audio: update examples

Signed-off-by: HiFiPhile <admin@hifiphile.com>
This commit is contained in:
HiFiPhile
2025-06-14 19:37:10 +02:00
parent 19b5ec5fd9
commit 545690c834
18 changed files with 839 additions and 1120 deletions

View File

@@ -37,9 +37,9 @@
// List of supported sample rates
const uint32_t sample_rates[] = {44100, 48000};
uint32_t current_sample_rate = 44100;
uint32_t current_sample_rate = 44100;
#define N_SAMPLE_RATES TU_ARRAY_SIZE(sample_rates)
#define N_SAMPLE_RATES TU_ARRAY_SIZE(sample_rates)
/* Blink pattern
* - 25 ms : streaming data
@@ -47,16 +47,14 @@ uint32_t current_sample_rate = 44100;
* - 1000 ms : device mounted
* - 2500 ms : device is suspended
*/
enum
{
enum {
BLINK_STREAMING = 25,
BLINK_NOT_MOUNTED = 250,
BLINK_MOUNTED = 1000,
BLINK_SUSPENDED = 2500,
};
enum
{
enum {
VOLUME_CTRL_0_DB = 0,
VOLUME_CTRL_10_DB = 2560,
VOLUME_CTRL_20_DB = 5120,
@@ -75,8 +73,8 @@ static uint32_t blink_interval_ms = BLINK_NOT_MOUNTED;
// Audio controls
// Current states
int8_t mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1]; // +1 for master channel 0
int16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1]; // +1 for master channel 0
int8_t mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1]; // +1 for master channel 0
int16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1];// +1 for master channel 0
// Buffer for microphone data
int32_t mic_buf[CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ / 4];
@@ -95,15 +93,13 @@ void audio_task(void);
void audio_control_task(void);
/*------------- MAIN -------------*/
int main(void)
{
int main(void) {
board_init();
// init device stack on configured roothub port
tusb_rhport_init_t dev_init = {
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO
};
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO};
tusb_init(BOARD_TUD_RHPORT, &dev_init);
if (board_init_after_tusb) {
@@ -112,9 +108,8 @@ int main(void)
TU_LOG1("Headset running\r\n");
while (1)
{
tud_task(); // TinyUSB device task
while (1) {
tud_task();// TinyUSB device task
audio_task();
audio_control_task();
led_blinking_task();
@@ -126,70 +121,57 @@ int main(void)
//--------------------------------------------------------------------+
// Invoked when device is mounted
void tud_mount_cb(void)
{
void tud_mount_cb(void) {
blink_interval_ms = BLINK_MOUNTED;
}
// Invoked when device is unmounted
void tud_umount_cb(void)
{
void tud_umount_cb(void) {
blink_interval_ms = BLINK_NOT_MOUNTED;
}
// Invoked when usb bus is suspended
// remote_wakeup_en : if host allow us to perform remote wakeup
// Within 7ms, device must draw an average of current less than 2.5 mA from bus
void tud_suspend_cb(bool remote_wakeup_en)
{
(void)remote_wakeup_en;
void tud_suspend_cb(bool remote_wakeup_en) {
(void) remote_wakeup_en;
blink_interval_ms = BLINK_SUSPENDED;
}
// Invoked when usb bus is resumed
void tud_resume_cb(void)
{
void tud_resume_cb(void) {
blink_interval_ms = tud_mounted() ? BLINK_MOUNTED : BLINK_NOT_MOUNTED;
}
// Helper for clock get requests
static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t const *request)
{
static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t const *request) {
TU_ASSERT(request->bEntityID == UAC2_ENTITY_CLOCK);
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ)
{
if (request->bRequest == AUDIO_CS_REQ_CUR)
{
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ) {
if (request->bRequest == AUDIO_CS_REQ_CUR) {
TU_LOG1("Clock get current freq %" PRIu32 "\r\n", current_sample_rate);
audio_control_cur_4_t curf = { (int32_t) tu_htole32(current_sample_rate) };
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &curf, sizeof(curf));
}
else if (request->bRequest == AUDIO_CS_REQ_RANGE)
{
audio_control_cur_4_t curf = {(int32_t) tu_htole32(current_sample_rate)};
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &curf, sizeof(curf));
} else if (request->bRequest == AUDIO_CS_REQ_RANGE) {
audio_control_range_4_n_t(N_SAMPLE_RATES) rangef =
{
.wNumSubRanges = tu_htole16(N_SAMPLE_RATES)
};
{
