improved FTDI support

This commit is contained in:
IngHK
2024-02-24 12:58:45 +01:00
parent 0b5f85eee0
commit 7fef5943ef
3 changed files with 622 additions and 297 deletions

View File

@@ -35,6 +35,9 @@
#include "host/usbh_pvt.h"
#include "cdc_host.h"
#include "serial/ftdi_sio.h"
#include "serial/cp210x.h"
#include "serial/ch34x.h"
// Level where CFG_TUSB_DEBUG must be at least for this driver is logged
#ifndef CFG_TUH_CDC_LOG_LEVEL
@@ -80,10 +83,14 @@ typedef struct {
uint8_t requested_line_state;
tuh_xfer_cb_t user_control_cb;
#if CFG_TUH_CDC_CH34X
#if CFG_TUH_CDC_FTDI || CFG_TUH_CDC_CH34X
tuh_xfer_cb_t requested_complete_cb;
#endif
#if CFG_TUH_CDC_FTDI
ftdi_private_t ftdi;
#endif
struct {
tu_edpt_stream_t tx;
tu_edpt_stream_t rx;
@@ -98,6 +105,9 @@ typedef struct {
CFG_TUH_MEM_SECTION
static cdch_interface_t cdch_data[CFG_TUH_CDC];
#if CFG_TUH_CDC_FTDI
static tusb_desc_device_t desc_dev[CFG_TUH_CDC][CFG_TUH_ENUMERATION_BUFSIZE];
#endif
//--------------------------------------------------------------------+
// Serial Driver
@@ -114,23 +124,22 @@ static bool acm_set_control_line_state(cdch_interface_t* p_cdc, tuh_xfer_cb_t co
//------------- FTDI prototypes -------------//
#if CFG_TUH_CDC_FTDI
#include "serial/ftdi_sio.h"
static uint16_t const ftdi_vid_pid_list[][2] = {CFG_TUH_CDC_FTDI_VID_PID_LIST};
#if CFG_TUSB_DEBUG && CFG_TUSB_DEBUG >= CFG_TUH_CDC_LOG_LEVEL
static uint8_t const * ftdi_chip_name[] = { FTDI_CHIP_NAMES };
#endif
static bool ftdi_open(uint8_t daddr, const tusb_desc_interface_t *itf_desc, uint16_t max_len);
static void ftdi_process_config(tuh_xfer_t* xfer);
static bool ftdi_sio_set_baudrate(cdch_interface_t* p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool ftdi_set_baudrate(cdch_interface_t* p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool ftdi_set_data_format(cdch_interface_t* p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool ftdi_set_line_coding(cdch_interface_t* p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool ftdi_sio_set_modem_ctrl(cdch_interface_t* p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool ftdi_set_modem_ctrl(cdch_interface_t* p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
#endif
//------------- CP210X prototypes -------------//
#if CFG_TUH_CDC_CP210X
#include "serial/cp210x.h"
static uint16_t const cp210x_vid_pid_list[][2] = {CFG_TUH_CDC_CP210X_VID_PID_LIST};
static bool cp210x_open(uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len);
@@ -144,8 +153,6 @@ static bool cp210x_set_modem_ctrl(cdch_interface_t* p_cdc, tuh_xfer_cb_t complet
//------------- CH34x prototypes -------------//
#if CFG_TUH_CDC_CH34X
#include "serial/ch34x.h"
static uint16_t const ch34x_vid_pid_list[][2] = {CFG_TUH_CDC_CH34X_VID_PID_LIST};
static bool ch34x_open(uint8_t daddr, tusb_desc_interface_t const* itf_desc, uint16_t max_len);
@@ -212,8 +219,8 @@ static const cdch_serial_driver_t serial_drivers[] = {
.vid_pid_count = TU_ARRAY_SIZE(ftdi_vid_pid_list),
.open = ftdi_open,
.process_set_config = ftdi_process_config,
.set_control_line_state = ftdi_sio_set_modem_ctrl,
.set_baudrate = ftdi_sio_set_baudrate,
.set_control_line_state = ftdi_set_modem_ctrl,
.set_baudrate = ftdi_set_baudrate,
.set_data_format = ftdi_set_data_format,
.set_line_coding = ftdi_set_line_coding,
#if CFG_TUSB_DEBUG && CFG_TUSB_DEBUG >= CFG_TUH_CDC_LOG_LEVEL
@@ -992,28 +999,27 @@ static void acm_process_config(tuh_xfer_t* xfer) {
//--------------------------------------------------------------------+
#if CFG_TUH_CDC_FTDI
static uint32_t ftdi_232bm_baud_to_divisor(cdch_interface_t* p_cdc);
static bool ftdi_determine_type(cdch_interface_t * p_cdc, uint8_t const idx);
static uint32_t ftdi_get_divisor(cdch_interface_t * p_cdc);
static uint8_t ftdi_get_idx(tuh_xfer_t * xfer);
//------------- Control Request -------------//
// set request without data
static bool ftdi_sio_set_request(cdch_interface_t* p_cdc, uint8_t command, uint16_t value, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_VENDOR,
.direction = TUSB_DIR_OUT
},
.bRequest = command,
.wValue = tu_htole16(value),
.wIndex = 0,
.wLength = 0
static bool ftdi_set_request(cdch_interface_t * p_cdc, uint8_t request, uint8_t requesttype,
uint16_t value, uint16_t index, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
tusb_control_request_t const request_setup = {
.bmRequestType = requesttype,
.bRequest = request,
.wValue = tu_htole16(value),
.wIndex = tu_htole16(index),
.wLength = 0
};
tuh_xfer_t xfer = {
