Merge remote-tracking branch 'upstream/master' into edpt_ISO_xfer

This commit is contained in:
Reinhard Panhuber
2021-04-03 09:50:08 +02:00
271 changed files with 4880 additions and 364291 deletions

View File

@@ -95,7 +95,8 @@ static void _prep_out_transaction (cdcd_interface_t* p_cdc)
// fifo can be changed before endpoint is claimed
available = tu_fifo_remaining(&p_cdc->rx_ff);
if ( available >= sizeof(p_cdc->epout_buf) ) {
if ( available >= sizeof(p_cdc->epout_buf) )
{
usbd_edpt_xfer(rhport, p_cdc->ep_out, p_cdc->epout_buf, sizeof(p_cdc->epout_buf));
}else
{
@@ -432,25 +433,27 @@ bool cdcd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_
// Received new data
if ( ep_addr == p_cdc->ep_out )
{
// TODO search for wanted char first for better performance
for(uint32_t i=0; i<xferred_bytes; i++)
tu_fifo_write_n(&p_cdc->rx_ff, &p_cdc->epout_buf, xferred_bytes);
// Check for wanted char and invoke callback if needed
if ( tud_cdc_rx_wanted_cb && (((signed char) p_cdc->wanted_char) != -1) )
{
tu_fifo_write(&p_cdc->rx_ff, &p_cdc->epout_buf[i]);
// Check for wanted char and invoke callback if needed
if ( tud_cdc_rx_wanted_cb && ( ((signed char) p_cdc->wanted_char) != -1 ) && ( p_cdc->wanted_char == p_cdc->epout_buf[i] ) )
for ( uint32_t i = 0; i < xferred_bytes; i++ )
{
tud_cdc_rx_wanted_cb(itf, p_cdc->wanted_char);
if ( (p_cdc->wanted_char == p_cdc->epout_buf[i]) && !tu_fifo_empty(&p_cdc->rx_ff) )
{
tud_cdc_rx_wanted_cb(itf, p_cdc->wanted_char);
}
}
}
// invoke receive callback (if there is still data)
if (tud_cdc_rx_cb && tu_fifo_count(&p_cdc->rx_ff) ) tud_cdc_rx_cb(itf);
if (tud_cdc_rx_cb && !tu_fifo_empty(&p_cdc->rx_ff) ) tud_cdc_rx_cb(itf);
// prepare for OUT transaction
_prep_out_transaction(p_cdc);
}
// Data sent to host, we continue to fetch from tx fifo to send.
// Note: This will cause incorrect baudrate set in line coding.
// Though maybe the baudrate is not really important !!!

View File

@@ -303,118 +303,177 @@ typedef enum
//--------------------------------------------------------------------+
// HID KEYCODE
//--------------------------------------------------------------------+
#define HID_KEY_NONE 0x00
#define HID_KEY_A 0x04
#define HID_KEY_B 0x05
#define HID_KEY_C 0x06
#define HID_KEY_D 0x07
#define HID_KEY_E 0x08
#define HID_KEY_F 0x09
#define HID_KEY_G 0x0A
#define HID_KEY_H 0x0B
#define HID_KEY_I 0x0C
#define HID_KEY_J 0x0D