.wNumSubRanges = tu_htole16(N_SAMPLE_RATES)};
TU_LOG1("Clock get %d freq ranges\r\n", N_SAMPLE_RATES);
for(uint8_t i = 0; i < N_SAMPLE_RATES; i++)
{
for (uint8_t i = 0; i < N_SAMPLE_RATES; i++) {
rangef.subrange[i].bMin = (int32_t) sample_rates[i];
rangef.subrange[i].bMax = (int32_t) sample_rates[i];
rangef.subrange[i].bRes = 0;
TU_LOG1("Range %d (%d, %d, %d)\r\n", i, (int)rangef.subrange[i].bMin, (int)rangef.subrange[i].bMax, (int)rangef.subrange[i].bRes);
TU_LOG1("Range %d (%d, %d, %d)\r\n", i, (int) rangef.subrange[i].bMin, (int) rangef.subrange[i].bMax, (int) rangef.subrange[i].bRes);
}
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &rangef, sizeof(rangef));
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &rangef, sizeof(rangef));
}
}
else if (request->bControlSelector == AUDIO_CS_CTRL_CLK_VALID &&
request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_1_t cur_valid = { .bCur = 1 };
} else if (request->bControlSelector == AUDIO_CS_CTRL_CLK_VALID &&
request->bRequest == AUDIO_CS_REQ_CUR) {
audio_control_cur_1_t cur_valid = {.bCur = 1};
TU_LOG1("Clock get is valid %u\r\n", cur_valid.bCur);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &cur_valid, sizeof(cur_valid));
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &cur_valid, sizeof(cur_valid));
}
TU_LOG1("Clock get request not supported, entity = %u, selector = %u, request = %u\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
@@ -197,25 +179,21 @@ static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t
}
// Helper for clock set requests
static bool tud_audio_clock_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf)
{
(void)rhport;
static bool tud_audio_clock_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf) {
(void) rhport;
TU_ASSERT(request->bEntityID == UAC2_ENTITY_CLOCK);
TU_VERIFY(request->bRequest == AUDIO_CS_REQ_CUR);
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ)
{
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ) {
TU_VERIFY(request->wLength == sizeof(audio_control_cur_4_t));
current_sample_rate = (uint32_t) ((audio_control_cur_4_t const *)buf)->bCur;
current_sample_rate = (uint32_t) ((audio_control_cur_4_t const *) buf)->bCur;
TU_LOG1("Clock set current freq: %" PRIu32 "\r\n", current_sample_rate);
return true;
}
else
{
} else {
TU_LOG1("Clock set request not supported, entity = %u, selector = %u, request = %u\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
return false;
@@ -223,33 +201,25 @@ static bool tud_audio_clock_set_request(uint8_t rhport, audio_control_request_t
}
// Helper for feature unit get requests
static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_request_t const *request)
{
static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_request_t const *request) {
TU_ASSERT(request->bEntityID == UAC2_ENTITY_SPK_FEATURE_UNIT);
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE && request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_1_t mute1 = { .bCur = mute[request->bChannelNumber] };
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE && request->bRequest == AUDIO_CS_REQ_CUR) {
audio_control_cur_1_t mute1 = {.bCur = mute[request->bChannelNumber]};
TU_LOG1("Get channel %u mute %d\r\n", request->bChannelNumber, mute1.bCur);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &mute1, sizeof(mute1));
}
else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME)
{
if (request->bRequest == AUDIO_CS_REQ_RANGE)
{
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &mute1, sizeof(mute1));
} else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME) {
if (request->bRequest == AUDIO_CS_REQ_RANGE) {
audio_control_range_2_n_t(1) range_vol = {
.wNumSubRanges = tu_htole16(1),
.subrange[0] = { .bMin = tu_htole16(-VOLUME_CTRL_50_DB), tu_htole16(VOLUME_CTRL_0_DB), tu_htole16(256) }
};
.wNumSubRanges = tu_htole16(1),
.subrange[0] = {.bMin = tu_htole16(-VOLUME_CTRL_50_DB), tu_htole16(VOLUME_CTRL_0_DB), tu_htole16(256)}};
TU_LOG1("Get channel %u volume range (%d, %d, %u) dB\r\n", request->bChannelNumber,