.daddr = p_cdc->daddr,
.ep_addr = 0,
.setup = &request,
.setup = &request_setup,
.buffer = NULL,
.complete_cb = complete_cb,
.user_data = user_data
@@ -1022,16 +1028,57 @@ static bool ftdi_sio_set_request(cdch_interface_t* p_cdc, uint8_t command, uint1
return tuh_control_xfer(&xfer);
}
static bool ftdi_sio_reset(cdch_interface_t* p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return ftdi_sio_set_request(p_cdc, FTDI_SIO_RESET, FTDI_SIO_RESET_SIO, complete_cb, user_data);
#ifdef CFG_TUH_CDC_FTDI_LATENCY
static int8_t ftdi_write_latency_timer(cdch_interface_t * p_cdc, uint16_t latency,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
if (p_cdc->ftdi.chip_type == SIO /* || p_cdc->ftdi.chip_type == FT232A */ )
return FTDI_NOT_POSSIBLE;
return ftdi_set_request(p_cdc, FTDI_SIO_SET_LATENCY_TIMER_REQUEST, FTDI_SIO_SET_LATENCY_TIMER_REQUEST_TYPE,
latency, p_cdc->ftdi.channel, complete_cb, user_data) ? FTDI_REQUESTED : FTDI_FAIL;
}
#endif
static inline bool ftdi_sio_reset(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return ftdi_set_request(p_cdc, FTDI_SIO_RESET_REQUEST, FTDI_SIO_RESET_REQUEST_TYPE, FTDI_SIO_RESET_SIO,
p_cdc->ftdi.channel, complete_cb, user_data);
}
static bool ftdi_change_speed(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
uint32_t index_value = ftdi_get_divisor(p_cdc);
TU_VERIFY(index_value);
uint16_t value = (uint16_t) index_value;
uint16_t index = (uint16_t) (index_value >> 16);
if (p_cdc->ftdi.channel) {
index = (uint16_t)((index << 8) | p_cdc->ftdi.channel);
}
return ftdi_set_request(p_cdc, FTDI_SIO_SET_BAUDRATE_REQUEST, FTDI_SIO_SET_BAUDRATE_REQUEST_TYPE,
value, index, complete_cb, user_data);
}
static bool ftdi_set_data_request(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_VERIFY(p_cdc->requested_line_coding.data_bits >= 7 && p_cdc->requested_line_coding.data_bits <= 8, 0);
uint16_t value = (uint16_t) (
((uint32_t) p_cdc->requested_line_coding.data_bits & 0xf) | // data bit quantity is stored in bits 0-3
((uint32_t) p_cdc->requested_line_coding.parity & 0x7) << 8 | // parity is stored in bits 8-10, same coding
((uint32_t) p_cdc->requested_line_coding.stop_bits & 0x3) << 11 ); // stop bits quantity is stored in bits 11-12, same coding
// not each FTDI supports 1.5 stop bits
return ftdi_set_request(p_cdc, FTDI_SIO_SET_DATA_REQUEST, FTDI_SIO_SET_DATA_REQUEST_TYPE,
value, p_cdc->ftdi.channel, complete_cb, user_data);
}
static inline bool ftdi_update_mctrl(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
// FTDI has the same bit coding
return ftdi_set_request(p_cdc, FTDI_SIO_SET_MODEM_CTRL_REQUEST, FTDI_SIO_SET_MODEM_CTRL_REQUEST_TYPE,
p_cdc->requested_line_state, p_cdc->ftdi.channel, complete_cb, user_data);
}
//------------- Driver API -------------//
// internal control complete to update state such as line state, line_coding
static void ftdi_internal_control_complete(tuh_xfer_t * xfer) {
uint8_t const itf_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
uint8_t idx = tuh_cdc_itf_get_index(xfer->daddr, itf_num);
uint8_t const idx = ftdi_get_idx(xfer);
cdch_interface_t * p_cdc = get_itf(idx);
TU_ASSERT(p_cdc,);
bool const success = (xfer->result == XFER_RESULT_SUCCESS);
@@ -1039,11 +1086,17 @@ static void ftdi_internal_control_complete(tuh_xfer_t * xfer) {
if (success) {
switch (xfer->setup->bRequest) {
case FTDI_SIO_MODEM_CTRL:
case FTDI_SIO_SET_MODEM_CTRL_REQUEST:
p_cdc->line_state = p_cdc->requested_line_state;
break;
case FTDI_SIO_SET_BAUD_RATE:
case FTDI_SIO_SET_DATA_REQUEST:
p_cdc->line_coding.stop_bits = p_cdc->requested_line_coding.stop_bits;
p_cdc->line_coding.parity = p_cdc->requested_line_coding.parity;
p_cdc->line_coding.data_bits = p_cdc->requested_line_coding.data_bits;
break;
case FTDI_SIO_SET_BAUDRATE_REQUEST:
p_cdc->line_coding.bit_rate = p_cdc->requested_line_coding.bit_rate;
break;
@@ -1057,52 +1110,62 @@ static void ftdi_internal_control_complete(tuh_xfer_t * xfer) {
}
}
static bool ftdi_sio_set_baudrate(cdch_interface_t* p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
uint16_t const divisor = (uint16_t) ftdi_232bm_baud_to_divisor(p_cdc);
static bool ftdi_set_data_format(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
p_cdc->user_control_cb = complete_cb;
TU_ASSERT(ftdi_sio_set_request(p_cdc, FTDI_SIO_SET_BAUD_RATE, divisor,
complete_cb ? ftdi_internal_control_complete : NULL, user_data));
TU_ASSERT(ftdi_set_data_request(p_cdc, complete_cb ? ftdi_internal_control_complete : NULL, user_data));
return true;
}