#define HID_KEY_K 0x0E
#define HID_KEY_L 0x0F
#define HID_KEY_M 0x10
#define HID_KEY_N 0x11
#define HID_KEY_O 0x12
#define HID_KEY_P 0x13
#define HID_KEY_Q 0x14
#define HID_KEY_R 0x15
#define HID_KEY_S 0x16
#define HID_KEY_T 0x17
#define HID_KEY_U 0x18
#define HID_KEY_V 0x19
#define HID_KEY_W 0x1A
#define HID_KEY_X 0x1B
#define HID_KEY_Y 0x1C
#define HID_KEY_Z 0x1D
#define HID_KEY_1 0x1E
#define HID_KEY_2 0x1F
#define HID_KEY_3 0x20
#define HID_KEY_4 0x21
#define HID_KEY_5 0x22
#define HID_KEY_6 0x23
#define HID_KEY_7 0x24
#define HID_KEY_8 0x25
#define HID_KEY_9 0x26
#define HID_KEY_0 0x27
#define HID_KEY_RETURN 0x28
#define HID_KEY_ESCAPE 0x29
#define HID_KEY_BACKSPACE 0x2A
#define HID_KEY_TAB 0x2B
#define HID_KEY_SPACE 0x2C
#define HID_KEY_MINUS 0x2D
#define HID_KEY_EQUAL 0x2E
#define HID_KEY_BRACKET_LEFT 0x2F
#define HID_KEY_BRACKET_RIGHT 0x30
#define HID_KEY_BACKSLASH 0x31
#define HID_KEY_EUROPE_1 0x32
#define HID_KEY_SEMICOLON 0x33
#define HID_KEY_APOSTROPHE 0x34
#define HID_KEY_GRAVE 0x35
#define HID_KEY_COMMA 0x36
#define HID_KEY_PERIOD 0x37
#define HID_KEY_SLASH 0x38
#define HID_KEY_CAPS_LOCK 0x39
#define HID_KEY_F1 0x3A
#define HID_KEY_F2 0x3B
#define HID_KEY_F3 0x3C
#define HID_KEY_F4 0x3D
#define HID_KEY_F5 0x3E
#define HID_KEY_F6 0x3F
#define HID_KEY_F7 0x40
#define HID_KEY_F8 0x41
#define HID_KEY_F9 0x42
#define HID_KEY_F10 0x43
#define HID_KEY_F11 0x44
#define HID_KEY_F12 0x45
#define HID_KEY_PRINT_SCREEN 0x46
#define HID_KEY_SCROLL_LOCK 0x47
#define HID_KEY_PAUSE 0x48
#define HID_KEY_INSERT 0x49
#define HID_KEY_HOME 0x4A
#define HID_KEY_PAGE_UP 0x4B
#define HID_KEY_DELETE 0x4C
#define HID_KEY_END 0x4D
#define HID_KEY_PAGE_DOWN 0x4E
#define HID_KEY_ARROW_RIGHT 0x4F
#define HID_KEY_ARROW_LEFT 0x50
#define HID_KEY_ARROW_DOWN 0x51
#define HID_KEY_ARROW_UP 0x52
#define HID_KEY_NUM_LOCK 0x53
#define HID_KEY_KEYPAD_DIVIDE 0x54
#define HID_KEY_KEYPAD_MULTIPLY 0x55
#define HID_KEY_KEYPAD_SUBTRACT 0x56
#define HID_KEY_KEYPAD_ADD 0x57
#define HID_KEY_KEYPAD_ENTER 0x58
#define HID_KEY_KEYPAD_1 0x59
#define HID_KEY_KEYPAD_2 0x5A
#define HID_KEY_KEYPAD_3 0x5B
#define HID_KEY_KEYPAD_4 0x5C
#define HID_KEY_KEYPAD_5 0x5D
#define HID_KEY_KEYPAD_6 0x5E
#define HID_KEY_KEYPAD_7 0x5F
#define HID_KEY_KEYPAD_8 0x60
#define HID_KEY_KEYPAD_9 0x61
#define HID_KEY_KEYPAD_0 0x62
#define HID_KEY_KEYPAD_DECIMAL 0x63
#define HID_KEY_EUROPE_2 0x64
