Implemented very rudimentary support for isochronous transfer buffer handling

This commit is contained in:
Simon Kueppers
2022-10-24 19:59:59 +02:00
committed by Mengsk
parent e434a1dc05
commit 6d65eaf7a1
2 changed files with 75 additions and 61 deletions

View File

@@ -163,7 +163,7 @@ TU_VERIFY_STATIC(((DCD_STM32_BTABLE_BASE) % 8) == 0, "BTABLE base must be aligne
typedef struct typedef struct
{ {
uint8_t * buffer; uint8_t * buffer;
// tu_fifo_t * ff; // TODO support dcd_edpt_xfer_fifo API tu_fifo_t * ff;
uint16_t total_len; uint16_t total_len;
uint16_t queued_len; uint16_t queued_len;
uint16_t pma_ptr; uint16_t pma_ptr;
@@ -196,8 +196,8 @@ static void dcd_pma_free(uint8_t ep_addr);
static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, size_t wNBytes); static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, size_t wNBytes);
static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, size_t wNBytes); static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, size_t wNBytes);
//static bool dcd_write_packet_memory_ff(tu_fifo_t * ff, uint16_t dst, uint16_t wNBytes); static bool dcd_write_packet_memory_ff(tu_fifo_t * ff, uint16_t dst, uint16_t wNBytes);
//static bool dcd_read_packet_memory_ff(tu_fifo_t * ff, uint16_t src, uint16_t wNBytes); static bool dcd_read_packet_memory_ff(tu_fifo_t * ff, uint16_t src, uint16_t wNBytes);
// Using a function due to better type checks // Using a function due to better type checks
// This seems better than having to do type casts everywhere else // This seems better than having to do type casts everywhere else
@@ -526,15 +526,15 @@ static void dcd_ep_ctr_rx_handler(uint32_t wIstr)
if (count != 0U) if (count != 0U)
{ {
#if 0 // TODO support dcd_edpt_xfer_fifo API uint16_t addr = *pcd_ep_rx_address_ptr(USB, EPindex);
if (xfer->ff) if (xfer->ff)
{ {
dcd_read_packet_memory_ff(xfer->ff, *pcd_ep_rx_address_ptr(USB,EPindex), count); dcd_read_packet_memory_ff(xfer->ff, addr, count);
} }
else else
#endif
{ {
dcd_read_packet_memory(&(xfer->buffer[xfer->queued_len]), *pcd_ep_rx_address_ptr(USB,EPindex), count); dcd_read_packet_memory(&(xfer->buffer[xfer->queued_len]), addr, count);
} }
xfer->queued_len = (uint16_t)(xfer->queued_len + count); xfer->queued_len = (uint16_t)(xfer->queued_len + count);
@@ -683,6 +683,7 @@ void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * re
static void dcd_pma_alloc_reset(void) static void dcd_pma_alloc_reset(void)
{ {
open_ep_count = 0;
ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT; // 8 bytes per endpoint (two TX and two RX words, each) ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT; // 8 bytes per endpoint (two TX and two RX words, each)
//TU_LOG2("dcd_pma_alloc_reset()\r\n"); //TU_LOG2("dcd_pma_alloc_reset()\r\n");
for(uint32_t i=0; i<MAX_EP_COUNT; i++) for(uint32_t i=0; i<MAX_EP_COUNT; i++)
@@ -709,6 +710,7 @@ static uint16_t dcd_pma_alloc(uint8_t ep_addr, size_t length)
uint8_t const dir = tu_edpt_dir(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t* epXferCtl = xfer_ctl_ptr(epnum,dir); xfer_ctl_t* epXferCtl = xfer_ctl_ptr(epnum,dir);
open_ep_count++;
if(epXferCtl->pma_alloc_size != 0U) if(epXferCtl->pma_alloc_size != 0U)
{ {
//TU_LOG2("dcd_pma_alloc(%x,%x)=%x (cached)\r\n",ep_addr,length,epXferCtl->pma_ptr); //TU_LOG2("dcd_pma_alloc(%x,%x)=%x (cached)\r\n",ep_addr,length,epXferCtl->pma_ptr);
@@ -773,7 +775,6 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc
uint32_t wType; uint32_t wType;
// Isochronous not supported (yet), and some other driver assumptions. // Isochronous not supported (yet), and some other driver assumptions.