static bool ftdi_set_data_format(cdch_interface_t* p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
(void) p_cdc;
(void) complete_cb;
(void) user_data;
// TODO not implemented yet
return false;
}
static bool ftdi_set_line_coding(cdch_interface_t* p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
(void) p_cdc;
(void) complete_cb;
(void) user_data;
// TODO not implemented yet
return false;
}
static bool ftdi_sio_set_modem_ctrl(cdch_interface_t* p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
static bool ftdi_set_baudrate(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
p_cdc->user_control_cb = complete_cb;
TU_ASSERT(ftdi_sio_set_request(p_cdc, FTDI_SIO_MODEM_CTRL, 0x0300 | p_cdc->requested_line_state,
complete_cb ? ftdi_internal_control_complete : NULL, user_data));
TU_ASSERT(ftdi_change_speed(p_cdc, complete_cb ? ftdi_internal_control_complete : NULL, user_data));
return true;
}
static void ftdi_set_line_coding_stage1_complete(tuh_xfer_t * xfer) {
uint8_t const itf_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
set_line_coding_stage1_complete(xfer, itf_num,
ftdi_set_data_request, // control request function to set data format
ftdi_internal_control_complete); // control complete function to be called after request
}
// 2 stages: set baudrate (stage1) + set data format (stage2)
static bool ftdi_set_line_coding(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return set_line_coding_sequence(p_cdc,
ftdi_change_speed, // control request function to set baudrate
ftdi_set_data_request, // control request function to set data format
ftdi_set_line_coding_stage1_complete, // function to be called after stage 1 completed
ftdi_internal_control_complete, // control complete function to be called after request
complete_cb, user_data);
}
static bool ftdi_set_modem_ctrl(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
p_cdc->user_control_cb = complete_cb;
TU_ASSERT(ftdi_update_mctrl(p_cdc, complete_cb ? ftdi_internal_control_complete : NULL, user_data));
return true;
}
//------------- Enumeration -------------//
enum {
CONFIG_FTDI_RESET = 0,
CONFIG_FTDI_MODEM_CTRL,
CONFIG_FTDI_SET_BAUDRATE,
CONFIG_FTDI_GET_DESC = 0,
CONFIG_FTDI_DETERMINE_TYPE,
CONFIG_FTDI_WRITE_LATENCY,
CONFIG_FTDI_SIO_RESET,
CONFIG_FTDI_SET_DATA,
CONFIG_FTDI_SET_BAUDRATE,
CONFIG_FTDI_FLOW_CONTROL,
CONFIG_FTDI_MODEM_CTRL,
CONFIG_FTDI_COMPLETE
};
static bool ftdi_open(uint8_t daddr, const tusb_desc_interface_t *itf_desc, uint16_t max_len) {
static bool ftdi_open(uint8_t daddr, const tusb_desc_interface_t * itf_desc, uint16_t max_len) {
// FTDI Interface includes 1 vendor interface + 2 bulk endpoints
TU_VERIFY(itf_desc->bInterfaceSubClass == 0xff && itf_desc->bInterfaceProtocol == 0xff && itf_desc->bNumEndpoints == 2);
TU_VERIFY(itf_desc->bInterfaceSubClass == 0xff && itf_desc->bInterfaceProtocol == 0xff &&
itf_desc->bNumEndpoints == 2);
TU_VERIFY(sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t) <= max_len);
cdch_interface_t * p_cdc = make_new_itf(daddr, itf_desc);
@@ -1113,54 +1176,97 @@ static bool ftdi_open(uint8_t daddr, const tusb_desc_interface_t *itf_desc, uint
// endpoint pair
tusb_desc_endpoint_t const * desc_ep = (tusb_desc_endpoint_t const *) tu_desc_next(itf_desc);
/*
* NOTE: Some customers have programmed FT232R/FT245R devices
* with an endpoint size of 0 - not good.
*/
TU_ASSERT(desc_ep->wMaxPacketSize != 0);
// data endpoints expected to be in pairs
return open_ep_stream_pair(p_cdc, desc_ep);
}
static void ftdi_process_config(tuh_xfer_t* xfer) {
static void ftdi_process_config(tuh_xfer_t * xfer) {
uintptr_t const state = xfer->user_data;
uint8_t const itf_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
uint8_t const idx = tuh_cdc_itf_get_index(xfer->daddr, itf_num);
uint8_t const idx = ftdi_get_idx(xfer);
cdch_interface_t * p_cdc = get_itf(idx);
TU_ASSERT_COMPLETE(p_cdc && xfer->result == XFER_RESULT_SUCCESS);
uint8_t const itf_num = p_cdc->bInterfaceNumber;
switch(state) {
// Note may need to read FTDI eeprom
case CONFIG_FTDI_RESET:
TU_ASSERT_COMPLETE(ftdi_sio_reset(p_cdc, ftdi_process_config, CONFIG_FTDI_MODEM_CTRL));
// from here sequence overtaken from Linux Kernel function ftdi_port_probe()
case CONFIG_FTDI_GET_DESC:
// get device descriptor
p_cdc->user_control_cb = ftdi_process_config; // set once for whole process config
if (itf_num == 0) { // only necessary for 1st interface. other interface overtake type from interface 0
