audio: update examples

Signed-off-by: HiFiPhile <admin@hifiphile.com>
This commit is contained in:
HiFiPhile
2025-06-14 19:37:10 +02:00
parent 19b5ec5fd9
commit 545690c834
18 changed files with 839 additions and 1120 deletions

View File

@@ -27,12 +27,12 @@
#include <string.h>
#include "bsp/board_api.h"
#include "common_types.h"
#include "tusb.h"
#include "usb_descriptors.h"
#include "common_types.h"
#ifdef CFG_QUIRK_OS_GUESSING
#include "quirk_os_guessing.h"
#include "quirk_os_guessing.h"
#endif
//--------------------------------------------------------------------+
@@ -41,14 +41,14 @@
// List of supported sample rates
#if defined(__RX__)
const uint32_t sample_rates[] = {44100, 48000};
const uint32_t sample_rates[] = {44100, 48000};
#else
const uint32_t sample_rates[] = {44100, 48000, 88200, 96000};
const uint32_t sample_rates[] = {44100, 48000, 88200, 96000};
#endif
uint32_t current_sample_rate = 44100;
uint32_t current_sample_rate = 44100;
#define N_SAMPLE_RATES TU_ARRAY_SIZE(sample_rates)
#define N_SAMPLE_RATES TU_ARRAY_SIZE(sample_rates)
/* Blink pattern
* - 25 ms : streaming data
@@ -56,16 +56,14 @@ uint32_t current_sample_rate = 44100;
* - 1000 ms : device mounted
* - 2500 ms : device is suspended
*/
enum
{
enum {
BLINK_STREAMING = 25,
BLINK_NOT_MOUNTED = 250,
BLINK_MOUNTED = 1000,
BLINK_SUSPENDED = 2500,
};
enum
{
enum {
VOLUME_CTRL_0_DB = 0,
VOLUME_CTRL_10_DB = 2560,
VOLUME_CTRL_20_DB = 5120,
@@ -84,11 +82,11 @@ static uint32_t blink_interval_ms = BLINK_NOT_MOUNTED;
// Audio controls
// Current states
int8_t mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1]; // +1 for master channel 0
int16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1]; // +1 for master channel 0
int8_t mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1]; // +1 for master channel 0
int16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1];// +1 for master channel 0
// Buffer for speaker data
uint16_t i2s_dummy_buffer[CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ/2];
uint16_t i2s_dummy_buffer[CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ / 2];
void led_blinking_task(void);
void audio_task(void);
@@ -96,20 +94,18 @@ void audio_task(void);
#if CFG_AUDIO_DEBUG
void audio_debug_task(void);
uint8_t current_alt_settings;
uint16_t fifo_count;
uint32_t fifo_count_avg;
volatile uint16_t fifo_count;
volatile uint32_t fifo_count_avg;
#endif
/*------------- MAIN -------------*/
int main(void)
{
int main(void) {
board_init();
// init device stack on configured roothub port
tusb_rhport_init_t dev_init = {
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO
};
.role = TUSB_ROLE_DEVICE,
.speed = TUSB_SPEED_AUTO};
tusb_init(BOARD_TUD_RHPORT, &dev_init);
if (board_init_after_tusb) {
@@ -118,9 +114,8 @@ int main(void)
TU_LOG1("Speaker running\r\n");
while (1)
{
tud_task(); // TinyUSB device task
while (1) {
tud_task();// TinyUSB device task
led_blinking_task();
#if CFG_AUDIO_DEBUG
audio_debug_task();
@@ -134,29 +129,25 @@ int main(void)
//--------------------------------------------------------------------+
// Invoked when device is mounted
void tud_mount_cb(void)
{
void tud_mount_cb(void) {
blink_interval_ms = BLINK_MOUNTED;
}
// Invoked when device is unmounted
void tud_umount_cb(void)
{
void tud_umount_cb(void) {
blink_interval_ms = BLINK_NOT_MOUNTED;
}
// Invoked when usb bus is suspended
// remote_wakeup_en : if host allow us to perform remote wakeup
// Within 7ms, device must draw an average of current less than 2.5 mA from bus
void tud_suspend_cb(bool remote_wakeup_en)
{
(void)remote_wakeup_en;
void tud_suspend_cb(bool remote_wakeup_en) {
(void) remote_wakeup_en;
blink_interval_ms = BLINK_SUSPENDED;
}
// Invoked when usb bus is resumed
void tud_resume_cb(void)
{
void tud_resume_cb(void) {
blink_interval_ms = tud_mounted() ? BLINK_MOUNTED : BLINK_NOT_MOUNTED;
}
@@ -165,43 +156,34 @@ void tud_resume_cb(void)
//--------------------------------------------------------------------+
