Merge branch 'master' into fork/atoktoto/midihost

# Conflicts:
#	hw/bsp/rp2040/family.cmake
#	src/class/midi/midi.h
#	src/class/midi/midi_device.c
#	src/device/usbd_control.c
#	src/host/hcd.h
#	src/host/usbh.c
#	src/host/usbh.h
This commit is contained in:
hathach
2025-02-12 11:28:16 +07:00
2214 changed files with 162309 additions and 66803 deletions

View File

@@ -1,4 +1,4 @@
/*
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
@@ -40,15 +40,13 @@
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
typedef struct
{
typedef struct {
uint8_t buffer[4];
uint8_t index;
uint8_t total;
}midid_stream_t;
} midid_stream_t;
typedef struct
{
typedef struct {
uint8_t itf_num;
uint8_t ep_in;
uint8_t ep_out;
@@ -70,36 +68,36 @@ typedef struct
osal_mutex_def_t rx_ff_mutex;
osal_mutex_def_t tx_ff_mutex;
#endif
// Endpoint Transfer buffer
CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_MIDI_EP_BUFSIZE];
CFG_TUSB_MEM_ALIGN uint8_t epin_buf[CFG_TUD_MIDI_EP_BUFSIZE];
} midid_interface_t;
#define ITF_MEM_RESET_SIZE offsetof(midid_interface_t, rx_ff)
// Endpoint Transfer buffer
CFG_TUD_MEM_SECTION static struct {
TUD_EPBUF_DEF(epin, CFG_TUD_MIDI_EP_BUFSIZE);
TUD_EPBUF_DEF(epout, CFG_TUD_MIDI_EP_BUFSIZE);
} _midid_epbuf[CFG_TUD_MIDI];
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
CFG_TUSB_MEM_SECTION midid_interface_t _midid_itf[CFG_TUD_MIDI];
static midid_interface_t _midid_itf[CFG_TUD_MIDI];
bool tud_midi_n_mounted (uint8_t itf)
{
bool tud_midi_n_mounted (uint8_t itf) {
midid_interface_t* midi = &_midid_itf[itf];
return midi->ep_in && midi->ep_out;
}
static void _prep_out_transaction (midid_interface_t* p_midi)
{
uint8_t const rhport = 0;
static void _prep_out_transaction(uint8_t idx) {
const uint8_t rhport = 0;
midid_interface_t* p_midi = &_midid_itf[idx];
uint16_t available = tu_fifo_remaining(&p_midi->rx_ff);
// Prepare for incoming data but only allow what we can store in the ring buffer.
// TODO Actually we can still carry out the transfer, keeping count of received bytes
// and slowly move it to the FIFO when read().
// This pre-check reduces endpoint claiming
TU_VERIFY(available >= sizeof(p_midi->epout_buf), );
TU_VERIFY(available >= CFG_TUD_MIDI_EP_BUFSIZE, );
// claim endpoint
TU_VERIFY(usbd_edpt_claim(rhport, p_midi->ep_out), );
@@ -107,8 +105,8 @@ static void _prep_out_transaction (midid_interface_t* p_midi)
// fifo can be changed before endpoint is claimed
available = tu_fifo_remaining(&p_midi->rx_ff);
if ( available >= sizeof(p_midi->epout_buf) ) {
usbd_edpt_xfer(rhport, p_midi->ep_out, p_midi->epout_buf, sizeof(p_midi->epout_buf));
if ( available >= CFG_TUD_MIDI_EP_BUFSIZE ) {
usbd_edpt_xfer(rhport, p_midi->ep_out, _midid_epbuf[idx].epout, CFG_TUD_MIDI_EP_BUFSIZE);
}else
{
// Release endpoint since we don't make any transfer
@@ -124,7 +122,7 @@ uint32_t tud_midi_n_available(uint8_t itf, uint8_t cable_num)
(void) cable_num;
midid_interface_t* midi = &_midid_itf[itf];