range_vol.subrange[0].bMin / 256, range_vol.subrange[0].bMax / 256, range_vol.subrange[0].bRes / 256);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &range_vol, sizeof(range_vol));
}
else if (request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_2_t cur_vol = { .bCur = tu_htole16(volume[request->bChannelNumber]) };
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &range_vol, sizeof(range_vol));
} else if (request->bRequest == AUDIO_CS_REQ_CUR) {
audio_control_cur_2_t cur_vol = {.bCur = tu_htole16(volume[request->bChannelNumber])};
TU_LOG1("Get channel %u volume %d dB\r\n", request->bChannelNumber, cur_vol.bCur / 256);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &cur_vol, sizeof(cur_vol));
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &cur_vol, sizeof(cur_vol));
}
}
TU_LOG1("Feature unit get request not supported, entity = %u, selector = %u, request = %u\r\n",
@@ -259,35 +229,29 @@ static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_req
}
// Helper for feature unit set requests
static bool tud_audio_feature_unit_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf)
{
(void)rhport;
static bool tud_audio_feature_unit_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf) {
(void) rhport;
TU_ASSERT(request->bEntityID == UAC2_ENTITY_SPK_FEATURE_UNIT);
TU_VERIFY(request->bRequest == AUDIO_CS_REQ_CUR);
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE)
{
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE) {
TU_VERIFY(request->wLength == sizeof(audio_control_cur_1_t));
mute[request->bChannelNumber] = ((audio_control_cur_1_t const *)buf)->bCur;
mute[request->bChannelNumber] = ((audio_control_cur_1_t const *) buf)->bCur;
TU_LOG1("Set channel %d Mute: %d\r\n", request->bChannelNumber, mute[request->bChannelNumber]);
return true;
}
else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME)
{
} else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME) {
TU_VERIFY(request->wLength == sizeof(audio_control_cur_2_t));
volume[request->bChannelNumber] = ((audio_control_cur_2_t const *)buf)->bCur;
volume[request->bChannelNumber] = ((audio_control_cur_2_t const *) buf)->bCur;
TU_LOG1("Set channel %d volume: %d dB\r\n", request->bChannelNumber, volume[request->bChannelNumber] / 256);
return true;
}
else
{
} else {
TU_LOG1("Feature unit set request not supported, entity = %u, selector = %u, request = %u\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
return false;
@@ -299,16 +263,14 @@ static bool tud_audio_feature_unit_set_request(uint8_t rhport, audio_control_req
//--------------------------------------------------------------------+
// Invoked when audio class specific get request received for an entity
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request)
{
audio_control_request_t const *request = (audio_control_request_t const *)p_request;
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
audio_control_request_t const *request = (audio_control_request_t const *) p_request;
if (request->bEntityID == UAC2_ENTITY_CLOCK)
return tud_audio_clock_get_request(rhport, request);
if (request->bEntityID == UAC2_ENTITY_SPK_FEATURE_UNIT)
return tud_audio_feature_unit_get_request(rhport, request);
else
{
else {
TU_LOG1("Get request not handled, entity = %d, selector = %d, request = %d\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
}
@@ -316,9 +278,8 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p
}
// Invoked when audio class specific set request received for an entity
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *buf)
{
audio_control_request_t const *request = (audio_control_request_t const *)p_request;
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *buf) {
audio_control_request_t const *request = (audio_control_request_t const *) p_request;
if (request->bEntityID == UAC2_ENTITY_SPK_FEATURE_UNIT)
return tud_audio_feature_unit_set_request(rhport, request, buf);
@@ -330,108 +291,82 @@ bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p
return false;
}
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void)rhport;