// Helper for clock get requests
static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t const *request)
{
static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t const *request) {
TU_ASSERT(request->bEntityID == UAC2_ENTITY_CLOCK);
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ)
{
if (request->bRequest == AUDIO_CS_REQ_CUR)
{
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ) {
if (request->bRequest == AUDIO_CS_REQ_CUR) {
TU_LOG1("Clock get current freq %lu\r\n", current_sample_rate);
audio_control_cur_4_t curf = { (int32_t) tu_htole32(current_sample_rate) };
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &curf, sizeof(curf));
}
else if (request->bRequest == AUDIO_CS_REQ_RANGE)
{
audio_control_cur_4_t curf = {(int32_t) tu_htole32(current_sample_rate)};
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &curf, sizeof(curf));
} else if (request->bRequest == AUDIO_CS_REQ_RANGE) {
audio_control_range_4_n_t(N_SAMPLE_RATES) rangef =
{
.wNumSubRanges = tu_htole16(N_SAMPLE_RATES)
};
{
.wNumSubRanges = tu_htole16(N_SAMPLE_RATES)};
TU_LOG1("Clock get %d freq ranges\r\n", N_SAMPLE_RATES);
for(uint8_t i = 0; i < N_SAMPLE_RATES; i++)
{
for (uint8_t i = 0; i < N_SAMPLE_RATES; i++) {
rangef.subrange[i].bMin = (int32_t) sample_rates[i];
rangef.subrange[i].bMax = (int32_t) sample_rates[i];
rangef.subrange[i].bRes = 0;
TU_LOG1("Range %d (%d, %d, %d)\r\n", i, (int)rangef.subrange[i].bMin, (int)rangef.subrange[i].bMax, (int)rangef.subrange[i].bRes);
TU_LOG1("Range %d (%d, %d, %d)\r\n", i, (int) rangef.subrange[i].bMin, (int) rangef.subrange[i].bMax, (int) rangef.subrange[i].bRes);
}
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &rangef, sizeof(rangef));
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &rangef, sizeof(rangef));
}
}
else if (request->bControlSelector == AUDIO_CS_CTRL_CLK_VALID &&
request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_1_t cur_valid = { .bCur = 1 };
} else if (request->bControlSelector == AUDIO_CS_CTRL_CLK_VALID &&
request->bRequest == AUDIO_CS_REQ_CUR) {
audio_control_cur_1_t cur_valid = {.bCur = 1};
TU_LOG1("Clock get is valid %u\r\n", cur_valid.bCur);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &cur_valid, sizeof(cur_valid));
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &cur_valid, sizeof(cur_valid));
}
TU_LOG1("Clock get request not supported, entity = %u, selector = %u, request = %u\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
@@ -209,25 +191,21 @@ static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t
}
// Helper for clock set requests
static bool tud_audio_clock_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf)
{
(void)rhport;
static bool tud_audio_clock_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf) {
(void) rhport;
TU_ASSERT(request->bEntityID == UAC2_ENTITY_CLOCK);
TU_VERIFY(request->bRequest == AUDIO_CS_REQ_CUR);
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ)
{
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ) {
TU_VERIFY(request->wLength == sizeof(audio_control_cur_4_t));
current_sample_rate = (uint32_t) ((audio_control_cur_4_t const *)buf)->bCur;
current_sample_rate = (uint32_t) ((audio_control_cur_4_t const *) buf)->bCur;
TU_LOG1("Clock set current freq: %ld\r\n", current_sample_rate);
return true;
}
else
{
} else {
TU_LOG1("Clock set request not supported, entity = %u, selector = %u, request = %u\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
return false;
@@ -235,33 +213,25 @@ static bool tud_audio_clock_set_request(uint8_t rhport, audio_control_request_t
}
// Helper for feature unit get requests
static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_request_t const *request)
{
static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_request_t const *request) {
TU_ASSERT(request->bEntityID == UAC2_ENTITY_FEATURE_UNIT);
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE && request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_1_t mute1 = { .bCur = mute[request->bChannelNumber] };