midid_stream_t const* stream = &midi->stream_read;
const midid_stream_t* stream = &midi->stream_read;
// when using with packet API stream total & index are both zero
return tu_fifo_count(&midi->rx_ff) + (uint8_t) (stream->total - stream->index);
@@ -182,7 +180,7 @@ uint32_t tud_midi_n_stream_read(uint8_t itf, uint8_t cable_num, void* buffer, ui
uint8_t const count = (uint8_t) tu_min32(stream->total - stream->index, bufsize);
// Skip the header (1st byte) in the buffer
memcpy(buf8, stream->buffer + 1 + stream->index, count);
TU_VERIFY(0 == tu_memcpy_s(buf8, bufsize, stream->buffer + 1 + stream->index, count));
total_read += count;
stream->index += count;
@@ -205,8 +203,8 @@ bool tud_midi_n_packet_read (uint8_t itf, uint8_t packet[4])
midid_interface_t* midi = &_midid_itf[itf];
TU_VERIFY(midi->ep_out);
uint32_t const num_read = tu_fifo_read_n(&midi->rx_ff, packet, 4);
_prep_out_transaction(midi);
const uint32_t num_read = tu_fifo_read_n(&midi->rx_ff, packet, 4);
_prep_out_transaction(itf);
return (num_read == 4);
}
@@ -214,31 +212,31 @@ bool tud_midi_n_packet_read (uint8_t itf, uint8_t packet[4])
// WRITE API
//--------------------------------------------------------------------+
static uint32_t write_flush(midid_interface_t* midi)
{
// No data to send
if ( !tu_fifo_count(&midi->tx_ff) ) return 0;
static uint32_t write_flush(uint8_t idx) {
midid_interface_t* midi = &_midid_itf[idx];
uint8_t const rhport = 0;
if (!tu_fifo_count(&midi->tx_ff)) {
return 0; // No data to send
}
const uint8_t rhport = 0;
// skip if previous transfer not complete
TU_VERIFY( usbd_edpt_claim(rhport, midi->ep_in), 0 );
uint16_t count = tu_fifo_read_n(&midi->tx_ff, midi->epin_buf, CFG_TUD_MIDI_EP_BUFSIZE);
uint16_t count = tu_fifo_read_n(&midi->tx_ff, _midid_epbuf[idx].epin, CFG_TUD_MIDI_EP_BUFSIZE);
if (count)
{
TU_ASSERT( usbd_edpt_xfer(rhport, midi->ep_in, midi->epin_buf, count), 0 );
if (count) {
TU_ASSERT( usbd_edpt_xfer(rhport, midi->ep_in, _midid_epbuf[idx].epin, count), 0 );
return count;
}else
{
}else {
// Release endpoint since we don't make any transfer
usbd_edpt_release(rhport, midi->ep_in);
return 0;
}
}
uint32_t tud_midi_n_stream_write(uint8_t itf, uint8_t cable_num, uint8_t const* buffer, uint32_t bufsize)
uint32_t tud_midi_n_stream_write(uint8_t itf, uint8_t cable_num, const uint8_t* buffer, uint32_t bufsize)
{
midid_interface_t* midi = &_midid_itf[itf];
TU_VERIFY(midi->ep_in, 0);
@@ -248,24 +246,23 @@ uint32_t tud_midi_n_stream_write(uint8_t itf, uint8_t cable_num, uint8_t const*
uint32_t i = 0;
while ( (i < bufsize) && (tu_fifo_remaining(&midi->tx_ff) >= 4) )
{
uint8_t const data = buffer[i];
const uint8_t data = buffer[i];
i++;
if ( stream->index == 0 )
{
//------------- New event packet -------------//
uint8_t const msg = data >> 4;
const uint8_t msg = data >> 4;
stream->index = 2;
stream->buffer[1] = data;
// Check to see if we're still in a SysEx transmit.