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
uint8_t const itf = tu_u16_low(tu_le16toh(p_request->wIndex));
uint8_t const alt = tu_u16_low(tu_le16toh(p_request->wValue));
if (ITF_NUM_AUDIO_STREAMING_SPK == itf && alt == 0)
blink_interval_ms = BLINK_MOUNTED;
blink_interval_ms = BLINK_MOUNTED;
return true;
}
bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void)rhport;
bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
uint8_t const itf = tu_u16_low(tu_le16toh(p_request->wIndex));
uint8_t const alt = tu_u16_low(tu_le16toh(p_request->wValue));
TU_LOG2("Set interface %d alt %d\r\n", itf, alt);
if (ITF_NUM_AUDIO_STREAMING_SPK == itf && alt != 0)
blink_interval_ms = BLINK_STREAMING;
blink_interval_ms = BLINK_STREAMING;
// Clear buffer when streaming format is changed
spk_data_size = 0;
if(alt != 0)
{
current_resolution = resolutions_per_format[alt-1];
if (alt != 0) {
current_resolution = resolutions_per_format[alt - 1];
}
return true;
}
bool tud_audio_rx_done_pre_read_cb(uint8_t rhport, uint16_t n_bytes_received, uint8_t func_id, uint8_t ep_out, uint8_t cur_alt_setting)
{
(void)rhport;
(void)func_id;
(void)ep_out;
(void)cur_alt_setting;
spk_data_size = tud_audio_read(spk_buf, n_bytes_received);
return true;
}
bool tud_audio_tx_done_pre_load_cb(uint8_t rhport, uint8_t itf, uint8_t ep_in, uint8_t cur_alt_setting)
{
(void)rhport;
(void)itf;
(void)ep_in;
(void)cur_alt_setting;
// This callback could be used to fill microphone data separately
return true;
}
//--------------------------------------------------------------------+
// AUDIO Task
//--------------------------------------------------------------------+
void audio_task(void)
{
// This task simulates an audio transfer callback, one frame is sent/received every 1ms.
// In a real application, this would be replaced with actual I2S send/receive callback.
void audio_task(void) {
static uint32_t start_ms = 0;
uint32_t curr_ms = board_millis();
if (start_ms == curr_ms) return;// not enough time
start_ms = curr_ms;
// When new data arrived, copy data from speaker buffer, to microphone buffer
// and send it over
// Only support speaker & headphone both have the same resolution
// If one is 16bit another is 24bit be care of LOUD noise !
if (spk_data_size)
{
if (current_resolution == 16)
{
int16_t *src = (int16_t*)spk_buf;
int16_t *limit = (int16_t*)spk_buf + spk_data_size / 2;
int16_t *dst = (int16_t*)mic_buf;
while (src < limit)
{
spk_data_size = tud_audio_read(spk_buf, sizeof(spk_buf));
if (spk_data_size) {
if (current_resolution == 16) {
int16_t *src = (int16_t *) spk_buf;
int16_t *limit = (int16_t *) spk_buf + spk_data_size / 2;
int16_t *dst = (int16_t *) mic_buf;
while (src < limit) {
// Combine two channels into one
int32_t left = *src++;
int32_t right = *src++;
*dst++ = (int16_t) ((left >> 1) + (right >> 1));
}
tud_audio_write((uint8_t *)mic_buf, (uint16_t) (spk_data_size / 2));
tud_audio_write((uint8_t *) mic_buf, (uint16_t) (spk_data_size / 2));
spk_data_size = 0;
}
else if (current_resolution == 24)
{
} else if (current_resolution == 24) {
int32_t *src = spk_buf;
int32_t *limit = spk_buf + spk_data_size / 4;
int32_t *dst = mic_buf;
while (src < limit)
{
while (src < limit) {
// Combine two channels into one
int32_t left = *src++;
int32_t right = *src++;
*dst++ = (int32_t) ((uint32_t) ((left >> 1) + (right >> 1)) & 0xffffff00ul);
}
tud_audio_write((uint8_t *)mic_buf, (uint16_t) (spk_data_size / 2));
tud_audio_write((uint8_t *) mic_buf, (uint16_t) (spk_data_size / 2));
spk_data_size = 0;
}
}
}
void audio_control_task(void)
{
void audio_control_task(void) {
// Press on-board button to control volume
// Open host volume control, volume should switch between 10% and 100%
@@ -440,27 +375,25 @@ void audio_control_task(void)
static uint32_t start_ms = 0;
static uint32_t btn_prev = 0;
if ( board_millis() - start_ms < interval_ms) return; // not enough time
if (board_millis() - start_ms < interval_ms) return;// not enough time
start_ms += interval_ms;
uint32_t btn = board_button_read();