TU_ASSERT_COMPLETE(tuh_descriptor_get_device(xfer->daddr, desc_dev[idx], sizeof(tusb_desc_device_t),
ftdi_process_config, CONFIG_FTDI_DETERMINE_TYPE));
break;
}
TU_ATTR_FALLTHROUGH;
case CONFIG_FTDI_DETERMINE_TYPE:
// determine type
if (itf_num == 0) {
TU_ASSERT_COMPLETE(ftdi_determine_type(p_cdc, idx));
} else {
// other interfaces have same type as interface 0
uint8_t const idx_itf0 = tuh_cdc_itf_get_index(xfer->daddr, 0);
cdch_interface_t const * p_cdc_itf0 = get_itf(idx_itf0);
p_cdc->ftdi.chip_type = p_cdc_itf0->ftdi.chip_type;
}
TU_ATTR_FALLTHROUGH;
case CONFIG_FTDI_WRITE_LATENCY:
#ifdef CFG_TUH_CDC_FTDI_LATENCY
int8_t result = ftdi_write_latency_timer(p_cdc, CFG_TUH_CDC_FTDI_LATENCY, ftdi_process_config,
CONFIG_FTDI_SIO_RESET);
TU_ASSERT_COMPLETE(result != FTDI_FAIL);
if(result == FTDI_REQUESTED) {
break;
} // else FTDI_NOT_POSSIBLE => continue directly with next state
#endif
TU_ATTR_FALLTHROUGH;
// from here sequence overtaken from Linux Kernel function ftdi_open()
case CONFIG_FTDI_SIO_RESET:
TU_ASSERT_COMPLETE(ftdi_sio_reset(p_cdc, ftdi_process_config, CONFIG_FTDI_SET_DATA));
break;
// from here sequence overtaken from Linux Kernel function ftdi_set_termios()
case CONFIG_FTDI_SET_DATA:
#ifdef CFG_TUH_CDC_LINE_CODING_ON_ENUM
p_cdc->requested_line_coding = (cdc_line_coding_t) CFG_TUH_CDC_LINE_CODING_ON_ENUM;
TU_ASSERT_COMPLETE(ftdi_set_data_request(p_cdc, ftdi_internal_control_complete, CONFIG_FTDI_SET_BAUDRATE));
break;
#else
TU_ATTR_FALLTHROUGH;
#endif
case CONFIG_FTDI_SET_BAUDRATE:
#ifdef CFG_TUH_CDC_LINE_CODING_ON_ENUM
TU_ASSERT_COMPLETE(ftdi_change_speed(p_cdc, ftdi_internal_control_complete, CONFIG_FTDI_FLOW_CONTROL));
break;
#else
TU_ATTR_FALLTHROUGH;
#endif
case CONFIG_FTDI_FLOW_CONTROL:
// disable flow control
TU_ASSERT_COMPLETE(ftdi_set_request(p_cdc, FTDI_SIO_SET_FLOW_CTRL_REQUEST, FTDI_SIO_SET_FLOW_CTRL_REQUEST_TYPE,
0, FTDI_SIO_DISABLE_FLOW_CTRL, ftdi_process_config, CONFIG_FTDI_MODEM_CTRL));
break;
case CONFIG_FTDI_MODEM_CTRL:
#ifdef CFG_TUH_CDC_LINE_CONTROL_ON_ENUM
p_cdc->requested_line_state = CFG_TUH_CDC_LINE_CONTROL_ON_ENUM;
TU_ASSERT_COMPLETE(ftdi_sio_set_modem_ctrl(p_cdc, ftdi_process_config, CONFIG_FTDI_SET_BAUDRATE));
TU_ASSERT_COMPLETE(ftdi_update_mctrl(p_cdc, ftdi_internal_control_complete, CONFIG_FTDI_COMPLETE));
break;
#else
TU_ATTR_FALLTHROUGH;
#endif
case CONFIG_FTDI_SET_BAUDRATE: {
#ifdef CFG_TUH_CDC_LINE_CODING_ON_ENUM
p_cdc->requested_line_coding.bit_rate = ((cdc_line_coding_t) CFG_TUH_CDC_LINE_CODING_ON_ENUM).bit_rate;
TU_ASSERT_COMPLETE(ftdi_sio_set_baudrate(p_cdc, ftdi_process_config, CONFIG_FTDI_SET_DATA));
break;
#else
TU_ATTR_FALLTHROUGH;
#endif
}
case CONFIG_FTDI_SET_DATA: {
#if 0 // TODO set data format
#ifdef CFG_TUH_CDC_LINE_CODING_ON_ENUM
cdc_line_coding_t line_coding = CFG_TUH_CDC_LINE_CODING_ON_ENUM;
TU_ASSERT_COMPLETE(ftdi_sio_set_data(p_cdc, process_ftdi_config, CONFIG_FTDI_COMPLETE));
break;
#endif
#endif
TU_ATTR_FALLTHROUGH;
}
case CONFIG_FTDI_COMPLETE:
set_config_complete(idx, 0, true);
break;
@@ -1173,28 +1279,249 @@ static void ftdi_process_config(tuh_xfer_t* xfer) {
//------------- Helper -------------//
static bool ftdi_determine_type(cdch_interface_t * p_cdc, uint8_t const idx)
{
uint16_t const version = desc_dev[idx]->bcdDevice;
uint8_t const itf_num = p_cdc->bInterfaceNumber;
p_cdc->ftdi.chip_type = UNKNOWN;
/* Assume Hi-Speed type */
p_cdc->ftdi.channel = CHANNEL_A + itf_num;
switch (version) {
case 0x200:
// FT232A not supported to keep it simple (no extra _read_latency_timer())
// not testable
// p_cdc->ftdi.chip_type = FT232A;
// p_cdc->ftdi.baud_base = 48000000 / 2;
// p_cdc->ftdi.channel = 0;
// /*
// * FT232B devices have a bug where bcdDevice gets set to 0x200
// * when iSerialNumber is 0. Assume it is an FT232B in case the
// * latency timer is readable.
// */
// if (desc->iSerialNumber == 0 &&
// _read_latency_timer(port) >= 0) {
// p_cdc->ftdi.chip_type = FT232B;
// }
break;
case 0x400:
p_cdc->ftdi.chip_type = FT232B;
p_cdc->ftdi.channel = 0;
break;
case 0x500:
p_cdc->ftdi.chip_type = FT2232C;
break;
case 0x600:
p_cdc->ftdi.chip_type = FT232R;
p_cdc->ftdi.channel = 0;
break;
case 0x700:
p_cdc->ftdi.chip_type = FT2232H;
break;
case 0x800:
p_cdc->ftdi.chip_type = FT4232H;
break;
case 0x900:
p_cdc->ftdi.chip_type = FT232H;
break;
case 0x1000:
p_cdc->ftdi.chip_type = FTX;
break;
case 0x2800:
p_cdc->ftdi.chip_type = FT2233HP;
break;
case 0x2900:
p_cdc->ftdi.chip_type = FT4233HP;
break;
case 0x3000:
p_cdc->ftdi.chip_type = FT2232HP;
break;
case 0x3100:
p_cdc->ftdi.chip_type = FT4232HP;