if ( stream->buffer[0] == MIDI_CIN_SYSEX_START )
if ( ((stream->buffer[0]) & 0xF) == MIDI_CIN_SYSEX_START )
{
if ( data == MIDI_STATUS_SYSEX_END )
{
stream->buffer[0] = MIDI_CIN_SYSEX_END_1BYTE;
stream->buffer[0] = (uint8_t) ((cable_num << 4) | MIDI_CIN_SYSEX_END_1BYTE);
stream->total = 2;
}
else
@@ -308,6 +305,7 @@ uint32_t tud_midi_n_stream_write(uint8_t itf, uint8_t cable_num, uint8_t const*
stream->buffer[0] = MIDI_CIN_SYSEX_END_1BYTE;
stream->total = 2;
}
stream->buffer[0] |= (uint8_t)(cable_num << 4);
}
else
{
@@ -328,9 +326,9 @@ uint32_t tud_midi_n_stream_write(uint8_t itf, uint8_t cable_num, uint8_t const*
stream->index++;
// See if this byte ends a SysEx.
if ( stream->buffer[0] == MIDI_CIN_SYSEX_START && data == MIDI_STATUS_SYSEX_END )
if ( (stream->buffer[0] & 0xF) == MIDI_CIN_SYSEX_START && data == MIDI_STATUS_SYSEX_END )
{
stream->buffer[0] = MIDI_CIN_SYSEX_START + (stream->index - 1);
stream->buffer[0] = (uint8_t) ((cable_num << 4) | (MIDI_CIN_SYSEX_START + (stream->index - 1)));
stream->total = stream->index;
}
}
@@ -339,9 +337,11 @@ uint32_t tud_midi_n_stream_write(uint8_t itf, uint8_t cable_num, uint8_t const*
if ( stream->index == stream->total )
{
// zeroes unused bytes
for(uint8_t idx = stream->total; idx < 4; idx++) stream->buffer[idx] = 0;
for (uint8_t idx = stream->total; idx < 4; idx++) {
stream->buffer[idx] = 0;
}
uint16_t const count = tu_fifo_write_n(&midi->tx_ff, stream->buffer, 4);
const uint16_t count = tu_fifo_write_n(&midi->tx_ff, stream->buffer, 4);
// complete current event packet, reset stream
stream->index = stream->total = 0;
@@ -351,20 +351,21 @@ uint32_t tud_midi_n_stream_write(uint8_t itf, uint8_t cable_num, uint8_t const*
}
}
write_flush(midi);
write_flush(itf);
return i;
}
bool tud_midi_n_packet_write (uint8_t itf, uint8_t const packet[4])
{
bool tud_midi_n_packet_write (uint8_t itf, const uint8_t packet[4]) {
midid_interface_t* midi = &_midid_itf[itf];
TU_VERIFY(midi->ep_in);
if (tu_fifo_remaining(&midi->tx_ff) < 4) return false;
if (tu_fifo_remaining(&midi->tx_ff) < 4) {
return false;
}
tu_fifo_write_n(&midi->tx_ff, packet, 4);
write_flush(midi);
write_flush(itf);
return true;
}
@@ -372,12 +373,10 @@ bool tud_midi_n_packet_write (uint8_t itf, uint8_t const packet[4])
//--------------------------------------------------------------------+
// USBD Driver API
//--------------------------------------------------------------------+
void midid_init(void)
{
void midid_init(void) {
tu_memclr(_midid_itf, sizeof(_midid_itf));
for(uint8_t i=0; i<CFG_TUD_MIDI; i++)
{
for (uint8_t i = 0; i < CFG_TUD_MIDI; i++) {
midid_interface_t* midi = &_midid_itf[i];
// config fifo
@@ -385,12 +384,38 @@ void midid_init(void)
tu_fifo_config(&midi->tx_ff, midi->tx_ff_buf, CFG_TUD_MIDI_TX_BUFSIZE, 1, false); // OBVS.
