )
{
if (entityID == 4) {
switch (ctrlSel) {
case AUDIO_CS_CTRL_SAM_FREQ:
// channelNum is always zero in this case
switch ( p_request->bRequest )
{
switch (p_request->bRequest) {
case AUDIO_CS_REQ_CUR:
TU_LOG2(" Get Sample Freq.\r\n");
return tud_control_xfer(rhport, p_request, &sampFreq, sizeof(sampFreq));
TU_LOG1(" Get Sample Freq.\r\n");
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &sampFreq, sizeof(sampFreq));
case AUDIO_CS_REQ_RANGE:
TU_LOG2(" Get Sample Freq. range\r\n");
return tud_control_xfer(rhport, p_request, &sampleFreqRng, sizeof(sampleFreqRng));
TU_LOG1(" Get Sample Freq. range\r\n");
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &sampleFreqRng, sizeof(sampleFreqRng));
// Unknown/Unsupported control
// Unknown/Unsupported control
default:
TU_BREAKPOINT();
return false;
}
break;
break;
case AUDIO_CS_CTRL_CLK_VALID:
// Only cur attribute exists for this request
TU_LOG2(" Get Sample Freq. valid\r\n");
return tud_control_xfer(rhport, p_request, &clkValid, sizeof(clkValid));
TU_LOG1(" Get Sample Freq. valid\r\n");
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &clkValid, sizeof(clkValid));
// Unknown/Unsupported control
default:
@@ -451,40 +453,11 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
}
}
TU_LOG2(" Unsupported entity: %d\r\n", entityID);
return false; // Yet not implemented
TU_LOG1(" Unsupported entity: %d\r\n", entityID);
return false;// Yet not implemented
}
bool tud_audio_tx_done_pre_load_cb(uint8_t rhport, uint8_t itf, uint8_t ep_in, uint8_t cur_alt_setting)
{
(void) rhport;
(void) itf;
(void) ep_in;
(void) cur_alt_setting;
tud_audio_write ((uint8_t *)test_buffer_audio, CFG_TUD_AUDIO_EP_SZ_IN - 2);
return true;
}
bool tud_audio_tx_done_post_load_cb(uint8_t rhport, uint16_t n_bytes_copied, uint8_t itf, uint8_t ep_in, uint8_t cur_alt_setting)
{
(void) rhport;
(void) n_bytes_copied;
(void) itf;
(void) ep_in;
(void) cur_alt_setting;
for (size_t cnt = 0; cnt < (CFG_TUD_AUDIO_EP_SZ_IN - 2) / 2; cnt++)
{
test_buffer_audio[cnt] = startVal++;
}
return true;
}
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
(void) p_request;
startVal = 0;
@@ -495,7 +468,7 @@ bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const
//--------------------------------------------------------------------+
// BLINKING TASK
//--------------------------------------------------------------------+
void led_blinking_task(void* param) {
void led_blinking_task(void *param) {
(void) param;
static uint32_t start_ms = 0;
static bool led_state = false;
@@ -506,6 +479,6 @@ void led_blinking_task(void* param) {
start_ms += blink_interval_ms;
board_led_write(led_state);
led_state = 1 - led_state; // toggle
led_state = 1 - led_state;// toggle
}
}

View File

@@ -11,11 +11,11 @@ if __name__ == '__main__':
# print(sd.query_devices())
fs = 48000 # Sample rate
duration = 1000e-3 # Duration of recording
duration = 3 # Duration of recording
if platform.system() == 'Windows':
# MME is needed since there are more than one MicNode device APIs (at least in Windows)
device = 'Microphone (MicNode) MME'
device = 'Microphone (MicNode), Windows WASAPI'
elif platform.system() == 'Darwin':
device = 'MicNode'
else:

View File

@@ -123,7 +123,7 @@ extern "C" {
#define CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX 1 // Driver gets this info from the descriptors - we define it here to use it to setup the descriptors and to do calculations with it below - be aware: for different number of channels you need another descriptor!
#define CFG_TUD_AUDIO_EP_SZ_IN TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX)
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX CFG_TUD_AUDIO_EP_SZ_IN
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ (TUD_OPT_HIGH_SPEED ? 8 : 1) * CFG_TUD_AUDIO_EP_SZ_IN // Example write FIFO every 1ms, so it should be 8 times larger for HS device
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ (TUD_OPT_HIGH_SPEED ? 32 : 4) * CFG_TUD_AUDIO_EP_SZ_IN // Example write FIFO every 1ms, so it should be 8 times larger for HS device
#ifdef __cplusplus
}