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE && request->bRequest == AUDIO_CS_REQ_CUR) {
audio_control_cur_1_t mute1 = {.bCur = mute[request->bChannelNumber]};
TU_LOG1("Get channel %u mute %d\r\n", request->bChannelNumber, mute1.bCur);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &mute1, sizeof(mute1));
}
else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME)
{
if (request->bRequest == AUDIO_CS_REQ_RANGE)
{
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &mute1, sizeof(mute1));
} else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME) {
if (request->bRequest == AUDIO_CS_REQ_RANGE) {
audio_control_range_2_n_t(1) range_vol = {
.wNumSubRanges = tu_htole16(1),
.subrange[0] = { .bMin = tu_htole16(-VOLUME_CTRL_50_DB), tu_htole16(VOLUME_CTRL_0_DB), tu_htole16(256) }
};
.wNumSubRanges = tu_htole16(1),
.subrange[0] = {.bMin = tu_htole16(-VOLUME_CTRL_50_DB), tu_htole16(VOLUME_CTRL_0_DB), tu_htole16(256)}};
TU_LOG1("Get channel %u volume range (%d, %d, %u) dB\r\n", request->bChannelNumber,
range_vol.subrange[0].bMin / 256, range_vol.subrange[0].bMax / 256, range_vol.subrange[0].bRes / 256);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &range_vol, sizeof(range_vol));
}
else if (request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_2_t cur_vol = { .bCur = tu_htole16(volume[request->bChannelNumber]) };
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &range_vol, sizeof(range_vol));
} else if (request->bRequest == AUDIO_CS_REQ_CUR) {
audio_control_cur_2_t cur_vol = {.bCur = tu_htole16(volume[request->bChannelNumber])};
TU_LOG1("Get channel %u volume %d dB\r\n", request->bChannelNumber, cur_vol.bCur / 256);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &cur_vol, sizeof(cur_vol));
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &cur_vol, sizeof(cur_vol));
}
}
TU_LOG1("Feature unit get request not supported, entity = %u, selector = %u, request = %u\r\n",
@@ -271,35 +241,29 @@ static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_req
}
// Helper for feature unit set requests
static bool tud_audio_feature_unit_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf)
{
(void)rhport;
static bool tud_audio_feature_unit_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf) {
(void) rhport;
TU_ASSERT(request->bEntityID == UAC2_ENTITY_FEATURE_UNIT);
TU_VERIFY(request->bRequest == AUDIO_CS_REQ_CUR);
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE)
{
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE) {
TU_VERIFY(request->wLength == sizeof(audio_control_cur_1_t));
mute[request->bChannelNumber] = ((audio_control_cur_1_t const *)buf)->bCur;
mute[request->bChannelNumber] = ((audio_control_cur_1_t const *) buf)->bCur;
TU_LOG1("Set channel %d Mute: %d\r\n", request->bChannelNumber, mute[request->bChannelNumber]);
return true;
}
else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME)
{
} else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME) {
TU_VERIFY(request->wLength == sizeof(audio_control_cur_2_t));
volume[request->bChannelNumber] = ((audio_control_cur_2_t const *)buf)->bCur;
volume[request->bChannelNumber] = ((audio_control_cur_2_t const *) buf)->bCur;
TU_LOG1("Set channel %d volume: %d dB\r\n", request->bChannelNumber, volume[request->bChannelNumber] / 256);
return true;
}
else
{
} else {
TU_LOG1("Feature unit set request not supported, entity = %u, selector = %u, request = %u\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
return false;
@@ -307,16 +271,14 @@ static bool tud_audio_feature_unit_set_request(uint8_t rhport, audio_control_req
}
// Invoked when audio class specific get request received for an entity
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request)
{
audio_control_request_t const *request = (audio_control_request_t const *)p_request;
bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