#if CFG_FIFO_MUTEX
tu_fifo_config_mutex(&midi->rx_ff, NULL, osal_mutex_create(&midi->rx_ff_mutex));
tu_fifo_config_mutex(&midi->tx_ff, osal_mutex_create(&midi->tx_ff_mutex), NULL);
osal_mutex_t mutex_rd = osal_mutex_create(&midi->rx_ff_mutex);
osal_mutex_t mutex_wr = osal_mutex_create(&midi->tx_ff_mutex);
TU_ASSERT(mutex_wr != NULL && mutex_wr != NULL, );
tu_fifo_config_mutex(&midi->rx_ff, NULL, mutex_rd);
tu_fifo_config_mutex(&midi->tx_ff, mutex_wr, NULL);
#endif
}
}
bool midid_deinit(void) {
#if CFG_FIFO_MUTEX
for(uint8_t i=0; i<CFG_TUD_MIDI; i++) {
midid_interface_t* midi = &_midid_itf[i];
osal_mutex_t mutex_rd = midi->rx_ff.mutex_rd;
osal_mutex_t mutex_wr = midi->tx_ff.mutex_wr;
if (mutex_rd) {
osal_mutex_delete(mutex_rd);
tu_fifo_config_mutex(&midi->rx_ff, NULL, NULL);
}
if (mutex_wr) {
osal_mutex_delete(mutex_wr);
tu_fifo_config_mutex(&midi->tx_ff, NULL, NULL);
}
}
#endif
return true;
}
void midid_reset(uint8_t rhport)
{
(void) rhport;
@@ -404,32 +429,28 @@ void midid_reset(uint8_t rhport)
}
}
uint16_t midid_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t max_len)
{
uint16_t midid_open(uint8_t rhport, const tusb_desc_interface_t* desc_itf, uint16_t max_len) {
uint16_t drv_len = 0;
uint8_t const * p_desc = (uint8_t const *)desc_itf;
// 1st Interface is Audio Control v1
// 1st Interface is Audio Control v1 (optional)
if (TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass &&
AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass &&
AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_itf->bInterfaceProtocol)
{
AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass &&
AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_itf->bInterfaceProtocol) {
drv_len = tu_desc_len(desc_itf);
p_desc = tu_desc_next(desc_itf);
// Skip Class Specific descriptors
while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) && drv_len <= max_len )
{
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) && drv_len <= max_len ) {
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
}
else
{
TU_LOG1("Warning: MIDI Device has no Audio Control Interface");
} else {
TU_LOG2("Warning: MIDI Device has no Audio Control Interface");
}
// 2nd Interface is MIDI Streaming
TU_VERIFY(TUSB_DESC_INTERFACE == tu_desc_type(p_desc), 0);
tusb_desc_interface_t const * desc_midi = (tusb_desc_interface_t const *) p_desc;
const tusb_desc_interface_t* desc_midi = (const tusb_desc_interface_t*) p_desc;
TU_VERIFY(TUSB_CLASS_AUDIO == desc_midi->bInterfaceClass &&
AUDIO_SUBCLASS_MIDI_STREAMING == desc_midi->bInterfaceSubClass &&
@@ -437,11 +458,10 @@ uint16_t midid_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint
// Find available interface
midid_interface_t * p_midi = NULL;
for(uint8_t i=0; i<CFG_TUD_MIDI; i++)
{
if ( _midid_itf[i].ep_in == 0 && _midid_itf[i].ep_out == 0 )
{
p_midi = &_midid_itf[i];
uint8_t idx;
for(idx=0; idx<CFG_TUD_MIDI; idx++) {
if ( _midid_itf[idx].ep_in == 0 && _midid_itf[idx].ep_out == 0 ) {
p_midi = &_midid_itf[idx];
break;
}
}
@@ -460,8 +480,8 @@ uint16_t midid_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint
{
if ( TUSB_DESC_ENDPOINT == tu_desc_type(p_desc) )