View File

@@ -32,8 +32,8 @@
* $ python3 plot_audio_samples.py
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "bsp/board_api.h"
@@ -49,7 +49,7 @@
* - 1000 ms : device mounted
* - 2500 ms : device is suspended
*/
enum {
enum {
BLINK_NOT_MOUNTED = 250,
BLINK_MOUNTED = 1000,
BLINK_SUSPENDED = 2500,
@@ -59,8 +59,8 @@ static uint32_t blink_interval_ms = BLINK_NOT_MOUNTED;
// Audio controls
// Current states
bool mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master channel 0
uint16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master channel 0
bool mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master channel 0
uint16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1];// +1 for master channel 0
uint32_t sampFreq;
uint8_t bytesPerSample;
uint8_t clkValid;
@@ -68,39 +68,36 @@ uint8_t clkValid;
// Range states
// List of supported sample rates
static const uint32_t sampleRatesList[] =
{
32000, 48000, 96000
};
{
32000, 48000, 96000};
#define N_sampleRates TU_ARRAY_SIZE(sampleRatesList)
#define N_sampleRates TU_ARRAY_SIZE(sampleRatesList)
// Bytes per format of every Alt settings
static const uint8_t bytesPerSampleAltList[CFG_TUD_AUDIO_FUNC_1_N_FORMATS] =
{
CFG_TUD_AUDIO_FUNC_1_FORMAT_1_N_BYTES_PER_SAMPLE_TX,
CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_TX,
{
CFG_TUD_AUDIO_FUNC_1_FORMAT_1_N_BYTES_PER_SAMPLE_TX,
CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_TX,
};
audio_control_range_2_n_t(1) volumeRng[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX+1]; // Volume range state
audio_control_range_2_n_t(1) volumeRng[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1];// Volume range state
// Audio test data
CFG_TUD_MEM_ALIGN uint8_t test_buffer_audio[CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX];
CFG_TUD_MEM_ALIGN uint8_t test_buffer_audio[(TUD_OPT_HIGH_SPEED ? 8 : 1) * CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX];
uint16_t startVal = 0;
void led_blinking_task(void);
void audio_task(void);
/*------------- MAIN -------------*/
int main(void)
{
int main(void) {
board_init();
// init device stack on configured roothub port
tusb_rhport_init_t dev_init = {
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO
};
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO};
tusb_init(BOARD_TUD_RHPORT, &dev_init);
if (board_init_after_tusb) {
@@ -111,9 +108,8 @@ int main(void)
sampFreq = sampleRatesList[0];
clkValid = 1;
while (1)
{
tud_task(); // tinyusb device task
while (1) {
tud_task();// tinyusb device task
led_blinking_task();
audio_task();
}
@@ -127,29 +123,25 @@ int main(void)
//--------------------------------------------------------------------+
// Invoked when device is mounted
void tud_mount_cb(void)
{
void tud_mount_cb(void) {
blink_interval_ms = BLINK_MOUNTED;
}
// Invoked when device is unmounted
void tud_umount_cb(void)
{
void tud_umount_cb(void) {
blink_interval_ms = BLINK_NOT_MOUNTED;
}
// Invoked when usb bus is suspended
// remote_wakeup_en : if host allow us to perform remote wakeup
// Within 7ms, device must draw an average of current less than 2.5 mA from bus
void tud_suspend_cb(bool remote_wakeup_en)
{
void tud_suspend_cb(bool remote_wakeup_en) {
(void) remote_wakeup_en;
blink_interval_ms = BLINK_SUSPENDED;
}
// Invoked when usb bus is resumed
void tud_resume_cb(void)
{
void tud_resume_cb(void) {
blink_interval_ms = tud_mounted() ? BLINK_MOUNTED : BLINK_NOT_MOUNTED;
}
@@ -157,10 +149,29 @@ void tud_resume_cb(void)
// AUDIO Task
//--------------------------------------------------------------------+
void audio_task(void)
{
// Yet to be filled - e.g. put meas data into TX FIFOs etc.
// asm("nop");
// This task simulates an audio receive callback, one frame is received every 1ms.
// We assume that the audio data is read from an I2S buffer.
// In a real application, this would be replaced with actual I2S receive callback.
void audio_task(void) {
static uint32_t start_ms = 0;
uint32_t curr_ms = board_millis();
if (start_ms == curr_ms) return;// not enough time
start_ms = curr_ms;
// 16bit
if (bytesPerSample == 2) {
uint16_t *pData_16 = (uint16_t *) ((void *) test_buffer_audio);
for (size_t cnt = 0; cnt < sampFreq / 1000; cnt++) {
pData_16[cnt] = startVal++;
}
}
// 24bit in 32bit slot
else if (bytesPerSample == 4) {
uint32_t *pData_32 = (uint32_t *) ((void *) test_buffer_audio);
for (size_t cnt = 0; cnt < sampFreq / 1000; cnt++) {
pData_32[cnt] = (uint32_t) startVal++ << 16U;
}
}
tud_audio_write((uint8_t *) test_buffer_audio, (uint16_t) (sampFreq / 1000 * bytesPerSample));
}
//--------------------------------------------------------------------+
@@ -168,23 +179,20 @@ void audio_task(void)
//--------------------------------------------------------------------+
// Invoked when set interface is called, typically on start/stop streaming or format change
bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void)rhport;
bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
//uint8_t const itf = tu_u16_low(tu_le16toh(p_request->wIndex));
uint8_t const alt = tu_u16_low(tu_le16toh(p_request->wValue));
// Clear buffer when streaming format is changed
if(alt != 0)
{
bytesPerSample = bytesPerSampleAltList[alt-1];
if (alt != 0) {
bytesPerSample = bytesPerSampleAltList[alt - 1];
}
return true;
}
// Invoked when audio class specific set request received for an EP
bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
{
bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *pBuff) {
(void) rhport;
(void) pBuff;
@@ -196,14 +204,15 @@ bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_re
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t ep = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) ep;
(void) channelNum;
(void) ctrlSel;
(void) ep;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific set request received for an interface
bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
{
bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *pBuff) {
(void) rhport;
(void) pBuff;
@@ -215,14 +224,15 @@ bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_r
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t itf = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) itf;
(void) channelNum;
(void) ctrlSel;
(void) itf;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific set request received for an entity
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff)
{
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *pBuff) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -237,49 +247,45 @@ bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
TU_VERIFY(p_request->bRequest == AUDIO_CS_REQ_CUR);
// If request is for our feature unit
if ( entityID == UAC2_ENTITY_FEATURE_UNIT )
{
switch ( ctrlSel )
{
if (entityID == UAC2_ENTITY_FEATURE_UNIT) {
switch (ctrlSel) {
case AUDIO_FU_CTRL_MUTE:
// Request uses format layout 1
TU_VERIFY(p_request->wLength == sizeof(audio_control_cur_1_t));
mute[channelNum] = ((audio_control_cur_1_t*) pBuff)->bCur;
mute[channelNum] = ((audio_control_cur_1_t *) pBuff)->bCur;
TU_LOG2(" Set Mute: %d of channel: %u\r\n", mute[channelNum], channelNum);
return true;
return true;
case AUDIO_FU_CTRL_VOLUME:
// Request uses format layout 2
TU_VERIFY(p_request->wLength == sizeof(audio_control_cur_2_t));
volume[channelNum] = (uint16_t) ((audio_control_cur_2_t*) pBuff)->bCur;
volume[channelNum] = (uint16_t) ((audio_control_cur_2_t *) pBuff)->bCur;
TU_LOG2(" Set Volume: %d dB of channel: %u\r\n", volume[channelNum], channelNum);
return true;
return true;
// Unknown/Unsupported control
default:
TU_BREAKPOINT();
return false;
return false;
}
}
// Clock Source unit
if ( entityID == UAC2_ENTITY_CLOCK )
{
switch ( ctrlSel )
{
if (entityID == UAC2_ENTITY_CLOCK) {
switch (ctrlSel) {
case AUDIO_CS_CTRL_SAM_FREQ:
TU_VERIFY(p_request->wLength == sizeof(audio_control_cur_4_t));
sampFreq = (uint32_t)((audio_control_cur_4_t *)pBuff)->bCur;
sampFreq = (uint32_t) ((audio_control_cur_4_t *) pBuff)->bCur;
TU_LOG2("Clock set current freq: %" PRIu32 "\r\n", sampFreq);
return true;
break;
break;
// Unknown/Unsupported control
default:
@@ -288,12 +294,11 @@ bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
}
}
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific get request received for an EP
bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -301,16 +306,17 @@ bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_re
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t ep = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) ep;
(void) channelNum;
(void) ctrlSel;
(void) ep;
// return tud_control_xfer(rhport, p_request, &tmp, 1);
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific get request received for an interface
bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -318,14 +324,15 @@ bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_r
uint8_t ctrlSel = TU_U16_HIGH(p_request->wValue);
uint8_t itf = TU_U16_LOW(p_request->wIndex);
(void) channelNum; (void) ctrlSel; (void) itf;
(void) channelNum;
(void) ctrlSel;
(void) itf;
return false; // Yet not implemented
return false;// Yet not implemented
}
// Invoked when audio class specific get request received for an entity
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
// Page 91 in UAC2 specification
@@ -335,12 +342,9 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
uint8_t entityID = TU_U16_HIGH(p_request->wIndex);
// Input terminal (Microphone input)
if (entityID == UAC2_ENTITY_INPUT_TERMINAL)
{
switch ( ctrlSel )
{
case AUDIO_TE_CTRL_CONNECTOR:
{
if (entityID == UAC2_ENTITY_INPUT_TERMINAL) {
switch (ctrlSel) {
case AUDIO_TE_CTRL_CONNECTOR: {
// The terminal connector control only has a get request with only the CUR attribute.
audio_desc_channel_cluster_t ret;
@@ -351,9 +355,8 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
TU_LOG2(" Get terminal connector\r\n");
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void*) &ret, sizeof(ret));
}
break;
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void *) &ret, sizeof(ret));
} break;
// Unknown/Unsupported control selector
default:
@@ -363,43 +366,40 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
}
// Feature unit
if (entityID == UAC2_ENTITY_FEATURE_UNIT)
{
switch ( ctrlSel )
{
if (entityID == UAC2_ENTITY_FEATURE_UNIT) {
switch (ctrlSel) {
case AUDIO_FU_CTRL_MUTE:
// Audio control mute cur parameter block consists of only one byte - we thus can send it right away
// There does not exist a range parameter block for mute
TU_LOG2(" Get Mute of channel: %u\r\n", channelNum);
return tud_control_xfer(rhport, p_request, &mute[channelNum], 1);
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &mute[channelNum], 1);
case AUDIO_FU_CTRL_VOLUME:
switch ( p_request->bRequest )
{
switch (p_request->bRequest) {
case AUDIO_CS_REQ_CUR:
TU_LOG2(" Get Volume of channel: %u\r\n", channelNum);
return tud_control_xfer(rhport, p_request, &volume[channelNum], sizeof(volume[channelNum]));
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &volume[channelNum], sizeof(volume[channelNum]));
case AUDIO_CS_REQ_RANGE:
TU_LOG2(" Get Volume range of channel: %u\r\n", channelNum);
// Copy values - only for testing - better is version below
audio_control_range_2_n_t(1)
ret;
ret;
ret.wNumSubRanges = 1;
ret.subrange[0].bMin = -90; // -90 dB
ret.subrange[0].bMax = 30; // +30 dB
ret.subrange[0].bRes = 1; // 1 dB steps
ret.subrange[0].bMin = -90;// -90 dB
ret.subrange[0].bMax = 30; // +30 dB
ret.subrange[0].bRes = 1; // 1 dB steps
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void*) &ret, sizeof(ret));
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, (void *) &ret, sizeof(ret));
// Unknown/Unsupported control
default:
TU_BREAKPOINT();
return false;
}
break;
break;
// Unknown/Unsupported control
default:
@@ -409,46 +409,40 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
}
// Clock Source unit
if ( entityID == UAC2_ENTITY_CLOCK )
{
switch ( ctrlSel )
{
if (entityID == UAC2_ENTITY_CLOCK) {
switch (ctrlSel) {
case AUDIO_CS_CTRL_SAM_FREQ:
// channelNum is always zero in this case
switch ( p_request->bRequest )
{
switch (p_request->bRequest) {
case AUDIO_CS_REQ_CUR:
TU_LOG2(" Get Sample Freq.\r\n");
return tud_control_xfer(rhport, p_request, &sampFreq, sizeof(sampFreq));
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &sampFreq, sizeof(sampFreq));
case AUDIO_CS_REQ_RANGE:
{
case AUDIO_CS_REQ_RANGE: {
TU_LOG2(" Get Sample Freq. range\r\n");
audio_control_range_4_n_t(N_sampleRates) rangef =
{
.wNumSubRanges = tu_htole16(N_sampleRates)
};
{
.wNumSubRanges = tu_htole16(N_sampleRates)};
TU_LOG1("Clock get %d freq ranges\r\n", N_sampleRates);
for(uint8_t i = 0; i < N_sampleRates; i++)
{
rangef.subrange[i].bMin = (int32_t)sampleRatesList[i];
rangef.subrange[i].bMax = (int32_t)sampleRatesList[i];
rangef.subrange[i].bRes = 0;
TU_LOG1("Range %d (%d, %d, %d)\r\n", i, (int)rangef.subrange[i].bMin, (int)rangef.subrange[i].bMax, (int)rangef.subrange[i].bRes);
for (uint8_t i = 0; i < N_sampleRates; i++) {
rangef.subrange[i].bMin = (int32_t) sampleRatesList[i];
rangef.subrange[i].bMax = (int32_t) sampleRatesList[i];
rangef.subrange[i].bRes = 0;
TU_LOG1("Range %d (%d, %d, %d)\r\n", i, (int) rangef.subrange[i].bMin, (int) rangef.subrange[i].bMax, (int) rangef.subrange[i].bRes);
}
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &rangef, sizeof(rangef));
}
// Unknown/Unsupported control
// Unknown/Unsupported control
default:
TU_BREAKPOINT();
return false;
}
break;
break;
case AUDIO_CS_CTRL_CLK_VALID:
// Only cur attribute exists for this request
TU_LOG2(" Get Sample Freq. valid\r\n");
return tud_control_xfer(rhport, p_request, &clkValid, sizeof(clkValid));
return tud_audio_buffer_and_schedule_control_xfer(rhport, p_request, &clkValid, sizeof(clkValid));
// Unknown/Unsupported control
default:
@@ -458,53 +452,10 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *
}
TU_LOG2(" Unsupported entity: %d\r\n", entityID);
return false; // Yet not implemented
return false;// Yet not implemented
}
bool tud_audio_tx_done_pre_load_cb(uint8_t rhport, uint8_t itf, uint8_t ep_in, uint8_t cur_alt_setting)
{
(void) rhport;
(void) itf;
(void) ep_in;
(void) cur_alt_setting;
tud_audio_write((uint8_t *)test_buffer_audio, (uint16_t)(sampFreq / (TUD_OPT_HIGH_SPEED ? 8000 : 1000) * bytesPerSample));
return true;
}
bool tud_audio_tx_done_post_load_cb(uint8_t rhport, uint16_t n_bytes_copied, uint8_t itf, uint8_t ep_in, uint8_t cur_alt_setting)
{
(void) rhport;
(void) n_bytes_copied;
(void) itf;
(void) ep_in;
(void) cur_alt_setting;
// 16bit
if(bytesPerSample == 2)
{
uint16_t* pData_16 = (uint16_t*)((void*)test_buffer_audio);
for (size_t cnt = 0; cnt < sampFreq / (TUD_OPT_HIGH_SPEED ? 8000 : 1000); cnt++)
{
pData_16[cnt] = startVal++;
}
}
// 24bit in 32bit slot
else if(bytesPerSample == 4)
{
uint32_t* pData_32 = (uint32_t*)((void*)test_buffer_audio);
for (size_t cnt = 0; cnt < sampFreq / (TUD_OPT_HIGH_SPEED ? 8000 : 1000); cnt++)
{
pData_32[cnt] = (uint32_t)startVal++ << 16U;
}
}
return true;
}
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
(void) p_request;
startVal = 0;
@@ -515,15 +466,14 @@ bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const
//--------------------------------------------------------------------+
// BLINKING TASK
//--------------------------------------------------------------------+
void led_blinking_task(void)
{
void led_blinking_task(void) {
static uint32_t start_ms = 0;
static bool led_state = false;
// Blink every interval ms
if ( board_millis() - start_ms < blink_interval_ms) return; // not enough time
if (board_millis() - start_ms < blink_interval_ms) return;// not enough time
start_ms += blink_interval_ms;
board_led_write(led_state);
led_state = 1 - led_state; // toggle
led_state = 1 - led_state;// toggle
}