break;
case 0x3200:
p_cdc->ftdi.chip_type = FT233HP;
break;
case 0x3300:
p_cdc->ftdi.chip_type = FT232HP;
break;
case 0x3600:
p_cdc->ftdi.chip_type = FT4232HA;
break;
default:
if (version < 0x200) {
p_cdc->ftdi.chip_type = SIO;
p_cdc->ftdi.channel = 0;
}
break;
}
TU_LOG_P_CDC("%s detected", ftdi_chip_name[p_cdc->ftdi.chip_type]);
return (p_cdc->ftdi.chip_type != UNKNOWN);
}
// FT232A not supported
//static uint32_t ftdi_232am_baud_base_to_divisor(uint32_t baud, uint32_t base)
//{
// uint32_t divisor;
// /* divisor shifted 3 bits to the left */
// uint32_t divisor3 = DIV_ROUND_CLOSEST(base, 2 * baud);
// if ((divisor3 & 0x7) == 7)
// divisor3++; /* round x.7/8 up to x+1 */
// divisor = divisor3 >> 3;
// divisor3 &= 0x7;
// if (divisor3 == 1)
// divisor |= 0xc000; /* +0.125 */
// else if (divisor3 >= 4)
// divisor |= 0x4000; /* +0.5 */
// else if (divisor3 != 0)
// divisor |= 0x8000; /* +0.25 */
// else if (divisor == 1)
// divisor = 0; /* special case for maximum baud rate */
// return divisor;
//}
// FT232A not supported
//static inline uint32_t ftdi_232am_baud_to_divisor(uint32_t baud)
//{
// return ftdi_232am_baud_base_to_divisor(baud, (uint32_t) 48000000);
//}
static uint32_t ftdi_232bm_baud_base_to_divisor(uint32_t baud, uint32_t base) {
const uint8_t divfrac[8] = { 0, 3, 2, 4, 1, 5, 6, 7 };
uint8_t divfrac[8] = { 0, 3, 2, 4, 1, 5, 6, 7 };
uint32_t divisor;
/* divisor shifted 3 bits to the left */
uint32_t divisor3 = base / (2 * baud);
divisor = (divisor3 >> 3);
divisor |= (uint32_t) divfrac[divisor3 & 0x7] << 14;
uint32_t divisor3 = DIV_ROUND_CLOSEST(base, 2 * baud);
divisor = divisor3 >> 3;
divisor |= (uint32_t)divfrac[divisor3 & 0x7] << 14;
/* Deal with special cases for highest baud rates. */
if (divisor == 1) { /* 1.0 */
if (divisor == 1) /* 1.0 */
divisor = 0;
}
else if (divisor == 0x4001) { /* 1.5 */
else if (divisor == 0x4001) /* 1.5 */
divisor = 1;
}
return divisor;
}
static uint32_t ftdi_232bm_baud_to_divisor(cdch_interface_t* p_cdc) {
return ftdi_232bm_baud_base_to_divisor(p_cdc->requested_line_coding.bit_rate, 48000000u);
static inline uint32_t ftdi_232bm_baud_to_divisor(uint32_t baud)
{
return ftdi_232bm_baud_base_to_divisor(baud, 48000000);
}
static uint32_t ftdi_2232h_baud_base_to_divisor(uint32_t baud, uint32_t base)
{
static const unsigned char divfrac[8] = { 0, 3, 2, 4, 1, 5, 6, 7 };
uint32_t divisor;
uint32_t divisor3;
/* hi-speed baud rate is 10-bit sampling instead of 16-bit */
divisor3 = DIV_ROUND_CLOSEST(8 * base, 10 * baud);
divisor = divisor3 >> 3;
divisor |= (uint32_t)divfrac[divisor3 & 0x7] << 14;
/* Deal with special cases for highest baud rates. */
if (divisor == 1) /* 1.0 */
divisor = 0;
else if (divisor == 0x4001) /* 1.5 */
divisor = 1;
/*
* Set this bit to turn off a divide by 2.5 on baud rate generator
* This enables baud rates up to 12Mbaud but cannot reach below 1200
* baud with this bit set
*/
divisor |= 0x00020000;
return divisor;
}
static inline uint32_t ftdi_2232h_baud_to_divisor(uint32_t baud)
{
return ftdi_2232h_baud_base_to_divisor(baud, (uint32_t) 120000000);
}
static inline uint32_t ftdi_get_divisor(cdch_interface_t * p_cdc)
{
uint32_t baud = p_cdc->requested_line_coding.bit_rate;
uint32_t div_value = 0;
TU_VERIFY(baud);
switch (p_cdc->ftdi.chip_type) {
case UNKNOWN:
return 0;
case SIO:
switch (baud) {
case 300: div_value = ftdi_sio_b300; break;
case 600: div_value = ftdi_sio_b600; break;
case 1200: div_value = ftdi_sio_b1200; break;
case 2400: div_value = ftdi_sio_b2400; break;
case 4800: div_value = ftdi_sio_b4800; break;
case 9600: div_value = ftdi_sio_b9600; break;
case 19200: div_value = ftdi_sio_b19200; break;
case 38400: div_value = ftdi_sio_b38400; break;
case 57600: div_value = ftdi_sio_b57600; break;
case 115200: div_value = ftdi_sio_b115200; break;
default:
// Baudrate not supported
return 0;
break;
}
break;
// FT232A not supported
// case FT232A:
// if (baud <= 3000000) {
// div_value = ftdi_232am_baud_to_divisor(baud);
// } else {
// // Baud rate too high!
// baud = 9600;
// div_value = ftdi_232am_baud_to_divisor(9600);
// div_okay = false;
// }
// break;
case FT232B:
case FT2232C:
case FT232R:
case FTX:
TU_VERIFY(baud <= 3000000); // else Baud rate too high!
div_value = ftdi_232bm_baud_to_divisor(baud);
break;
case FT232H:
case FT2232H:
case FT4232H:
case FT4232HA:
case FT232HP:
case FT233HP:
case FT2232HP:
case FT2233HP:
case FT4232HP:
case FT4233HP:
default:
TU_VERIFY(baud <= 12000000); // else Baud rate too high!