#define HID_KEY_APPLICATION 0x65
#define HID_KEY_POWER 0x66
#define HID_KEY_KEYPAD_EQUAL 0x67
#define HID_KEY_F13 0x68
#define HID_KEY_F14 0x69
#define HID_KEY_F15 0x6A
#define HID_KEY_CONTROL_LEFT 0xE0
#define HID_KEY_SHIFT_LEFT 0xE1
#define HID_KEY_ALT_LEFT 0xE2
#define HID_KEY_GUI_LEFT 0xE3
#define HID_KEY_CONTROL_RIGHT 0xE4
#define HID_KEY_SHIFT_RIGHT 0xE5
#define HID_KEY_ALT_RIGHT 0xE6
#define HID_KEY_GUI_RIGHT 0xE7
#define HID_KEY_NONE 0x00
#define HID_KEY_A 0x04
#define HID_KEY_B 0x05
#define HID_KEY_C 0x06
#define HID_KEY_D 0x07
#define HID_KEY_E 0x08
#define HID_KEY_F 0x09
#define HID_KEY_G 0x0A
#define HID_KEY_H 0x0B
#define HID_KEY_I 0x0C
#define HID_KEY_J 0x0D
#define HID_KEY_K 0x0E
#define HID_KEY_L 0x0F
#define HID_KEY_M 0x10
#define HID_KEY_N 0x11
#define HID_KEY_O 0x12
#define HID_KEY_P 0x13
#define HID_KEY_Q 0x14
#define HID_KEY_R 0x15
#define HID_KEY_S 0x16
#define HID_KEY_T 0x17
#define HID_KEY_U 0x18
#define HID_KEY_V 0x19
#define HID_KEY_W 0x1A
#define HID_KEY_X 0x1B
#define HID_KEY_Y 0x1C
#define HID_KEY_Z 0x1D
#define HID_KEY_1 0x1E
#define HID_KEY_2 0x1F
#define HID_KEY_3 0x20
#define HID_KEY_4 0x21
#define HID_KEY_5 0x22
#define HID_KEY_6 0x23
#define HID_KEY_7 0x24
#define HID_KEY_8 0x25
#define HID_KEY_9 0x26
#define HID_KEY_0 0x27
#define HID_KEY_ENTER 0x28
#define HID_KEY_ESCAPE 0x29
#define HID_KEY_BACKSPACE 0x2A
#define HID_KEY_TAB 0x2B
#define HID_KEY_SPACE 0x2C
#define HID_KEY_MINUS 0x2D
#define HID_KEY_EQUAL 0x2E
#define HID_KEY_BRACKET_LEFT 0x2F
#define HID_KEY_BRACKET_RIGHT 0x30
#define HID_KEY_BACKSLASH 0x31
#define HID_KEY_EUROPE_1 0x32
#define HID_KEY_SEMICOLON 0x33
#define HID_KEY_APOSTROPHE 0x34
#define HID_KEY_GRAVE 0x35
#define HID_KEY_COMMA 0x36
#define HID_KEY_PERIOD 0x37
#define HID_KEY_SLASH 0x38
#define HID_KEY_CAPS_LOCK 0x39
#define HID_KEY_F1 0x3A
#define HID_KEY_F2 0x3B
#define HID_KEY_F3 0x3C
#define HID_KEY_F4 0x3D
#define HID_KEY_F5 0x3E
#define HID_KEY_F6 0x3F
#define HID_KEY_F7 0x40
#define HID_KEY_F8 0x41
#define HID_KEY_F9 0x42
#define HID_KEY_F10 0x43
#define HID_KEY_F11 0x44
#define HID_KEY_F12 0x45
#define HID_KEY_PRINT_SCREEN 0x46
#define HID_KEY_SCROLL_LOCK 0x47
#define HID_KEY_PAUSE 0x48
#define HID_KEY_INSERT 0x49
#define HID_KEY_HOME 0x4A
#define HID_KEY_PAGE_UP 0x4B
#define HID_KEY_DELETE 0x4C
#define HID_KEY_END 0x4D
#define HID_KEY_PAGE_DOWN 0x4E