View File

@@ -133,7 +133,8 @@ extern "C" {
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_IN TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX)
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX TU_MAX(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_IN, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_IN) // Maximum EP IN size for all AS alternate settings used
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ (TUD_OPT_HIGH_SPEED ? 32 : 4) * CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX // Example write FIFO every 1ms, so it should be 8 times larger for HS device
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,8 @@
mcu:LPC11UXX
mcu:LPC13XX
mcu:NUC121
mcu:SAMD11
mcu:SAME5X
mcu:SAMG
board:stm32l052dap52
family:espressif

View File

@@ -39,6 +39,7 @@ extern uint32_t blink_interval_ms;
#endif
void led_blinking_task(void);
void audio_task(void);
/*------------- MAIN -------------*/
int main(void)
@@ -62,7 +63,7 @@ int main(void)
{
tud_task(); // TinyUSB device task
led_blinking_task();
audio_task();
#if (CFG_TUSB_MCU == OPT_MCU_RP2040)
// printf("Hello, world!\r\n");
#endif

View File

@@ -145,8 +145,8 @@ extern "C" {
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_IN TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_1_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX)
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_IN TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX)
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ TU_MAX(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_IN, CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_IN)
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX TU_MAX(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_IN, CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_IN) // Maximum EP IN size for all AS alternate settings used
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ (TUD_OPT_HIGH_SPEED ? 32 : 4) * CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX // Example read FIFO every 1ms, so it should be 8 times larger for HS device
// EP and buffer size - for isochronous EP´s, the buffer and EP size are equal (different sizes would not make sense)
#define CFG_TUD_AUDIO_ENABLE_EP_OUT 1
@@ -154,8 +154,8 @@ extern "C" {
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_OUT TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_1_N_BYTES_PER_SAMPLE_RX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX)
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_OUT TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_RX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX)
#define CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ TU_MAX(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_OUT, CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_OUT)
#define CFG_TUD_AUDIO_FUNC_1_EP_OUT_SZ_MAX TU_MAX(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_OUT, CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_OUT) // Maximum EP IN size for all AS alternate settings used
#define CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ (TUD_OPT_HIGH_SPEED ? 32 : 4) * CFG_TUD_AUDIO_FUNC_1_EP_OUT_SZ_MAX // Example read FIFO every 1ms, so it should be 8 times larger for HS device
// Number of Standard AS Interface Descriptors (4.9.1) defined per audio function - this is required to be able to remember the current alternate settings of these interfaces - We restrict us here to have a constant number for all audio functions (which means this has to be the maximum number of AS interfaces an audio function has and a second audio function with less AS interfaces just wastes a few bytes)
#define CFG_TUD_AUDIO_FUNC_1_N_AS_INT 2
@@ -164,8 +164,11 @@ extern "C" {
#define CFG_TUD_AUDIO_FUNC_1_CTRL_BUF_SZ 64
// CDC FIFO size of TX and RX
#define CFG_TUD_CDC_RX_BUFSIZE 64
#define CFG_TUD_CDC_TX_BUFSIZE 64
#define CFG_TUD_CDC_RX_BUFSIZE (TUD_OPT_HIGH_SPEED ? 512 : 64)
#define CFG_TUD_CDC_TX_BUFSIZE (TUD_OPT_HIGH_SPEED ? 512 : 64)
// CDC Endpoint transfer buffer size, more is faster
#define CFG_TUD_CDC_EP_BUFSIZE (TUD_OPT_HIGH_SPEED ? 512 : 64)
#ifdef __cplusplus
}

View File

@@ -49,17 +49,36 @@ uint32_t blink_interval_ms = BLINK_NOT_MOUNTED;
int8_t mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1]; // +1 for master channel 0
int16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1]; // +1 for master channel 0
// Buffer for microphone data
int32_t mic_buf[CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ / 4];
// Buffer for speaker data
int32_t spk_buf[CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ / 4];
// Speaker data size received in the last frame
int spk_data_size;
uint16_t spk_data_size;
// Resolution per format
const uint8_t resolutions_per_format[CFG_TUD_AUDIO_FUNC_1_N_FORMATS] = {CFG_TUD_AUDIO_FUNC_1_FORMAT_1_RESOLUTION_RX};
// Current resolution, update on format change
uint8_t current_resolution;
//--------------------------------------------------------------------+
// AUDIO Task
//--------------------------------------------------------------------+
// This task simulates an audio transfer callback, one frame is sent/received every 1ms.
// In a real application, this would be replaced with actual I2S send/receive callback.
void audio_task(void) {
static uint32_t start_ms = 0;
uint32_t curr_ms = board_millis();
if (start_ms == curr_ms) return;// not enough time
start_ms = curr_ms;
// When new data arrived, copy data from speaker buffer, to microphone buffer
// and send it over
// Only support speaker & headphone both have the same resolution
// If one is 16bit another is 24bit be care of LOUD noise !
spk_data_size = tud_audio_read(spk_buf, sizeof(spk_buf));
if (spk_data_size) {
tud_audio_write((uint8_t *) spk_buf, spk_data_size);
}
}
// Helper for clock get requests
static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t const *request)
{
@@ -265,8 +284,6 @@ bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const * p_reque
blink_interval_ms = BLINK_STREAMING;
}
// Clear buffer when streaming format is changed
spk_data_size = 0;
if(alt != 0)
{
current_resolution = resolutions_per_format[alt-1];
@@ -275,30 +292,6 @@ bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const * p_reque
return true;
}
bool tud_audio_rx_done_pre_read_cb(uint8_t rhport, uint16_t n_bytes_received, uint8_t func_id, uint8_t ep_out, uint8_t cur_alt_setting)
{
(void)rhport;
(void)func_id;
(void)ep_out;
(void)cur_alt_setting;
spk_data_size = tud_audio_read(spk_buf, n_bytes_received);
tud_audio_write(spk_buf, n_bytes_received);
return true;
}
bool tud_audio_tx_done_pre_load_cb(uint8_t rhport, uint8_t itf, uint8_t ep_in, uint8_t cur_alt_setting)
{
(void)rhport;
(void)itf;
(void)ep_in;
(void)cur_alt_setting;
// This callback could be used to fill microphone data separately
return true;
}
//--------------------------------------------------------------------+
// BLINKING TASK
//--------------------------------------------------------------------+