if (baud >= 1200) {
div_value = ftdi_2232h_baud_to_divisor(baud);
} else {
div_value = ftdi_232bm_baud_to_divisor(baud);
}
break;
}
TU_LOG_P_CDC("Baudrate divisor 0x%lu", div_value);
return div_value;
}
static uint8_t ftdi_get_idx(tuh_xfer_t * xfer) {
uint8_t const channel = (uint8_t) tu_le16toh(xfer->setup->wIndex); // channel index, or 0 for legacy types
for (uint8_t i = 0; i < CFG_TUH_CDC; i++) {
const cdch_interface_t * p_cdc = &cdch_data[i];
if (p_cdc->daddr == xfer->daddr &&
(!p_cdc->ftdi.channel || // 0 for legacy types (only interface 0)
channel == p_cdc->ftdi.channel)) { // or multi-channel types (interfaces 0..n)
return i;
}
}
return TUSB_INDEX_INVALID_8;
}
#endif

View File

@@ -25,222 +25,207 @@
#ifndef TUSB_FTDI_SIO_H
#define TUSB_FTDI_SIO_H
// VID for matching FTDI devices
#define TU_FTDI_VID 0x0403
#include <stdint.h>
// Commands
#define FTDI_SIO_RESET 0 /* Reset the port */
#define FTDI_SIO_MODEM_CTRL 1 /* Set the modem control register */
#define FTDI_SIO_SET_FLOW_CTRL 2 /* Set flow control register */
#define FTDI_SIO_SET_BAUD_RATE 3 /* Set baud rate */
#define FTDI_SIO_SET_DATA 4 /* Set the data characteristics of the port */
#define FTDI_SIO_GET_MODEM_STATUS 5 /* Retrieve current value of modem status register */
#define FTDI_SIO_SET_EVENT_CHAR 6 /* Set the event character */
#define FTDI_SIO_SET_ERROR_CHAR 7 /* Set the error character */
#define FTDI_SIO_SET_LATENCY_TIMER 9 /* Set the latency timer */
#define FTDI_SIO_GET_LATENCY_TIMER 0x0a /* Get the latency timer */
#define FTDI_SIO_SET_BITMODE 0x0b /* Set bitbang mode */
#define FTDI_SIO_READ_PINS 0x0c /* Read immediate value of pins */
#define FTDI_SIO_READ_EEPROM 0x90 /* Read EEPROM */
#define FTDI_SIO_RESET 0 // Reset the port
#define FTDI_SIO_MODEM_CTRL 1 // Set the modem control register
#define FTDI_SIO_SET_FLOW_CTRL 2 // Set flow control register
#define FTDI_SIO_SET_BAUD_RATE 3 // Set baud rate
#define FTDI_SIO_SET_DATA 4 // Set the data characteristics of the port
#define FTDI_SIO_GET_MODEM_STATUS 5 // Retrieve current value of modem status register
#define FTDI_SIO_SET_EVENT_CHAR 6 // Set the event character
#define FTDI_SIO_SET_ERROR_CHAR 7 // Set the error character
#define FTDI_SIO_SET_LATENCY_TIMER 9 // Set the latency timer
#define FTDI_SIO_GET_LATENCY_TIMER 10 // Get the latency timer
#define FTDI_SIO_SET_BITMODE 11 // Set bitbang mode
#define FTDI_SIO_READ_PINS 12 // Read immediate value of pins
#define FTDI_SIO_READ_EEPROM 0x90 // Read EEPROM
/* FTDI_SIO_RESET */
// Channel indices for FT2232, FT2232H and FT4232H devices
#define CHANNEL_A 1
#define CHANNEL_B 2
#define CHANNEL_C 3
#define CHANNEL_D 4
// Port Identifier Table
#define PIT_DEFAULT 0 // SIOA
#define PIT_SIOA 1 // SIOA
// The device this driver is tested with one has only one port
#define PIT_SIOB 2 // SIOB
#define PIT_PARALLEL 3 // Parallel
// FTDI_SIO_RESET
#define FTDI_SIO_RESET_REQUEST FTDI_SIO_RESET
#define FTDI_SIO_RESET_REQUEST_TYPE 0x40
#define FTDI_SIO_RESET_SIO 0
#define FTDI_SIO_RESET_PURGE_RX 1
#define FTDI_SIO_RESET_PURGE_TX 2
/*
* BmRequestType: 0100 0000B
* bRequest: FTDI_SIO_RESET
* wValue: Control Value
* 0 = Reset SIO
* 1 = Purge RX buffer
* 2 = Purge TX buffer
* wIndex: Port
* wLength: 0
* Data: None
*
* The Reset SIO command has this effect:
*
* Sets flow control set to 'none'
* Event char = $0D
* Event trigger = disabled
* Purge RX buffer
* Purge TX buffer
* Clear DTR
* Clear RTS
* baud and data format not reset
*
* The Purge RX and TX buffer commands affect nothing except the buffers
*
*/
// FTDI_SIO_SET_BAUDRATE
#define FTDI_SIO_SET_BAUDRATE_REQUEST_TYPE 0x40
#define FTDI_SIO_SET_BAUDRATE_REQUEST 3
/* FTDI_SIO_MODEM_CTRL */
/*
* BmRequestType: 0100 0000B
* bRequest: FTDI_SIO_MODEM_CTRL
* wValue: ControlValue (see below)
* wIndex: Port
* wLength: 0
* Data: None
*
* NOTE: If the device is in RTS/CTS flow control, the RTS set by this
* command will be IGNORED without an error being returned
* Also - you can not set DTR and RTS with one control message
*/
enum ftdi_sio_baudrate {
ftdi_sio_b300 = 0,
ftdi_sio_b600 = 1,
ftdi_sio_b1200 = 2,
ftdi_sio_b2400 = 3,
ftdi_sio_b4800 = 4,
ftdi_sio_b9600 = 5,
ftdi_sio_b19200 = 6,
ftdi_sio_b38400 = 7,
ftdi_sio_b57600 = 8,
ftdi_sio_b115200 = 9
};
// FTDI_SIO_SET_DATA
#define FTDI_SIO_SET_DATA_REQUEST FTDI_SIO_SET_DATA
#define FTDI_SIO_SET_DATA_REQUEST_TYPE 0x40
#define FTDI_SIO_SET_DATA_PARITY_NONE (0x0 << 8)
#define FTDI_SIO_SET_DATA_PARITY_ODD (0x1 << 8)
#define FTDI_SIO_SET_DATA_PARITY_EVEN (0x2 << 8)
#define FTDI_SIO_SET_DATA_PARITY_MARK (0x3 << 8)
#define FTDI_SIO_SET_DATA_PARITY_SPACE (0x4 << 8)
#define FTDI_SIO_SET_DATA_STOP_BITS_1 (0x0 << 11)
#define FTDI_SIO_SET_DATA_STOP_BITS_15 (0x1 << 11)
#define FTDI_SIO_SET_DATA_STOP_BITS_2 (0x2 << 11)
#define FTDI_SIO_SET_BREAK (0x1 << 14)
// FTDI_SIO_MODEM_CTRL
#define FTDI_SIO_SET_MODEM_CTRL_REQUEST_TYPE 0x40
#define FTDI_SIO_SET_MODEM_CTRL_REQUEST FTDI_SIO_MODEM_CTRL
#define FTDI_SIO_SET_DTR_MASK 0x1
#define FTDI_SIO_SET_DTR_HIGH ((FTDI_SIO_SET_DTR_MASK << 8) | 1)
#define FTDI_SIO_SET_DTR_LOW ((FTDI_SIO_SET_DTR_MASK << 8) | 0)
#define FTDI_SIO_SET_DTR_HIGH ((FTDI_SIO_SET_DTR_MASK << 8) | 1)
#define FTDI_SIO_SET_DTR_LOW ((FTDI_SIO_SET_DTR_MASK << 8) | 0)
#define FTDI_SIO_SET_RTS_MASK 0x2
#define FTDI_SIO_SET_RTS_HIGH ((FTDI_SIO_SET_RTS_MASK << 8) | 2)
#define FTDI_SIO_SET_RTS_LOW ((FTDI_SIO_SET_RTS_MASK << 8) | 0)
/*
* ControlValue
* B0 DTR state
* 0 = reset
* 1 = set
* B1 RTS state
* 0 = reset
* 1 = set
* B2..7 Reserved
* B8 DTR state enable
* 0 = ignore
* 1 = use DTR state
* B9 RTS state enable
* 0 = ignore
* 1 = use RTS state
* B10..15 Reserved
*/
/* FTDI_SIO_SET_FLOW_CTRL */
// FTDI_SIO_SET_FLOW_CTRL
#define FTDI_SIO_SET_FLOW_CTRL_REQUEST_TYPE 0x40
#define FTDI_SIO_SET_FLOW_CTRL_REQUEST FTDI_SIO_SET_FLOW_CTRL
#define FTDI_SIO_DISABLE_FLOW_CTRL 0x0
#define FTDI_SIO_RTS_CTS_HS (0x1 << 8)
#define FTDI_SIO_DTR_DSR_HS (0x2 << 8)
#define FTDI_SIO_XON_XOFF_HS (0x4 << 8)
/*
* BmRequestType: 0100 0000b
* bRequest: FTDI_SIO_SET_FLOW_CTRL
* wValue: Xoff/Xon
* wIndex: Protocol/Port - hIndex is protocol / lIndex is port
* wLength: 0
* Data: None
*
* hIndex protocol is:
* B0 Output handshaking using RTS/CTS
* 0 = disabled
* 1 = enabled
* B1 Output handshaking using DTR/DSR
* 0 = disabled
* 1 = enabled
* B2 Xon/Xoff handshaking
* 0 = disabled
* 1 = enabled
*
* A value of zero in the hIndex field disables handshaking
*
* If Xon/Xoff handshaking is specified, the hValue field should contain the
* XOFF character and the lValue field contains the XON character.