TU_ASSERT(p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
TU_ASSERT(epnum < MAX_EP_COUNT); TU_ASSERT(epnum < MAX_EP_COUNT);
// Set type // Set type
@@ -781,12 +782,9 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc
case TUSB_XFER_CONTROL: case TUSB_XFER_CONTROL:
wType = USB_EP_CONTROL; wType = USB_EP_CONTROL;
break; break;
#if (0) case TUSB_XFER_ISOCHRONOUS:
case TUSB_XFER_ISOCHRONOUS: // FIXME: Not yet supported
wType = USB_EP_ISOCHRONOUS; wType = USB_EP_ISOCHRONOUS;
break; break;
#endif
case TUSB_XFER_BULK: case TUSB_XFER_BULK:
wType = USB_EP_CONTROL; wType = USB_EP_CONTROL;
break; break;
@@ -805,22 +803,42 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc
// or being double-buffered (bulk endpoints) // or being double-buffered (bulk endpoints)
pcd_clear_ep_kind(USB,0); pcd_clear_ep_kind(USB,0);
/* Create a packet memory buffer area. For isochronous endpoints,
* use the same buffer as the double buffer, essentially disabling double buffering */
pma_addr = dcd_pma_alloc(p_endpoint_desc->bEndpointAddress, epMaxPktSize); pma_addr = dcd_pma_alloc(p_endpoint_desc->bEndpointAddress, epMaxPktSize);
#if defined(ISOCHRONOUS_DOUBLEBUFFER)
if( (dir == TUSB_DIR_IN) || (wType == USB_EP_ISOCHRONOUS) )
#else
if(dir == TUSB_DIR_IN) if(dir == TUSB_DIR_IN)
#endif
{ {
*pcd_ep_tx_address_ptr(USB, epnum) = pma_addr; *pcd_ep_tx_address_ptr(USB, epnum) = pma_addr;
pcd_set_ep_tx_cnt(USB, epnum, epMaxPktSize); pcd_set_ep_tx_cnt(USB, epnum, epMaxPktSize);
pcd_clear_tx_dtog(USB, epnum); pcd_clear_tx_dtog(USB, epnum);
if(wType == USB_EP_ISOCHRONOUS) {
pcd_set_ep_tx_status(USB, epnum, USB_EP_TX_DIS);
} else {
pcd_set_ep_tx_status(USB, epnum, USB_EP_TX_NAK); pcd_set_ep_tx_status(USB, epnum, USB_EP_TX_NAK);
} }
}
#if defined(ISOCHRONOUS_DOUBLEBUFFER)
if( (dir == TUSB_DIR_OUT) || (wType == USB_EP_ISOCHRONOUS) )
#else
else else
#endif
{ {
*pcd_ep_rx_address_ptr(USB, epnum) = pma_addr; *pcd_ep_rx_address_ptr(USB, epnum) = pma_addr;
pcd_set_ep_rx_cnt(USB, epnum, epMaxPktSize); pcd_set_ep_rx_cnt(USB, epnum, epMaxPktSize);
pcd_clear_rx_dtog(USB, epnum); pcd_clear_rx_dtog(USB, epnum);
if(wType == USB_EP_ISOCHRONOUS) {
pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_DIS);
} else {
pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_NAK); pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_NAK);
} }
}
xfer_ctl_ptr(epnum, dir)->max_packet_size = epMaxPktSize; xfer_ctl_ptr(epnum, dir)->max_packet_size = epMaxPktSize;
@@ -868,15 +886,14 @@ static void dcd_transmit_packet(xfer_ctl_t * xfer, uint16_t ep_ix)
{ {
len = xfer->max_packet_size; len = xfer->max_packet_size;
} }
uint16_t oldAddr = *pcd_ep_tx_address_ptr(USB,ep_ix); uint16_t oldAddr = *pcd_ep_tx_address_ptr(USB,ep_ix);
#if 0 // TODO support dcd_edpt_xfer_fifo API
if (xfer->ff) if (xfer->ff)
{ {
dcd_write_packet_memory_ff(xfer->ff, oldAddr, len); dcd_write_packet_memory_ff(xfer->ff, oldAddr, len);
} }
else else
#endif
{ {
dcd_write_packet_memory(oldAddr, &(xfer->buffer[xfer->queued_len]), len); dcd_write_packet_memory(oldAddr, &(xfer->buffer[xfer->queued_len]), len);
} }
@@ -896,7 +913,7 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
xfer_ctl_t * xfer = xfer_ctl_ptr(epnum,dir); xfer_ctl_t * xfer = xfer_ctl_ptr(epnum,dir);
xfer->buffer = buffer; xfer->buffer = buffer;
// xfer->ff = NULL; // TODO support dcd_edpt_xfer_fifo API xfer->ff = NULL; // TODO support dcd_edpt_xfer_fifo API
xfer->total_len = total_bytes; xfer->total_len = total_bytes;
xfer->queued_len = 0; xfer->queued_len = 0;
@@ -908,6 +925,7 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
{ {
xfer->buffer = (uint8_t*)_setup_packet; xfer->buffer = (uint8_t*)_setup_packet;
} }
if(total_bytes > xfer->max_packet_size) if(total_bytes > xfer->max_packet_size)
{ {
pcd_set_ep_rx_cnt(USB,epnum,xfer->max_packet_size); pcd_set_ep_rx_cnt(USB,epnum,xfer->max_packet_size);
@@ -923,7 +941,6 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
return true; return true;
} }
#if 0 // TODO support dcd_edpt_xfer_fifo API
bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes) bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