View File

@@ -116,7 +116,7 @@ uint8_t const * tud_descriptor_device_cb(void)
#define EPNUM_CDC_IN 0x84
#endif
uint8_t const desc_configuration[] =
uint8_t const desc_fs_configuration[] =
{
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
@@ -128,13 +128,78 @@ uint8_t const desc_configuration[] =
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC, 6, EPNUM_CDC_NOTIF, 8, EPNUM_CDC_OUT, EPNUM_CDC_IN, 64)
};
#if TUD_OPT_HIGH_SPEED
// Per USB specs: high speed capable device must report device_qualifier and other_speed_configuration
// high speed configuration
uint8_t const desc_hs_configuration[] = {
// Config number, interface count, string index, total length, attribute, power in mA
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0x00, 100),
// Interface number, string index, EP Out & EP In address, EP size
TUD_AUDIO_HEADSET_STEREO_DESCRIPTOR(2, EPNUM_AUDIO_OUT, EPNUM_AUDIO_IN | 0x80),
// CDC: Interface number, string index, EP notification address and size, EP data address (out, in) and size.
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC, 6, EPNUM_CDC_NOTIF, 8, EPNUM_CDC_OUT, EPNUM_CDC_IN, 512)
};
// other speed configuration
uint8_t desc_other_speed_config[CONFIG_TOTAL_LEN];
// device qualifier is mostly similar to device descriptor since we don't change configuration based on speed
tusb_desc_device_qualifier_t const desc_device_qualifier = {
.bLength = sizeof(tusb_desc_device_qualifier_t),
.bDescriptorType = TUSB_DESC_DEVICE_QUALIFIER,
.bcdUSB = 0x0100,
.bDeviceClass = TUSB_CLASS_MISC,
.bDeviceSubClass = MISC_SUBCLASS_COMMON,
.bDeviceProtocol = MISC_PROTOCOL_IAD,
.bMaxPacketSize0 = CFG_TUD_ENDPOINT0_SIZE,
.bNumConfigurations = 0x01,
.bReserved = 0x00
};
// Invoked when received GET DEVICE QUALIFIER DESCRIPTOR request
// Application return pointer to descriptor, whose contents must exist long enough for transfer to complete.
// device_qualifier descriptor describes information about a high-speed capable device that would
// change if the device were operating at the other speed. If not highspeed capable stall this request.
uint8_t const *tud_descriptor_device_qualifier_cb(void) {
return (uint8_t const *) &desc_device_qualifier;
}
// Invoked when received GET OTHER SEED CONFIGURATION DESCRIPTOR request
// Application return pointer to descriptor, whose contents must exist long enough for transfer to complete
// Configuration descriptor in the other speed e.g if high speed then this is for full speed and vice versa
uint8_t const *tud_descriptor_other_speed_configuration_cb(uint8_t index) {
(void) index; // for multiple configurations
// if link speed is high return fullspeed config, and vice versa
// Note: the descriptor type is OHER_SPEED_CONFIG instead of CONFIG
memcpy(desc_other_speed_config,
(tud_speed_get() == TUSB_SPEED_HIGH) ? desc_fs_configuration : desc_hs_configuration,
CONFIG_TOTAL_LEN);
desc_other_speed_config[1] = TUSB_DESC_OTHER_SPEED_CONFIG;
return desc_other_speed_config;
}
#endif // highspeed
// Invoked when received GET CONFIGURATION DESCRIPTOR
// Application return pointer to descriptor
// Descriptor contents must exist long enough for transfer to complete
uint8_t const * tud_descriptor_configuration_cb(uint8_t index)
{
(void)index; // for multiple configurations
return desc_configuration;
#if TUD_OPT_HIGH_SPEED
// Although we are highspeed, host may be fullspeed.
return (tud_speed_get() == TUSB_SPEED_HIGH) ? desc_hs_configuration : desc_fs_configuration;
#else
return desc_fs_configuration;
#endif
}
//--------------------------------------------------------------------+