*/
// FTDI_SIO_GET_LATENCY_TIMER
#define FTDI_SIO_GET_LATENCY_TIMER_REQUEST FTDI_SIO_GET_LATENCY_TIMER
#define FTDI_SIO_GET_LATENCY_TIMER_REQUEST_TYPE 0xC0
/* FTDI_SIO_SET_BAUD_RATE */
/*
* BmRequestType: 0100 0000B
* bRequest: FTDI_SIO_SET_BAUDRATE
* wValue: BaudDivisor value - see below
* wIndex: Port
* wLength: 0
* Data: None
* The BaudDivisor values are calculated as follows (too complicated):
*/
// FTDI_SIO_SET_LATENCY_TIMER
#define FTDI_SIO_SET_LATENCY_TIMER_REQUEST FTDI_SIO_SET_LATENCY_TIMER
#define FTDI_SIO_SET_LATENCY_TIMER_REQUEST_TYPE 0x40
/* FTDI_SIO_SET_DATA */
#define FTDI_SIO_SET_DATA_PARITY_NONE (0x0 << 8)
#define FTDI_SIO_SET_DATA_PARITY_ODD (0x1 << 8)
#define FTDI_SIO_SET_DATA_PARITY_EVEN (0x2 << 8)
#define FTDI_SIO_SET_DATA_PARITY_MARK (0x3 << 8)
#define FTDI_SIO_SET_DATA_PARITY_SPACE (0x4 << 8)
#define FTDI_SIO_SET_DATA_STOP_BITS_1 (0x0 << 11)
#define FTDI_SIO_SET_DATA_STOP_BITS_15 (0x1 << 11)
#define FTDI_SIO_SET_DATA_STOP_BITS_2 (0x2 << 11)
#define FTDI_SIO_SET_BREAK (0x1 << 14)
// FTDI_SIO_SET_EVENT_CHAR
#define FTDI_SIO_SET_EVENT_CHAR_REQUEST FTDI_SIO_SET_EVENT_CHAR
#define FTDI_SIO_SET_EVENT_CHAR_REQUEST_TYPE 0x40
/*
* BmRequestType: 0100 0000B
* bRequest: FTDI_SIO_SET_DATA
* wValue: Data characteristics (see below)
* wIndex: Port
* wLength: 0
* Data: No
*
* Data characteristics
*
* B0..7 Number of data bits
* B8..10 Parity
* 0 = None
* 1 = Odd
* 2 = Even
* 3 = Mark
* 4 = Space
* B11..13 Stop Bits
* 0 = 1
* 1 = 1.5
* 2 = 2
* B14
* 1 = TX ON (break)
* 0 = TX OFF (normal state)
* B15 Reserved
*
*/
// FTDI_SIO_GET_MODEM_STATUS
#define FTDI_SIO_GET_MODEM_STATUS_REQUEST_TYPE 0xc0
#define FTDI_SIO_GET_MODEM_STATUS_REQUEST FTDI_SIO_GET_MODEM_STATUS
#define FTDI_SIO_CTS_MASK 0x10
#define FTDI_SIO_DSR_MASK 0x20
#define FTDI_SIO_RI_MASK 0x40
#define FTDI_SIO_RLSD_MASK 0x80
/*
* DATA FORMAT
*
* IN Endpoint
*
* The device reserves the first two bytes of data on this endpoint to contain
* the current values of the modem and line status registers. In the absence of
* data, the device generates a message consisting of these two status bytes
* every 40 ms
*
* Byte 0: Modem Status
*
* Offset Description
* B0 Reserved - must be 1
* B1 Reserved - must be 0
* B2 Reserved - must be 0
* B3 Reserved - must be 0
* B4 Clear to Send (CTS)
* B5 Data Set Ready (DSR)
* B6 Ring Indicator (RI)
* B7 Receive Line Signal Detect (RLSD)
*
* Byte 1: Line Status
*
* Offset Description
* B0 Data Ready (DR)
* B1 Overrun Error (OE)
* B2 Parity Error (PE)
* B3 Framing Error (FE)
* B4 Break Interrupt (BI)
* B5 Transmitter Holding Register (THRE)
* B6 Transmitter Empty (TEMT)
* B7 Error in RCVR FIFO
*
*/
#define FTDI_RS0_CTS (1 << 4)
#define FTDI_RS0_DSR (1 << 5)
#define FTDI_RS0_RI (1 << 6)
#define FTDI_RS0_RLSD (1 << 7)
// FTDI_SIO_SET_BITMODE
#define FTDI_SIO_SET_BITMODE_REQUEST_TYPE 0x40
#define FTDI_SIO_SET_BITMODE_REQUEST FTDI_SIO_SET_BITMODE
#define FTDI_RS_DR 1
#define FTDI_RS_OE (1<<1)
#define FTDI_RS_PE (1<<2)
#define FTDI_RS_FE (1<<3)
#define FTDI_RS_BI (1<<4)
#define FTDI_RS_THRE (1<<5)
#define FTDI_RS_TEMT (1<<6)
#define FTDI_RS_FIFO (1<<7)
// Possible bitmodes for FTDI_SIO_SET_BITMODE_REQUEST
#define FTDI_SIO_BITMODE_RESET 0x00
#define FTDI_SIO_BITMODE_CBUS 0x20
// FTDI_SIO_READ_PINS
#define FTDI_SIO_READ_PINS_REQUEST_TYPE 0xc0
#define FTDI_SIO_READ_PINS_REQUEST FTDI_SIO_READ_PINS
// FTDI_SIO_READ_EEPROM