if (!btn_prev && btn)
{
if (!btn_prev && btn) {
// Adjust volume between 0dB (100%) and -30dB (10%)
for (int i = 0; i < CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1; i++)
{
for (int i = 0; i < CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1; i++) {
volume[i] = volume[i] == 0 ? -VOLUME_CTRL_30_DB : 0;
}
// 6.1 Interrupt Data Message
const audio_interrupt_data_t data = {
.bInfo = 0, // Class-specific interrupt, originated from an interface
.bAttribute = AUDIO_CS_REQ_CUR, // Caused by current settings
.wValue_cn_or_mcn = 0, // CH0: master volume
.wValue_cs = AUDIO_FU_CTRL_VOLUME, // Volume change
.wIndex_ep_or_int = 0, // From the interface itself
.wIndex_entity_id = UAC2_ENTITY_SPK_FEATURE_UNIT, // From feature unit
.bInfo = 0, // Class-specific interrupt, originated from an interface
.bAttribute = AUDIO_CS_REQ_CUR, // Caused by current settings
.wValue_cn_or_mcn = 0, // CH0: master volume
.wValue_cs = AUDIO_FU_CTRL_VOLUME, // Volume change
.wIndex_ep_or_int = 0, // From the interface itself
.wIndex_entity_id = UAC2_ENTITY_SPK_FEATURE_UNIT,// From feature unit
};
tud_audio_int_write(&data);
@@ -472,8 +405,7 @@ void audio_control_task(void)
//--------------------------------------------------------------------+
// BLINKING TASK
//--------------------------------------------------------------------+
void led_blinking_task(void)
{
void led_blinking_task(void) {
static uint32_t start_ms = 0;
static bool led_state = false;

View File

@@ -146,8 +146,8 @@ extern "C" {
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_IN TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_1_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX)
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_IN TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX)
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ TU_MAX(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_IN, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_IN)*4
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX TU_MAX(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_IN, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_IN) // Maximum EP IN size for all AS alternate settings used
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ (TUD_OPT_HIGH_SPEED ? 32 : 4) * CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX // Example read FIFO every 1ms, so it should be 8 times larger for HS device
// EP and buffer size - for isochronous EP´s, the buffer and EP size are equal (different sizes would not make sense)
#define CFG_TUD_AUDIO_ENABLE_EP_OUT 1
@@ -155,8 +155,8 @@ extern "C" {
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_OUT TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_1_N_BYTES_PER_SAMPLE_RX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX)
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_OUT TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_RX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX)
#define CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ TU_MAX(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_OUT, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_OUT)*2
#define CFG_TUD_AUDIO_FUNC_1_EP_OUT_SZ_MAX TU_MAX(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_OUT, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_OUT) // Maximum EP IN size for all AS alternate settings used
#define CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ (TUD_OPT_HIGH_SPEED ? 32 : 4) * CFG_TUD_AUDIO_FUNC_1_EP_OUT_SZ_MAX // Example read FIFO every 1ms, so it should be 8 times larger for HS device
// Number of Standard AS Interface Descriptors (4.9.1) defined per audio function - this is required to be able to remember the current alternate settings of these interfaces - We restrict us here to have a constant number for all audio functions (which means this has to be the maximum number of AS interfaces an audio function has and a second audio function with less AS interfaces just wastes a few bytes)
#define CFG_TUD_AUDIO_FUNC_1_N_AS_INT 2