View File

@@ -37,9 +37,9 @@
// List of supported sample rates
const uint32_t sample_rates[] = {44100, 48000};
uint32_t current_sample_rate = 44100;
uint32_t current_sample_rate = 44100;
#define N_SAMPLE_RATES TU_ARRAY_SIZE(sample_rates)
#define N_SAMPLE_RATES TU_ARRAY_SIZE(sample_rates)
/* Blink pattern
* - 25 ms : streaming data
@@ -47,16 +47,14 @@ uint32_t current_sample_rate = 44100;
* - 1000 ms : device mounted
* - 2500 ms : device is suspended
*/
enum
{
enum {
BLINK_STREAMING = 25,
BLINK_NOT_MOUNTED = 250,
BLINK_MOUNTED = 1000,
BLINK_SUSPENDED = 2500,
};
enum
{
enum {
VOLUME_CTRL_0_DB = 0,
VOLUME_CTRL_10_DB = 2560,
VOLUME_CTRL_20_DB = 5120,
@@ -75,8 +73,8 @@ static uint32_t blink_interval_ms = BLINK_NOT_MOUNTED;
// Audio controls
// Current states
int8_t mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1]; // +1 for master channel 0
int16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1]; // +1 for master channel 0
int8_t mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1]; // +1 for master channel 0
int16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1];// +1 for master channel 0
// Buffer for microphone data
int32_t mic_buf[CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ / 4];
@@ -95,15 +93,13 @@ void audio_task(void);
void audio_control_task(void);
/*------------- MAIN -------------*/
int main(void)
{
int main(void) {
board_init();
// init device stack on configured roothub port
tusb_rhport_init_t dev_init = {
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO
};
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO};
tusb_init(BOARD_TUD_RHPORT, &dev_init);
if (board_init_after_tusb) {
@@ -112,9 +108,8 @@ int main(void)
TU_LOG1("Headset running\r\n");
while (1)
{
tud_task(); // TinyUSB device task
while (1) {
tud_task();// TinyUSB device task
audio_task();
audio_control_task();
led_blinking_task();
@@ -126,70 +121,57 @@ int main(void)
//--------------------------------------------------------------------+
// Invoked when device is mounted
void tud_mount_cb(void)
{
void tud_mount_cb(void) {
blink_interval_ms = BLINK_MOUNTED;
}
// Invoked when device is unmounted
void tud_umount_cb(void)
{
void tud_umount_cb(void) {
blink_interval_ms = BLINK_NOT_MOUNTED;
}
// Invoked when usb bus is suspended
// remote_wakeup_en : if host allow us to perform remote wakeup
// Within 7ms, device must draw an average of current less than 2.5 mA from bus
void tud_suspend_cb(bool remote_wakeup_en)
{
(void)remote_wakeup_en;
void tud_suspend_cb(bool remote_wakeup_en) {
(void) remote_wakeup_en;
blink_interval_ms = BLINK_SUSPENDED;
}
// Invoked when usb bus is resumed
void tud_resume_cb(void)
{
void tud_resume_cb(void) {
blink_interval_ms = tud_mounted() ? BLINK_MOUNTED : BLINK_NOT_MOUNTED;
}
// Helper for clock get requests
static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t const *request)
{
static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t const *request) {
TU_ASSERT(request->bEntityID == UAC2_ENTITY_CLOCK);
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ)
{
if (request->bRequest == AUDIO_CS_REQ_CUR)
{
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ) {
if (request->bRequest == AUDIO_CS_REQ_CUR) {
TU_LOG1("Clock get current freq %" PRIu32 "\r\n", current_sample_rate);
audio_control_cur_4_t curf = { (int32_t) tu_htole32(current_sample_rate) };
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &curf, sizeof(curf));
}
else if (request->bRequest == AUDIO_CS_REQ_RANGE)
{
audio_control_cur_4_t curf = {(int32_t) tu_htole32(current_sample_rate)};
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &curf, sizeof(curf));
} else if (request->bRequest == AUDIO_CS_REQ_RANGE) {
audio_control_range_4_n_t(N_SAMPLE_RATES) rangef =
{
.wNumSubRanges = tu_htole16(N_SAMPLE_RATES)
};
{
.wNumSubRanges = tu_htole16(N_SAMPLE_RATES)};
TU_LOG1("Clock get %d freq ranges\r\n", N_SAMPLE_RATES);
for(uint8_t i = 0; i < N_SAMPLE_RATES; i++)
{
for (uint8_t i = 0; i < N_SAMPLE_RATES; i++) {
rangef.subrange[i].bMin = (int32_t) sample_rates[i];
rangef.subrange[i].bMax = (int32_t) sample_rates[i];
rangef.subrange[i].bRes = 0;
TU_LOG1("Range %d (%d, %d, %d)\r\n", i, (int)rangef.subrange[i].bMin, (int)rangef.subrange[i].bMax, (int)rangef.subrange[i].bRes);
TU_LOG1("Range %d (%d, %d, %d)\r\n", i, (int) rangef.subrange[i].bMin, (int) rangef.subrange[i].bMax, (int) rangef.subrange[i].bRes);
}
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &rangef, sizeof(rangef));
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &rangef, sizeof(rangef));
}
}
else if (request->bControlSelector == AUDIO_CS_CTRL_CLK_VALID &&
request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_1_t cur_valid = { .bCur = 1 };
} else if (request->bControlSelector == AUDIO_CS_CTRL_CLK_VALID &&
request->bRequest == AUDIO_CS_REQ_CUR) {
audio_control_cur_1_t cur_valid = {.bCur = 1};
TU_LOG1("Clock get is valid %u\r\n", cur_valid.bCur);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &cur_valid, sizeof(cur_valid));
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &cur_valid, sizeof(cur_valid));
}
TU_LOG1("Clock get request not supported, entity = %u, selector = %u, request = %u\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
@@ -197,25 +179,21 @@ static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t
}
// Helper for clock set requests
static bool tud_audio_clock_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf)
{
(void)rhport;
static bool tud_audio_clock_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf) {
(void) rhport;
TU_ASSERT(request->bEntityID == UAC2_ENTITY_CLOCK);
TU_VERIFY(request->bRequest == AUDIO_CS_REQ_CUR);
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ)
{
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ) {
TU_VERIFY(request->wLength == sizeof(audio_control_cur_4_t));
current_sample_rate = (uint32_t) ((audio_control_cur_4_t const *)buf)->bCur;
current_sample_rate = (uint32_t) ((audio_control_cur_4_t const *) buf)->bCur;
TU_LOG1("Clock set current freq: %" PRIu32 "\r\n", current_sample_rate);
return true;
}
else
{
} else {
TU_LOG1("Clock set request not supported, entity = %u, selector = %u, request = %u\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
return false;
@@ -223,33 +201,25 @@ static bool tud_audio_clock_set_request(uint8_t rhport, audio_control_request_t
}
// Helper for feature unit get requests
static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_request_t const *request)
{
static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_request_t const *request) {
TU_ASSERT(request->bEntityID == UAC2_ENTITY_SPK_FEATURE_UNIT);
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE && request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_1_t mute1 = { .bCur = mute[request->bChannelNumber] };
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE && request->bRequest == AUDIO_CS_REQ_CUR) {
audio_control_cur_1_t mute1 = {.bCur = mute[request->bChannelNumber]};
TU_LOG1("Get channel %u mute %d\r\n", request->bChannelNumber, mute1.bCur);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &mute1, sizeof(mute1));
}
else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME)
{
if (request->bRequest == AUDIO_CS_REQ_RANGE)
{
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &mute1, sizeof(mute1));
} else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME) {
if (request->bRequest == AUDIO_CS_REQ_RANGE) {
audio_control_range_2_n_t(1) range_vol = {
.wNumSubRanges = tu_htole16(1),
.subrange[0] = { .bMin = tu_htole16(-VOLUME_CTRL_50_DB), tu_htole16(VOLUME_CTRL_0_DB), tu_htole16(256) }
};
.wNumSubRanges = tu_htole16(1),
.subrange[0] = {.bMin = tu_htole16(-VOLUME_CTRL_50_DB), tu_htole16(VOLUME_CTRL_0_DB), tu_htole16(256)}};
TU_LOG1("Get channel %u volume range (%d, %d, %u) dB\r\n", request->bChannelNumber,
range_vol.subrange[0].bMin / 256, range_vol.subrange[0].bMax / 256, range_vol.subrange[0].bRes / 256);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &range_vol, sizeof(range_vol));
}
else if (request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_2_t cur_vol = { .bCur = tu_htole16(volume[request->bChannelNumber]) };
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &range_vol, sizeof(range_vol));
} else if (request->bRequest == AUDIO_CS_REQ_CUR) {
audio_control_cur_2_t cur_vol = {.bCur = tu_htole16(volume[request->bChannelNumber])};
TU_LOG1("Get channel %u volume %d dB\r\n", request->bChannelNumber, cur_vol.bCur / 256);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &cur_vol, sizeof(cur_vol));
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &cur_vol, sizeof(cur_vol));
}
}
TU_LOG1("Feature unit get request not supported, entity = %u, selector = %u, request = %u\r\n",
@@ -259,35 +229,29 @@ static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_req
}
// Helper for feature unit set requests
static bool tud_audio_feature_unit_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf)
{
(void)rhport;
static bool tud_audio_feature_unit_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf) {
(void) rhport;
TU_ASSERT(request->bEntityID == UAC2_ENTITY_SPK_FEATURE_UNIT);
TU_VERIFY(request->bRequest == AUDIO_CS_REQ_CUR);
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE)
{
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE) {
TU_VERIFY(request->wLength == sizeof(audio_control_cur_1_t));
mute[request->bChannelNumber] = ((audio_control_cur_1_t const *)buf)->bCur;
mute[request->bChannelNumber] = ((audio_control_cur_1_t const *) buf)->bCur;
TU_LOG1("Set channel %d Mute: %d\r\n", request->bChannelNumber, mute[request->bChannelNumber]);
return true;
}
else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME)
{
} else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME) {
TU_VERIFY(request->wLength == sizeof(audio_control_cur_2_t));
volume[request->bChannelNumber] = ((audio_control_cur_2_t const *)buf)->bCur;
volume[request->bChannelNumber] = ((audio_control_cur_2_t const *) buf)->bCur;
TU_LOG1("Set channel %d volume: %d dB\r\n", request->bChannelNumber, volume[request->bChannelNumber] / 256);
return true;
}
else
{
} else {
TU_LOG1("Feature unit set request not supported, entity = %u, selector = %u, request = %u\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
return false;
@@ -299,16 +263,14 @@ static bool tud_audio_feature_unit_set_request(uint8_t rhport, audio_control_req
//--------------------------------------------------------------------+
// Invoked when audio class specific get request received for an entity
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request)
{
audio_control_request_t const *request = (audio_control_request_t const *)p_request;
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
audio_control_request_t const *request = (audio_control_request_t const *) p_request;
if (request->bEntityID == UAC2_ENTITY_CLOCK)
return tud_audio_clock_get_request(rhport, request);
if (request->bEntityID == UAC2_ENTITY_SPK_FEATURE_UNIT)
return tud_audio_feature_unit_get_request(rhport, request);
else
{
else {
TU_LOG1("Get request not handled, entity = %d, selector = %d, request = %d\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
}
@@ -316,9 +278,8 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p
}
// Invoked when audio class specific set request received for an entity
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *buf)
{
audio_control_request_t const *request = (audio_control_request_t const *)p_request;
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *buf) {
audio_control_request_t const *request = (audio_control_request_t const *) p_request;
if (request->bEntityID == UAC2_ENTITY_SPK_FEATURE_UNIT)
return tud_audio_feature_unit_set_request(rhport, request, buf);
@@ -330,108 +291,82 @@ bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p
return false;
}
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void)rhport;
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
uint8_t const itf = tu_u16_low(tu_le16toh(p_request->wIndex));
uint8_t const alt = tu_u16_low(tu_le16toh(p_request->wValue));
if (ITF_NUM_AUDIO_STREAMING_SPK == itf && alt == 0)
blink_interval_ms = BLINK_MOUNTED;
blink_interval_ms = BLINK_MOUNTED;
return true;
}
bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void)rhport;
bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
uint8_t const itf = tu_u16_low(tu_le16toh(p_request->wIndex));
uint8_t const alt = tu_u16_low(tu_le16toh(p_request->wValue));
TU_LOG2("Set interface %d alt %d\r\n", itf, alt);
if (ITF_NUM_AUDIO_STREAMING_SPK == itf && alt != 0)
blink_interval_ms = BLINK_STREAMING;
blink_interval_ms = BLINK_STREAMING;
// Clear buffer when streaming format is changed
spk_data_size = 0;
if(alt != 0)
{
current_resolution = resolutions_per_format[alt-1];
if (alt != 0) {
current_resolution = resolutions_per_format[alt - 1];
}
return true;
}
bool tud_audio_rx_done_pre_read_cb(uint8_t rhport, uint16_t n_bytes_received, uint8_t func_id, uint8_t ep_out, uint8_t cur_alt_setting)
{
(void)rhport;
(void)func_id;
(void)ep_out;
(void)cur_alt_setting;
spk_data_size = tud_audio_read(spk_buf, n_bytes_received);
return true;
}
bool tud_audio_tx_done_pre_load_cb(uint8_t rhport, uint8_t itf, uint8_t ep_in, uint8_t cur_alt_setting)
{
(void)rhport;
(void)itf;
(void)ep_in;
(void)cur_alt_setting;
// This callback could be used to fill microphone data separately
return true;
}
//--------------------------------------------------------------------+
// AUDIO Task
//--------------------------------------------------------------------+
void audio_task(void)
{
// This task simulates an audio transfer callback, one frame is sent/received every 1ms.
// In a real application, this would be replaced with actual I2S send/receive callback.
void audio_task(void) {
static uint32_t start_ms = 0;
uint32_t curr_ms = board_millis();
if (start_ms == curr_ms) return;// not enough time
start_ms = curr_ms;
// When new data arrived, copy data from speaker buffer, to microphone buffer
// and send it over
// Only support speaker & headphone both have the same resolution
// If one is 16bit another is 24bit be care of LOUD noise !
if (spk_data_size)
{
if (current_resolution == 16)
{
int16_t *src = (int16_t*)spk_buf;
int16_t *limit = (int16_t*)spk_buf + spk_data_size / 2;
int16_t *dst = (int16_t*)mic_buf;
while (src < limit)
{
spk_data_size = tud_audio_read(spk_buf, sizeof(spk_buf));
if (spk_data_size) {
if (current_resolution == 16) {
int16_t *src = (int16_t *) spk_buf;
int16_t *limit = (int16_t *) spk_buf + spk_data_size / 2;
int16_t *dst = (int16_t *) mic_buf;
while (src < limit) {
// Combine two channels into one
int32_t left = *src++;
int32_t right = *src++;
*dst++ = (int16_t) ((left >> 1) + (right >> 1));
}
tud_audio_write((uint8_t *)mic_buf, (uint16_t) (spk_data_size / 2));
tud_audio_write((uint8_t *) mic_buf, (uint16_t) (spk_data_size / 2));
spk_data_size = 0;
}
else if (current_resolution == 24)
{
} else if (current_resolution == 24) {
int32_t *src = spk_buf;
int32_t *limit = spk_buf + spk_data_size / 4;
int32_t *dst = mic_buf;
while (src < limit)
{
while (src < limit) {
// Combine two channels into one
int32_t left = *src++;
int32_t right = *src++;
*dst++ = (int32_t) ((uint32_t) ((left >> 1) + (right >> 1)) & 0xffffff00ul);
}
tud_audio_write((uint8_t *)mic_buf, (uint16_t) (spk_data_size / 2));
tud_audio_write((uint8_t *) mic_buf, (uint16_t) (spk_data_size / 2));
spk_data_size = 0;
}
}
}
void audio_control_task(void)
{
void audio_control_task(void) {
// Press on-board button to control volume
// Open host volume control, volume should switch between 10% and 100%
@@ -440,27 +375,25 @@ void audio_control_task(void)
static uint32_t start_ms = 0;
static uint32_t btn_prev = 0;
if ( board_millis() - start_ms < interval_ms) return; // not enough time
if (board_millis() - start_ms < interval_ms) return;// not enough time
start_ms += interval_ms;
uint32_t btn = board_button_read();
if (!btn_prev && btn)
{
if (!btn_prev && btn) {
// Adjust volume between 0dB (100%) and -30dB (10%)
for (int i = 0; i < CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1; i++)
{
for (int i = 0; i < CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1; i++) {
volume[i] = volume[i] == 0 ? -VOLUME_CTRL_30_DB : 0;
}
// 6.1 Interrupt Data Message
const audio_interrupt_data_t data = {
.bInfo = 0, // Class-specific interrupt, originated from an interface
.bAttribute = AUDIO_CS_REQ_CUR, // Caused by current settings
.wValue_cn_or_mcn = 0, // CH0: master volume
.wValue_cs = AUDIO_FU_CTRL_VOLUME, // Volume change
.wIndex_ep_or_int = 0, // From the interface itself
.wIndex_entity_id = UAC2_ENTITY_SPK_FEATURE_UNIT, // From feature unit
.bInfo = 0, // Class-specific interrupt, originated from an interface
.bAttribute = AUDIO_CS_REQ_CUR, // Caused by current settings
.wValue_cn_or_mcn = 0, // CH0: master volume
.wValue_cs = AUDIO_FU_CTRL_VOLUME, // Volume change
.wIndex_ep_or_int = 0, // From the interface itself
.wIndex_entity_id = UAC2_ENTITY_SPK_FEATURE_UNIT,// From feature unit
};
tud_audio_int_write(&data);
@@ -472,8 +405,7 @@ void audio_control_task(void)
//--------------------------------------------------------------------+
// BLINKING TASK
//--------------------------------------------------------------------+
void led_blinking_task(void)
{
void led_blinking_task(void) {
static uint32_t start_ms = 0;
static bool led_state = false;