#define FTDI_SIO_READ_EEPROM_REQUEST_TYPE 0xc0
#define FTDI_SIO_READ_EEPROM_REQUEST FTDI_SIO_READ_EEPROM
#define FTDI_FTX_CBUS_MUX_GPIO 0x8
#define FTDI_FT232R_CBUS_MUX_GPIO 0xa
#define FTDI_RS0_CTS (1 << 4)
#define FTDI_RS0_DSR (1 << 5)
#define FTDI_RS0_RI (1 << 6)
#define FTDI_RS0_RLSD (1 << 7)
#define FTDI_RS_DR 1
#define FTDI_RS_OE (1<<1)
#define FTDI_RS_PE (1<<2)
#define FTDI_RS_FE (1<<3)
#define FTDI_RS_BI (1<<4)
#define FTDI_RS_THRE (1<<5)
#define FTDI_RS_TEMT (1<<6)
#define FTDI_RS_FIFO (1<<7)
// chip types and names
enum ftdi_chip_type {
SIO = 0,
// FT232A,
FT232B,
FT2232C,
FT232R,
FT232H,
FT2232H,
FT4232H,
FT4232HA,
FT232HP,
FT233HP,
FT2232HP,
FT2233HP,
FT4232HP,
FT4233HP,
FTX,
UNKNOWN
};
#define FTDI_CHIP_NAMES \
[SIO] = (uint8_t const*) "SIO", /* the serial part of FT8U100AX */ \
/* [FT232A] = (uint8_t const*) "FT232A", */ \
[FT232B] = (uint8_t const*) "FT232B", \
[FT2232C] = (uint8_t const*) "FT2232C/D", \
[FT232R] = (uint8_t const*) "FT232R", \
[FT232H] = (uint8_t const*) "FT232H", \
[FT2232H] = (uint8_t const*) "FT2232H", \
[FT4232H] = (uint8_t const*) "FT4232H", \
[FT4232HA] = (uint8_t const*) "FT4232HA", \
[FT232HP] = (uint8_t const*) "FT232HP", \
[FT233HP] = (uint8_t const*) "FT233HP", \
[FT2232HP] = (uint8_t const*) "FT2232HP", \
[FT2233HP] = (uint8_t const*) "FT2233HP", \
[FT4232HP] = (uint8_t const*) "FT4232HP", \
[FT4233HP] = (uint8_t const*) "FT4233HP", \
[FTX] = (uint8_t const*) "FT-X", \
[UNKNOWN] = (uint8_t const*) "UNKNOWN"
// private interface data
typedef struct ftdi_private {
enum ftdi_chip_type chip_type;
uint8_t channel; // channel index, or 0 for legacy types
} ftdi_private_t;
#define FTDI_OK true
#define FTDI_FAIL false
#define FTDI_NOT_POSSIBLE -1
#define FTDI_REQUESTED -2
// division and round function overtaken from math.h
#define DIV_ROUND_CLOSEST(x, divisor)( \
{ \
typeof(x) __x = x; \
typeof(divisor) __d = divisor; \
(((typeof(x))-1) > 0 || \
((typeof(divisor))-1) > 0 || \
(((__x) > 0) == ((__d) > 0))) ? \
(((__x) + ((__d) / 2)) / (__d)) : \
(((__x) - ((__d) / 2)) / (__d)); \
} \
)
#endif //TUSB_FTDI_SIO_H

View File

@@ -456,9 +456,22 @@
#ifndef CFG_TUH_CDC_FTDI_VID_PID_LIST
// List of product IDs that can use the FTDI CDC driver. 0x0403 is FTDI's VID
#define CFG_TUH_CDC_FTDI_VID_PID_LIST \
{0x0403, 0x6001}, {0x0403, 0x6006}, {0x0403, 0x6010}, {0x0403, 0x6011}, \
{0x0403, 0x6014}, {0x0403, 0x6015}, {0x0403, 0x8372}, {0x0403, 0xFBFA}, \
{0x0403, 0xCD18}
{0x0403, 0x6001}, /* Similar device to SIO above */ \
{0x0403, 0x6006}, /* FTDI's alternate PID for above */ \
{0x0403, 0x6010}, /* Dual channel device */ \
{0x0403, 0x6011}, /* Quad channel hi-speed device */ \
{0x0403, 0x6014}, /* Single channel hi-speed device */ \
{0x0403, 0x6015}, /* FT-X series (FT201X, FT230X, FT231X, etc) */ \
{0x0403, 0x6040}, /* Dual channel hi-speed device with PD */ \
{0x0403, 0x6041}, /* Quad channel hi-speed device with PD */ \
{0x0403, 0x6042}, /* Dual channel hi-speed device with PD */ \
{0x0403, 0x6043}, /* Quad channel hi-speed device with PD */ \
{0x0403, 0x6044}, /* Dual channel hi-speed device with PD */ \
{0x0403, 0x6045}, /* Dual channel hi-speed device with PD */ \
{0x0403, 0x6048}, /* Quad channel automotive grade hi-speed device */ \
{0x0403, 0x8372}, /* Product Id SIO application of 8U100AX */ \
{0x0403, 0xFBFA}, /* Product ID for FT232RL */ \
{0x0403, 0xCD18}, /* ??? */
#endif
#ifndef CFG_TUH_CDC_CP210X