{ {
(void) rhport; (void) rhport;
@@ -934,7 +951,7 @@ bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16
xfer_ctl_t * xfer = xfer_ctl_ptr(epnum,dir); xfer_ctl_t * xfer = xfer_ctl_ptr(epnum,dir);
xfer->buffer = NULL; xfer->buffer = NULL;
// xfer->ff = ff; // TODO support dcd_edpt_xfer_fifo API xfer->ff = ff; // TODO support dcd_edpt_xfer_fifo API
xfer->total_len = total_bytes; xfer->total_len = total_bytes;
xfer->queued_len = 0; xfer->queued_len = 0;
@@ -954,7 +971,6 @@ bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16
} }
return true; return true;
} }
#endif
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr) void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{ {
@@ -978,7 +994,10 @@ void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{ // IN { // IN
ep_addr &= 0x7F; ep_addr &= 0x7F;
uint8_t const epnum = tu_edpt_number(ep_addr);
if (pcd_get_eptype(USB, epnum) != USB_EP_ISOCHRONOUS) {
pcd_set_ep_tx_status(USB,ep_addr, USB_EP_TX_NAK); pcd_set_ep_tx_status(USB,ep_addr, USB_EP_TX_NAK);
}
/* Reset to DATA0 if clearing stall condition. */ /* Reset to DATA0 if clearing stall condition. */
pcd_clear_tx_dtog(USB,ep_addr); pcd_clear_tx_dtog(USB,ep_addr);
@@ -1029,7 +1048,6 @@ static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, si
return true; return true;
} }
#if 0 // TODO support dcd_edpt_xfer_fifo API
/** /**
* @brief Copy from FIFO to packet memory area (PMA). * @brief Copy from FIFO to packet memory area (PMA).
* Uses byte-access of system memory and 16-bit access of packet memory * Uses byte-access of system memory and 16-bit access of packet memory
@@ -1043,38 +1061,36 @@ static bool dcd_write_packet_memory_ff(tu_fifo_t * ff, uint16_t dst, uint16_t wN
{ {
// Since we copy from a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies // Since we copy from a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies
// Check for first linear part // Check for first linear part
void * src; tu_fifo_buffer_info_t info;
uint16_t len = tu_fifo_get_linear_read_info(ff, 0, &src, wNBytes); // We want to read from the FIFO - THIS FUNCTION CHANGED!!! tu_fifo_get_read_info(ff, &info); // We want to read from the FIFO
TU_VERIFY(len && dcd_write_packet_memory(dst, src, len)); // and write it into the PMA TU_VERIFY(info.len_lin && dcd_write_packet_memory(dst, info.ptr_lin, info.len_lin)); // and write it into the PMA
tu_fifo_advance_read_pointer(ff, len); tu_fifo_advance_read_pointer(ff, info.len_lin);
// Check for wrapped part // Check for wrapped part
if (len < wNBytes) if (info.len_wrap)
{ {
// Get remaining wrapped length
uint16_t len2 = tu_fifo_get_linear_read_info(ff, 0, &src, wNBytes - len);
TU_VERIFY(len2);
// Update destination pointer // Update destination pointer
dst += len; dst += info.len_lin;
uint8_t* src = (uint8_t*)info.ptr_wrap;
uint16_t len2 = info.len_wrap;
// Since PMA is accessed 16-bit wise we need to handle the case when a 16 bit value was split // Since PMA is accessed 16-bit wise we need to handle the case when a 16 bit value was split
if (len % 2) // If len is uneven there is a byte left to copy if (info.len_lin % 2) // If len is uneven there is a byte left to copy
{ {
// Since PMA can accessed only 16 bit-wise we copy the last byte again TU_ASSERT(false); // TODO: Step through and check -> untested
tu_fifo_backward_read_pointer(ff, 1); // Move one byte back and copy two bytes for the PMA
tu_fifo_read_n(ff, (void *) &pma[PMA_STRIDE*(dst>>1)], 2); // Since EP FIFOs must be of item size 1 this is safe to do uint16_t temp = ((uint8_t *)info.ptr_lin)[info.len_lin-1] | src[0] << 16; // CHECK endianess
dst++; pma[PMA_STRIDE*(dst>>1)] = temp;
src++;
len2--; len2--;
} }
TU_VERIFY(dcd_write_packet_memory(dst, src, len2)); TU_VERIFY(dcd_write_packet_memory(dst, src, len2));
tu_fifo_advance_write_pointer(ff, len2); tu_fifo_advance_write_pointer(ff, info.len_wrap);
} }
return true; return true;
} }
#endif
/** /**
* @brief Copy a buffer from packet memory area (PMA) to user memory area. * @brief Copy a buffer from packet memory area (PMA) to user memory area.