audio_control_request_t const *request = (audio_control_request_t const *) p_request;
if (request->bEntityID == UAC2_ENTITY_CLOCK)
return tud_audio_clock_get_request(rhport, request);
if (request->bEntityID == UAC2_ENTITY_FEATURE_UNIT)
return tud_audio_feature_unit_get_request(rhport, request);
else
{
else {
TU_LOG1("Get request not handled, entity = %d, selector = %d, request = %d\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
}
@@ -324,9 +286,8 @@ bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p
}
// Invoked when audio class specific set request received for an entity
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *buf)
{
audio_control_request_t const *request = (audio_control_request_t const *)p_request;
bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *buf) {
audio_control_request_t const *request = (audio_control_request_t const *) p_request;
if (request->bEntityID == UAC2_ENTITY_FEATURE_UNIT)
return tud_audio_feature_unit_set_request(rhport, request, buf);
@@ -338,28 +299,26 @@ bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p
return false;
}
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void)rhport;
bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
uint8_t const itf = tu_u16_low(tu_le16toh(p_request->wIndex));
uint8_t const alt = tu_u16_low(tu_le16toh(p_request->wValue));
if (ITF_NUM_AUDIO_STREAMING == itf && alt == 0)
blink_interval_ms = BLINK_MOUNTED;
blink_interval_ms = BLINK_MOUNTED;
return true;
}
bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void)rhport;
bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const *p_request) {
(void) rhport;
uint8_t const itf = tu_u16_low(tu_le16toh(p_request->wIndex));
uint8_t const alt = tu_u16_low(tu_le16toh(p_request->wValue));
TU_LOG2("Set interface %d alt %d\r\n", itf, alt);
if (ITF_NUM_AUDIO_STREAMING == itf && alt != 0)
blink_interval_ms = BLINK_STREAMING;
blink_interval_ms = BLINK_STREAMING;
#if CFG_AUDIO_DEBUG
current_alt_settings = alt;
@@ -368,37 +327,34 @@ bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const * p_reque
return true;
}
void tud_audio_feedback_params_cb(uint8_t func_id, uint8_t alt_itf, audio_feedback_params_t* feedback_param)
{
(void)func_id;
(void)alt_itf;
void tud_audio_feedback_params_cb(uint8_t func_id, uint8_t alt_itf, audio_feedback_params_t *feedback_param) {
(void) func_id;
(void) alt_itf;
// Set feedback method to fifo counting
feedback_param->method = AUDIO_FEEDBACK_METHOD_FIFO_COUNT;
feedback_param->sample_freq = current_sample_rate;
}
#if CFG_AUDIO_DEBUG
bool tud_audio_rx_done_post_read_cb(uint8_t rhport, uint16_t n_bytes_received, uint8_t func_id, uint8_t ep_out, uint8_t cur_alt_setting)
{
(void)rhport;
(void)n_bytes_received;
(void)func_id;
(void)ep_out;
(void)cur_alt_setting;
bool tud_audio_rx_done_isr(uint8_t rhport, uint16_t n_bytes_received, uint8_t func_id, uint8_t ep_out, uint8_t cur_alt_setting) {
(void) rhport;
(void) n_bytes_received;
(void) func_id;
(void) ep_out;
(void) cur_alt_setting;
fifo_count = tud_audio_available();
// Same averaging method used in UAC2 class
fifo_count_avg = (uint32_t)(((uint64_t)fifo_count_avg * 63 + ((uint32_t)fifo_count << 16)) >> 6);
fifo_count_avg = (uint32_t) (((uint64_t) fifo_count_avg * 63 + ((uint32_t) fifo_count << 16)) >> 6);
return true;
}
#endif
#if CFG_QUIRK_OS_GUESSING
bool tud_audio_feedback_format_correction_cb(uint8_t func_id)
{
(void)func_id;
if(tud_speed_get() == TUSB_SPEED_FULL && quirk_os_guessing_get() == QUIRK_OS_GUESSING_OSX) {
bool tud_audio_feedback_format_correction_cb(uint8_t func_id) {
(void) func_id;
if (tud_speed_get() == TUSB_SPEED_FULL && quirk_os_guessing_get() == QUIRK_OS_GUESSING_OSX) {
return true;
} else {
return false;
@@ -409,25 +365,21 @@ bool tud_audio_feedback_format_correction_cb(uint8_t func_id)
// AUDIO Task
//--------------------------------------------------------------------+
void audio_task(void)
{
// Replace audio_task() with your I2S transmit callback.