{
TU_ASSERT(usbd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc), 0);
uint8_t ep_addr = ((tusb_desc_endpoint_t const *) p_desc)->bEndpointAddress;
TU_ASSERT(usbd_edpt_open(rhport, (const tusb_desc_endpoint_t*) p_desc), 0);
uint8_t ep_addr = ((const tusb_desc_endpoint_t*) p_desc)->bEndpointAddress;
if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN)
{
@@ -482,7 +502,7 @@ uint16_t midid_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint
}
// Prepare for incoming data
_prep_out_transaction(p_midi);
_prep_out_transaction(idx);
return drv_len;
}
@@ -490,14 +510,9 @@ uint16_t midid_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint
// Invoked when a control transfer occurred on an interface of this class
// Driver response accordingly to the request and the transfer stage (setup/data/ack)
// return false to stall control endpoint (e.g unsupported request)
bool midid_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t const * request)
{
(void) rhport;
(void) stage;
(void) request;
// driver doesn't support any request yet
return false;
bool midid_control_xfer_cb(uint8_t rhport, uint8_t stage, const tusb_control_request_t* request) {
(void) rhport; (void) stage; (void) request;
return false; // driver doesn't support any request yet
}
bool midid_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
@@ -505,40 +520,37 @@ bool midid_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32
(void) result;
(void) rhport;
uint8_t itf;
uint8_t idx;
midid_interface_t* p_midi;
// Identify which interface to use
for (itf = 0; itf < CFG_TUD_MIDI; itf++)
{
p_midi = &_midid_itf[itf];
if ( ( ep_addr == p_midi->ep_out ) || ( ep_addr == p_midi->ep_in ) ) break;
for (idx = 0; idx < CFG_TUD_MIDI; idx++) {
p_midi = &_midid_itf[idx];
if ((ep_addr == p_midi->ep_out) || (ep_addr == p_midi->ep_in)) {
break;
}
}
TU_ASSERT(itf < CFG_TUD_MIDI);
TU_ASSERT(idx < CFG_TUD_MIDI);
// receive new data
if ( ep_addr == p_midi->ep_out )
{
tu_fifo_write_n(&p_midi->rx_ff, p_midi->epout_buf, (uint16_t) xferred_bytes);
if (ep_addr == p_midi->ep_out) {
tu_fifo_write_n(&p_midi->rx_ff, _midid_epbuf[idx].epout, (uint16_t)xferred_bytes);
// invoke receive callback if available
if (tud_midi_rx_cb) tud_midi_rx_cb(itf);
if (tud_midi_rx_cb) {
tud_midi_rx_cb(idx);
}
// prepare for next
// TODO for now ep_out is not used by public API therefore there is no race condition,
// and does not need to claim like ep_in
_prep_out_transaction(p_midi);
}
else if ( ep_addr == p_midi->ep_in )
{
if (0 == write_flush(p_midi))
{
_prep_out_transaction(idx);
} else if (ep_addr == p_midi->ep_in) {
if (0 == write_flush(idx)) {
// If there is no data left, a ZLP should be sent if
// xferred_bytes is multiple of EP size and not zero
if ( !tu_fifo_count(&p_midi->tx_ff) && xferred_bytes && (0 == (xferred_bytes % CFG_TUD_MIDI_EP_BUFSIZE)) )
{
if ( usbd_edpt_claim(rhport, p_midi->ep_in) )
{
if (!tu_fifo_count(&p_midi->tx_ff) && xferred_bytes && (0 == (xferred_bytes % CFG_TUD_MIDI_EP_BUFSIZE))) {
if (usbd_edpt_claim(rhport, p_midi->ep_in)) {
usbd_edpt_xfer(rhport, p_midi->ep_in, NULL, 0);
}
}