@@ -1111,7 +1127,6 @@ static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, size_t wN
return true; return true;
} }
#if 0 // TODO support dcd_edpt_xfer_fifo API
/** /**
* @brief Copy a buffer from user packet memory area (PMA) to FIFO. * @brief Copy a buffer from user packet memory area (PMA) to FIFO.
* Uses byte-access of system memory and 16-bit access of packet memory * Uses byte-access of system memory and 16-bit access of packet memory
@@ -1125,32 +1140,31 @@ static bool dcd_read_packet_memory_ff(tu_fifo_t * ff, uint16_t src, uint16_t wNB
{ {
// Since we copy into a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies // Since we copy into a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies
// Check for first linear part // Check for first linear part
void * dst; tu_fifo_buffer_info_t info;
uint16_t len = tu_fifo_get_linear_write_info(ff, 0, &dst, wNBytes); // THIS FUNCTION CHANGED!!!! tu_fifo_get_write_info(ff, &info); // We want to read from the FIFO
TU_VERIFY(len && dcd_read_packet_memory(dst, src, len));
tu_fifo_advance_write_pointer(ff, len); TU_VERIFY(info.len_lin && dcd_read_packet_memory(info.ptr_lin, src, info.len_lin));
tu_fifo_advance_write_pointer(ff, info.len_lin);
// Check for wrapped part // Check for wrapped part
if (len < wNBytes) if (info.len_wrap)
{ {
// Get remaining wrapped length
uint16_t len2 = tu_fifo_get_linear_write_info(ff, 0, &dst, wNBytes - len);
TU_VERIFY(len2);
// Update source pointer // Update source pointer
src += len; src += info.len_lin;
// Since PMA is accessed 16-bit wise we need to handle the case when a 16 bit value was split // Since PMA is accessed 16-bit wise we need to handle the case when a 16 bit value was split
if (len % 2) // If len is uneven there is a byte left to copy if (info.len_lin % 2) // If len is uneven there is a byte left to copy
{ {
TU_ASSERT(false); //TODO: step through -> untested
uint32_t temp = pma[PMA_STRIDE*(src>>1)]; uint32_t temp = pma[PMA_STRIDE*(src>>1)];
*((uint8_t *)dst++) = ((temp >> 8) & 0xFF); *((uint8_t *)info.ptr_wrap++) = ((temp >> 8) & 0xFF);
src++; src++;
len2--; tu_fifo_advance_write_pointer(ff, 1);
info.len_wrap--;
} }
TU_VERIFY(dcd_read_packet_memory(dst, src, len2)); TU_VERIFY(dcd_read_packet_memory(info.ptr_wrap, src, info.len_wrap));
tu_fifo_advance_write_pointer(ff, len2); tu_fifo_advance_write_pointer(ff, info.len_wrap);
} }
return true; return true;
@@ -1158,5 +1172,3 @@ static bool dcd_read_packet_memory_ff(tu_fifo_t * ff, uint16_t src, uint16_t wNB
#endif #endif
#endif

View File

@@ -66,6 +66,7 @@
defined(STM32F373xC) defined(STM32F373xC)
#include "stm32f3xx.h" #include "stm32f3xx.h"
#define PMA_LENGTH (512u) #define PMA_LENGTH (512u)
#define ISOCHRONOUS_DOUBLEBUFFER
// NO internal Pull-ups // NO internal Pull-ups
// *B, and *C: 1 x 16 bits/word // *B, and *C: 1 x 16 bits/word
// PMA dedicated to USB (no sharing with CAN) // PMA dedicated to USB (no sharing with CAN)
@@ -75,6 +76,7 @@
defined(STM32F303xD) || defined(STM32F303xE) defined(STM32F303xD) || defined(STM32F303xE)
#include "stm32f3xx.h" #include "stm32f3xx.h"
#define PMA_LENGTH (1024u) #define PMA_LENGTH (1024u)
#define ISOCHRONOUS_DOUBLEBUFFER
// NO internal Pull-ups // NO internal Pull-ups
// *6, *8, *D, and *E: 2 x 16 bits/word LPM Support // *6, *8, *D, and *E: 2 x 16 bits/word LPM Support
// When CAN clock is enabled, USB can use first 768 bytes ONLY. // When CAN clock is enabled, USB can use first 768 bytes ONLY.