View File

@@ -146,8 +146,8 @@ extern "C" {
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_IN TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_1_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX)
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_IN TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX)
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ TU_MAX(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_IN, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_IN)*4
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX TU_MAX(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_IN, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_IN) // Maximum EP IN size for all AS alternate settings used
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ (TUD_OPT_HIGH_SPEED ? 32 : 4) * CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX // Example read FIFO every 1ms, so it should be 8 times larger for HS device
// EP and buffer size - for isochronous EP´s, the buffer and EP size are equal (different sizes would not make sense)
#define CFG_TUD_AUDIO_ENABLE_EP_OUT 1
@@ -155,8 +155,8 @@ extern "C" {
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_OUT TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_1_N_BYTES_PER_SAMPLE_RX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX)
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_OUT TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_RX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX)
#define CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ TU_MAX(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_OUT, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_OUT)*2
#define CFG_TUD_AUDIO_FUNC_1_EP_OUT_SZ_MAX TU_MAX(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_OUT, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_OUT) // Maximum EP IN size for all AS alternate settings used
#define CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ (TUD_OPT_HIGH_SPEED ? 32 : 4) * CFG_TUD_AUDIO_FUNC_1_EP_OUT_SZ_MAX // Example read FIFO every 1ms, so it should be 8 times larger for HS device
// Number of Standard AS Interface Descriptors (4.9.1) defined per audio function - this is required to be able to remember the current alternate settings of these interfaces - We restrict us here to have a constant number for all audio functions (which means this has to be the maximum number of AS interfaces an audio function has and a second audio function with less AS interfaces just wastes a few bytes)
#define CFG_TUD_AUDIO_FUNC_1_N_AS_INT 2