// Here we simulate a callback called every 1ms.
// This task simulates an audio transmit callback, one frame is sent every 1ms.
// In a real application, this would be replaced with actual I2S transmit callback.
void audio_task(void) {
static uint32_t start_ms = 0;
uint32_t curr_ms = board_millis();
if ( start_ms == curr_ms ) return; // not enough time
if (start_ms == curr_ms) return;// not enough time
start_ms = curr_ms;
uint16_t length = (uint16_t) (current_sample_rate/1000 * CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_RX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX);
uint16_t length = (uint16_t) (current_sample_rate / 1000 * CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_RX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX);
if (current_sample_rate == 44100 && (curr_ms % 10 == 0))
{
if (current_sample_rate == 44100 && (curr_ms % 10 == 0)) {
// Take one more sample every 10 cycles, to have a average reading speed of 44.1
// This correction is not needed in real world cases
length += CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_RX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX;
} else
if (current_sample_rate == 88200 && (curr_ms % 5 == 0))
{
} else if (current_sample_rate == 88200 && (curr_ms % 5 == 0)) {
// Take one more sample every 5 cycles, to have a average reading speed of 88.2
// This correction is not needed in real world cases
length += CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_RX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX;
@@ -439,8 +391,7 @@ void audio_task(void)
//--------------------------------------------------------------------+
// BLINKING TASK
//--------------------------------------------------------------------+
void led_blinking_task(void)
{
void led_blinking_task(void) {
static uint32_t start_ms = 0;
static bool led_state = false;
@@ -457,33 +408,30 @@ void led_blinking_task(void)
// HID interface for audio debug
//--------------------------------------------------------------------+
// Every 1ms, we will sent 1 debug information report
void audio_debug_task(void)
{
void audio_debug_task(void) {
static uint32_t start_ms = 0;
uint32_t curr_ms = board_millis();
if ( start_ms == curr_ms ) return; // not enough time
if (start_ms == curr_ms) return;// not enough time
start_ms = curr_ms;
audio_debug_info_t debug_info;
debug_info.sample_rate = current_sample_rate;
debug_info.alt_settings = current_alt_settings;
debug_info.fifo_size = CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ;
debug_info.fifo_count = fifo_count;
debug_info.sample_rate = current_sample_rate;
debug_info.alt_settings = current_alt_settings;
debug_info.fifo_size = CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ;
debug_info.fifo_count = fifo_count;
debug_info.fifo_count_avg = (uint16_t) (fifo_count_avg >> 16);
for (int i = 0; i < CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1; i++)
{
for (int i = 0; i < CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1; i++) {
debug_info.mute[i] = mute[i];
debug_info.volume[i] = volume[i];
}
if(tud_hid_ready())
if (tud_hid_ready())
tud_hid_report(0, &debug_info, sizeof(debug_info));
}
// Invoked when received GET_REPORT control request
// Unused here
uint16_t tud_hid_get_report_cb(uint8_t itf, uint8_t report_id, hid_report_type_t report_type, uint8_t* buffer, uint16_t reqlen)
{
uint16_t tud_hid_get_report_cb(uint8_t itf, uint8_t report_id, hid_report_type_t report_type, uint8_t *buffer, uint16_t reqlen) {
// TODO not Implemented
(void) itf;
(void) report_id;
@@ -496,8 +444,7 @@ uint16_t tud_hid_get_report_cb(uint8_t itf, uint8_t report_id, hid_report_type_t
// Invoked when received SET_REPORT control request or
// Unused here
void tud_hid_set_report_cb(uint8_t itf, uint8_t report_id, hid_report_type_t report_type, uint8_t const* buffer, uint16_t bufsize)
{
void tud_hid_set_report_cb(uint8_t itf, uint8_t report_id, hid_report_type_t report_type, uint8_t const *buffer, uint16_t bufsize) {
// This example doesn't use multiple report and report ID
(void) itf;
(void) report_id;