View File

@@ -27,12 +27,12 @@
#include <string.h>
#include "bsp/board_api.h"
#include "common_types.h"
#include "tusb.h"
#include "usb_descriptors.h"
#include "common_types.h"
#ifdef CFG_QUIRK_OS_GUESSING
#include "quirk_os_guessing.h"
#include "quirk_os_guessing.h"
#endif
//--------------------------------------------------------------------+
@@ -41,14 +41,14 @@
// List of supported sample rates
#if defined(__RX__)
const uint32_t sample_rates[] = {44100, 48000};
const uint32_t sample_rates[] = {44100, 48000};
#else
const uint32_t sample_rates[] = {44100, 48000, 88200, 96000};
const uint32_t sample_rates[] = {44100, 48000, 88200, 96000};
#endif
uint32_t current_sample_rate = 44100;
uint32_t current_sample_rate = 44100;
#define N_SAMPLE_RATES TU_ARRAY_SIZE(sample_rates)
#define N_SAMPLE_RATES TU_ARRAY_SIZE(sample_rates)
/* Blink pattern
* - 25 ms : streaming data
@@ -56,16 +56,14 @@ uint32_t current_sample_rate = 44100;
* - 1000 ms : device mounted
* - 2500 ms : device is suspended
*/
enum
{
enum {
BLINK_STREAMING = 25,
BLINK_NOT_MOUNTED = 250,
BLINK_MOUNTED = 1000,
BLINK_SUSPENDED = 2500,
};
enum
{
enum {
VOLUME_CTRL_0_DB = 0,
VOLUME_CTRL_10_DB = 2560,
VOLUME_CTRL_20_DB = 5120,
@@ -84,11 +82,11 @@ static uint32_t blink_interval_ms = BLINK_NOT_MOUNTED;
// Audio controls
// Current states
int8_t mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1]; // +1 for master channel 0
int16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1]; // +1 for master channel 0
int8_t mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1]; // +1 for master channel 0
int16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1];// +1 for master channel 0
// Buffer for speaker data
uint16_t i2s_dummy_buffer[CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ/2];
uint16_t i2s_dummy_buffer[CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ / 2];
void led_blinking_task(void);
void audio_task(void);
@@ -96,20 +94,18 @@ void audio_task(void);
#if CFG_AUDIO_DEBUG
void audio_debug_task(void);
uint8_t current_alt_settings;
uint16_t fifo_count;
uint32_t fifo_count_avg;
volatile uint16_t fifo_count;
volatile uint32_t fifo_count_avg;
#endif
/*------------- MAIN -------------*/
int main(void)
{
int main(void) {
board_init();
// init device stack on configured roothub port
tusb_rhport_init_t dev_init = {
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO
};
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO};
tusb_init(BOARD_TUD_RHPORT, &dev_init);
if (board_init_after_tusb) {
@@ -118,9 +114,8 @@ int main(void)
TU_LOG1("Speaker running\r\n");
while (1)
{
tud_task(); // TinyUSB device task
while (1) {
tud_task();// TinyUSB device task
led_blinking_task();
#if CFG_AUDIO_DEBUG
audio_debug_task();
@@ -134,29 +129,25 @@ int main(void)
//--------------------------------------------------------------------+
// Invoked when device is mounted
void tud_mount_cb(void)
{
void tud_mount_cb(void) {
blink_interval_ms = BLINK_MOUNTED;
}
// Invoked when device is unmounted
void tud_umount_cb(void)
{
void tud_umount_cb(void) {
blink_interval_ms = BLINK_NOT_MOUNTED;
}
// Invoked when usb bus is suspended
// remote_wakeup_en : if host allow us to perform remote wakeup
// Within 7ms, device must draw an average of current less than 2.5 mA from bus
void tud_suspend_cb(bool remote_wakeup_en)
{
(void)remote_wakeup_en;
void tud_suspend_cb(bool remote_wakeup_en) {
(void) remote_wakeup_en;
blink_interval_ms = BLINK_SUSPENDED;
}
// Invoked when usb bus is resumed
void tud_resume_cb(void)
{
void tud_resume_cb(void) {
blink_interval_ms = tud_mounted() ? BLINK_MOUNTED : BLINK_NOT_MOUNTED;
}
@@ -165,43 +156,34 @@ void tud_resume_cb(void)
//--------------------------------------------------------------------+
// Helper for clock get requests
static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t const *request)
{
static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t const *request) {
TU_ASSERT(request->bEntityID == UAC2_ENTITY_CLOCK);
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ)
{
if (request->bRequest == AUDIO_CS_REQ_CUR)
{
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ) {
if (request->bRequest == AUDIO_CS_REQ_CUR) {
TU_LOG1("Clock get current freq %lu\r\n", current_sample_rate);
audio_control_cur_4_t curf = { (int32_t) tu_htole32(current_sample_rate) };
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &curf, sizeof(curf));
}
else if (request->bRequest == AUDIO_CS_REQ_RANGE)
{
audio_control_cur_4_t curf = {(int32_t) tu_htole32(current_sample_rate)};
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &curf, sizeof(curf));
} else if (request->bRequest == AUDIO_CS_REQ_RANGE) {
audio_control_range_4_n_t(N_SAMPLE_RATES) rangef =
{
.wNumSubRanges = tu_htole16(N_SAMPLE_RATES)
};
{
.wNumSubRanges = tu_htole16(N_SAMPLE_RATES)};
TU_LOG1("Clock get %d freq ranges\r\n", N_SAMPLE_RATES);
for(uint8_t i = 0; i < N_SAMPLE_RATES; i++)
{
for (uint8_t i = 0; i < N_SAMPLE_RATES; i++) {
rangef.subrange[i].bMin = (int32_t) sample_rates[i];
rangef.subrange[i].bMax = (int32_t) sample_rates[i];
rangef.subrange[i].bRes = 0;
TU_LOG1("Range %d (%d, %d, %d)\r\n", i, (int)rangef.subrange[i].bMin, (int)rangef.subrange[i].bMax, (int)rangef.subrange[i].bRes);
TU_LOG1("Range %d (%d, %d, %d)\r\n", i, (int) rangef.subrange[i].bMin, (int) rangef.subrange[i].bMax, (int) rangef.subrange[i].bRes);
}
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &rangef, sizeof(rangef));
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &rangef, sizeof(rangef));
}
}
else if (request->bControlSelector == AUDIO_CS_CTRL_CLK_VALID &&
request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_1_t cur_valid = { .bCur = 1 };
} else if (request->bControlSelector == AUDIO_CS_CTRL_CLK_VALID &&
request->bRequest == AUDIO_CS_REQ_CUR) {
audio_control_cur_1_t cur_valid = {.bCur = 1};
TU_LOG1("Clock get is valid %u\r\n", cur_valid.bCur);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &cur_valid, sizeof(cur_valid));
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &cur_valid, sizeof(cur_valid));
}
TU_LOG1("Clock get request not supported, entity = %u, selector = %u, request = %u\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
@@ -209,25 +191,21 @@ static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t
}
// Helper for clock set requests
static bool tud_audio_clock_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf)
{
(void)rhport;
static bool tud_audio_clock_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf) {
(void) rhport;
TU_ASSERT(request->bEntityID == UAC2_ENTITY_CLOCK);
TU_VERIFY(request->bRequest == AUDIO_CS_REQ_CUR);
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ)
{
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ) {
TU_VERIFY(request->wLength == sizeof(audio_control_cur_4_t));
current_sample_rate = (uint32_t) ((audio_control_cur_4_t const *)buf)->bCur;
current_sample_rate = (uint32_t) ((audio_control_cur_4_t const *) buf)->bCur;
TU_LOG1("Clock set current freq: %ld\r\n", current_sample_rate);
return true;
}
else
{
} else {
TU_LOG1("Clock set request not supported, entity = %u, selector = %u, request = %u\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
return false;
@@ -235,33 +213,25 @@ static bool tud_audio_clock_set_request(uint8_t rhport, audio_control_request_t
}
// Helper for feature unit get requests
static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_request_t const *request)
{
static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_request_t const *request) {
TU_ASSERT(request->bEntityID == UAC2_ENTITY_FEATURE_UNIT);
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE && request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_1_t mute1 = { .bCur = mute[request->bChannelNumber] };
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE && request->bRequest == AUDIO_CS_REQ_CUR) {
audio_control_cur_1_t mute1 = {.bCur = mute[request->bChannelNumber]};
TU_LOG1("Get channel %u mute %d\r\n", request->bChannelNumber, mute1.bCur);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &mute1, sizeof(mute1));
}
else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME)
{
if (request->bRequest == AUDIO_CS_REQ_RANGE)
{
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &mute1, sizeof(mute1));
} else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME) {
if (request->bRequest == AUDIO_CS_REQ_RANGE) {
audio_control_range_2_n_t(1) range_vol = {
.wNumSubRanges = tu_htole16(1),
.subrange[0] = { .bMin = tu_htole16(-VOLUME_CTRL_50_DB), tu_htole16(VOLUME_CTRL_0_DB), tu_htole16(256) }
};
.wNumSubRanges = tu_htole16(1),
.subrange[0] = {.bMin = tu_htole16(-VOLUME_CTRL_50_DB), tu_htole16(VOLUME_CTRL_0_DB), tu_htole16(256)}};
TU_LOG1("Get channel %u volume range (%d, %d, %u) dB\r\n", request->bChannelNumber,
range_vol.subrange[0].bMin / 256, range_vol.subrange[0].bMax / 256, range_vol.subrange[0].bRes / 256);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &range_vol, sizeof(range_vol));
}
else if (request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_2_t cur_vol = { .bCur = tu_htole16(volume[request->bChannelNumber]) };
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &range_vol, sizeof(range_vol));
} else if (request->bRequest == AUDIO_CS_REQ_CUR) {
audio_control_cur_2_t cur_vol = {.bCur = tu_htole16(volume[request->bChannelNumber])};
TU_LOG1("Get channel %u volume %d dB\r\n", request->bChannelNumber, cur_vol.bCur / 256);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &cur_vol, sizeof(cur_vol));
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &cur_vol, sizeof(cur_vol));
}
}
TU_LOG1("Feature unit get request not supported, entity = %u, selector = %u, request = %u\r\n",
@@ -271,35 +241,29 @@ static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_req
}
// Helper for feature unit set requests
static bool tud_audio_feature_unit_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf)
{
(void)rhport;
static bool tud_audio_feature_unit_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf) {
(void) rhport;
TU_ASSERT(request->bEntityID == UAC2_ENTITY_FEATURE_UNIT);
TU_VERIFY(request->bRequest == AUDIO_CS_REQ_CUR);
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE)
{
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE) {
TU_VERIFY(request->wLength == sizeof(audio_control_cur_1_t));
mute[request->bChannelNumber] = ((audio_control_cur_1_t const *)buf)->bCur;
mute[request->bChannelNumber] = ((audio_control_cur_1_t const *) buf)->bCur;
TU_LOG1("Set channel %d Mute: %d\r\n", request->bChannelNumber, mute[request->bChannelNumber]);
return true;
}
else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME)
{
} else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME) {
TU_VERIFY(request->wLength == sizeof(audio_control_cur_2_t));
volume[request->bChannelNumber] = ((audio_control_cur_2_t const *)buf)->bCur;
volume[request->bChannelNumber] = ((audio_control_cur_2_t const *) buf)->bCur;
TU_LOG1("Set channel %d volume: %d dB\r\n", request->bChannelNumber, volume[request->bChannelNumber] / 256);
return true;
}
else
{
} else {
TU_LOG1("Feature unit set request not supported, entity = %u, selector = %u, request = %u\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
return false;
@@ -307,16 +271,14 @@ static bool tud_audio_feature_unit_set_request(uint8_t rhport, audio_control_req
}
// Invoked when audio class specific get request received for an entity
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request)
{
audio_control_request_t const *request = (audio_control_request_t const *)p_request;
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
audio_control_request_t const *request = (audio_control_request_t const *) p_request;
if (request->bEntityID == UAC2_ENTITY_CLOCK)
return tud_audio_clock_get_request(rhport, request);
if (request->bEntityID == UAC2_ENTITY_FEATURE_UNIT)
return tud_audio_feature_unit_get_request(rhport, request);
else
{
else {
TU_LOG1("Get request not handled, entity = %d, selector = %d, request = %d\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
}
@@ -324,9 +286,8 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p
}
// Invoked when audio class specific set request received for an entity
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *buf)
{
audio_control_request_t const *request = (audio_control_request_t const *)p_request;
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *buf) {
audio_control_request_t const *request = (audio_control_request_t const *) p_request;
if (request->bEntityID == UAC2_ENTITY_FEATURE_UNIT)
return tud_audio_feature_unit_set_request(rhport, request, buf);
@@ -338,28 +299,26 @@ bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p
return false;
}
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void)rhport;
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
uint8_t const itf = tu_u16_low(tu_le16toh(p_request->wIndex));
uint8_t const alt = tu_u16_low(tu_le16toh(p_request->wValue));
if (ITF_NUM_AUDIO_STREAMING == itf && alt == 0)
blink_interval_ms = BLINK_MOUNTED;
blink_interval_ms = BLINK_MOUNTED;
return true;
}
bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void)rhport;
bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
uint8_t const itf = tu_u16_low(tu_le16toh(p_request->wIndex));
uint8_t const alt = tu_u16_low(tu_le16toh(p_request->wValue));
TU_LOG2("Set interface %d alt %d\r\n", itf, alt);
if (ITF_NUM_AUDIO_STREAMING == itf && alt != 0)
blink_interval_ms = BLINK_STREAMING;
blink_interval_ms = BLINK_STREAMING;
#if CFG_AUDIO_DEBUG
current_alt_settings = alt;
@@ -368,37 +327,34 @@ bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const * p_reque
return true;
}
void tud_audio_feedback_params_cb(uint8_t func_id, uint8_t alt_itf, audio_feedback_params_t* feedback_param)
{
(void)func_id;
(void)alt_itf;
void tud_audio_feedback_params_cb(uint8_t func_id, uint8_t alt_itf, audio_feedback_params_t *feedback_param) {
(void) func_id;
(void) alt_itf;
// Set feedback method to fifo counting
feedback_param->method = AUDIO_FEEDBACK_METHOD_FIFO_COUNT;
feedback_param->sample_freq = current_sample_rate;
}
#if CFG_AUDIO_DEBUG
bool tud_audio_rx_done_post_read_cb(uint8_t rhport, uint16_t n_bytes_received, uint8_t func_id, uint8_t ep_out, uint8_t cur_alt_setting)
{
(void)rhport;
(void)n_bytes_received;
(void)func_id;
(void)ep_out;
(void)cur_alt_setting;
bool tud_audio_rx_done_isr(uint8_t rhport, uint16_t n_bytes_received, uint8_t func_id, uint8_t ep_out, uint8_t cur_alt_setting) {
(void) rhport;
(void) n_bytes_received;
(void) func_id;
(void) ep_out;
(void) cur_alt_setting;
fifo_count = tud_audio_available();
// Same averaging method used in UAC2 class
fifo_count_avg = (uint32_t)(((uint64_t)fifo_count_avg * 63 + ((uint32_t)fifo_count << 16)) >> 6);
fifo_count_avg = (uint32_t) (((uint64_t) fifo_count_avg * 63 + ((uint32_t) fifo_count << 16)) >> 6);
return true;
}
#endif
#if CFG_QUIRK_OS_GUESSING
bool tud_audio_feedback_format_correction_cb(uint8_t func_id)
{
(void)func_id;
if(tud_speed_get() == TUSB_SPEED_FULL && quirk_os_guessing_get() == QUIRK_OS_GUESSING_OSX) {
bool tud_audio_feedback_format_correction_cb(uint8_t func_id) {
(void) func_id;
if (tud_speed_get() == TUSB_SPEED_FULL && quirk_os_guessing_get() == QUIRK_OS_GUESSING_OSX) {
return true;
} else {
return false;
@@ -409,25 +365,21 @@ bool tud_audio_feedback_format_correction_cb(uint8_t func_id)
// AUDIO Task
//--------------------------------------------------------------------+
void audio_task(void)
{
// Replace audio_task() with your I2S transmit callback.
// Here we simulate a callback called every 1ms.
// This task simulates an audio transmit callback, one frame is sent every 1ms.
// In a real application, this would be replaced with actual I2S transmit callback.
void audio_task(void) {
static uint32_t start_ms = 0;
uint32_t curr_ms = board_millis();
if ( start_ms == curr_ms ) return; // not enough time
if (start_ms == curr_ms) return;// not enough time
start_ms = curr_ms;
uint16_t length = (uint16_t) (current_sample_rate/1000 * CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_RX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX);
uint16_t length = (uint16_t) (current_sample_rate / 1000 * CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_RX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX);
if (current_sample_rate == 44100 && (curr_ms % 10 == 0))
{
if (current_sample_rate == 44100 && (curr_ms % 10 == 0)) {
// Take one more sample every 10 cycles, to have a average reading speed of 44.1
// This correction is not needed in real world cases
length += CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_RX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX;
} else
if (current_sample_rate == 88200 && (curr_ms % 5 == 0))
{
} else if (current_sample_rate == 88200 && (curr_ms % 5 == 0)) {
// Take one more sample every 5 cycles, to have a average reading speed of 88.2
// This correction is not needed in real world cases
length += CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_RX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX;
@@ -439,8 +391,7 @@ void audio_task(void)
//--------------------------------------------------------------------+
// BLINKING TASK
//--------------------------------------------------------------------+
void led_blinking_task(void)
{
void led_blinking_task(void) {
static uint32_t start_ms = 0;
static bool led_state = false;
@@ -457,33 +408,30 @@ void led_blinking_task(void)
// HID interface for audio debug
//--------------------------------------------------------------------+
// Every 1ms, we will sent 1 debug information report
void audio_debug_task(void)
{
void audio_debug_task(void) {
static uint32_t start_ms = 0;
uint32_t curr_ms = board_millis();
if ( start_ms == curr_ms ) return; // not enough time
if (start_ms == curr_ms) return;// not enough time
start_ms = curr_ms;
audio_debug_info_t debug_info;
debug_info.sample_rate = current_sample_rate;
debug_info.alt_settings = current_alt_settings;
debug_info.fifo_size = CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ;
debug_info.fifo_count = fifo_count;
debug_info.sample_rate = current_sample_rate;
debug_info.alt_settings = current_alt_settings;
debug_info.fifo_size = CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ;
debug_info.fifo_count = fifo_count;
debug_info.fifo_count_avg = (uint16_t) (fifo_count_avg >> 16);
for (int i = 0; i < CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1; i++)
{
for (int i = 0; i < CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1; i++) {
debug_info.mute[i] = mute[i];
debug_info.volume[i] = volume[i];
}
if(tud_hid_ready())
if (tud_hid_ready())
tud_hid_report(0, &debug_info, sizeof(debug_info));
}
// Invoked when received GET_REPORT control request
// Unused here
uint16_t tud_hid_get_report_cb(uint8_t itf, uint8_t report_id, hid_report_type_t report_type, uint8_t* buffer, uint16_t reqlen)
{
uint16_t tud_hid_get_report_cb(uint8_t itf, uint8_t report_id, hid_report_type_t report_type, uint8_t *buffer, uint16_t reqlen) {
// TODO not Implemented
(void) itf;
(void) report_id;
@@ -496,8 +444,7 @@ uint16_t tud_hid_get_report_cb(uint8_t itf, uint8_t report_id, hid_report_type_t
// Invoked when received SET_REPORT control request or
// Unused here
void tud_hid_set_report_cb(uint8_t itf, uint8_t report_id, hid_report_type_t report_type, uint8_t const* buffer, uint16_t bufsize)
{
void tud_hid_set_report_cb(uint8_t itf, uint8_t report_id, hid_report_type_t report_type, uint8_t const *buffer, uint16_t bufsize) {
// This example doesn't use multiple report and report ID
(void) itf;
(void) report_id;