#define HID_KEY_ARROW_RIGHT 0x4F
#define HID_KEY_ARROW_LEFT 0x50
#define HID_KEY_ARROW_DOWN 0x51
#define HID_KEY_ARROW_UP 0x52
#define HID_KEY_NUM_LOCK 0x53
#define HID_KEY_KEYPAD_DIVIDE 0x54
#define HID_KEY_KEYPAD_MULTIPLY 0x55
#define HID_KEY_KEYPAD_SUBTRACT 0x56
#define HID_KEY_KEYPAD_ADD 0x57
#define HID_KEY_KEYPAD_ENTER 0x58
#define HID_KEY_KEYPAD_1 0x59
#define HID_KEY_KEYPAD_2 0x5A
#define HID_KEY_KEYPAD_3 0x5B
#define HID_KEY_KEYPAD_4 0x5C
#define HID_KEY_KEYPAD_5 0x5D
#define HID_KEY_KEYPAD_6 0x5E
#define HID_KEY_KEYPAD_7 0x5F
#define HID_KEY_KEYPAD_8 0x60
#define HID_KEY_KEYPAD_9 0x61
#define HID_KEY_KEYPAD_0 0x62
#define HID_KEY_KEYPAD_DECIMAL 0x63
#define HID_KEY_EUROPE_2 0x64
#define HID_KEY_APPLICATION 0x65
#define HID_KEY_POWER 0x66
#define HID_KEY_KEYPAD_EQUAL 0x67
#define HID_KEY_F13 0x68
#define HID_KEY_F14 0x69
#define HID_KEY_F15 0x6A
#define HID_KEY_F16 0x6B
#define HID_KEY_F17 0x6C
#define HID_KEY_F18 0x6D
#define HID_KEY_F19 0x6E
#define HID_KEY_F20 0x6F
#define HID_KEY_F21 0x70
#define HID_KEY_F22 0x71
#define HID_KEY_F23 0x72
#define HID_KEY_F24 0x73
#define HID_KEY_EXECUTE 0x74
#define HID_KEY_HELP 0x75
#define HID_KEY_MENU 0x76
#define HID_KEY_SELECT 0x77
#define HID_KEY_STOP 0x78
#define HID_KEY_AGAIN 0x79
#define HID_KEY_UNDO 0x7A
#define HID_KEY_CUT 0x7B
#define HID_KEY_COPY 0x7C
#define HID_KEY_PASTE 0x7D
#define HID_KEY_FIND 0x7E
#define HID_KEY_MUTE 0x7F
#define HID_KEY_VOLUME_UP 0x80
#define HID_KEY_VOLUME_DOWN 0x81
#define HID_KEY_LOCKING_CAPS_LOCK 0x82
#define HID_KEY_LOCKING_NUM_LOCK 0x83
#define HID_KEY_LOCKING_SCROLL_LOCK 0x84
#define HID_KEY_KEYPAD_COMMA 0x85
#define HID_KEY_KEYPAD_EQUAL_SIGN 0x86
#define HID_KEY_KANJI1 0x87
#define HID_KEY_KANJI2 0x88
#define HID_KEY_KANJI3 0x89
#define HID_KEY_KANJI4 0x8A
#define HID_KEY_KANJI5 0x8B
#define HID_KEY_KANJI6 0x8C
#define HID_KEY_KANJI7 0x8D
#define HID_KEY_KANJI8 0x8E
#define HID_KEY_KANJI9 0x8F
#define HID_KEY_LANG1 0x90
#define HID_KEY_LANG2 0x91
#define HID_KEY_LANG3 0x92
#define HID_KEY_LANG4 0x93
#define HID_KEY_LANG5 0x94
#define HID_KEY_LANG6 0x95
#define HID_KEY_LANG7 0x96
#define HID_KEY_LANG8 0x97
#define HID_KEY_LANG9 0x98
#define HID_KEY_ALTERNATE_ERASE 0x99
#define HID_KEY_SYSREQ_ATTENTION 0x9A
#define HID_KEY_CANCEL 0x9B
#define HID_KEY_CLEAR 0x9C
#define HID_KEY_PRIOR 0x9D
#define HID_KEY_RETURN 0x9E
#define HID_KEY_SEPARATOR 0x9F
#define HID_KEY_OUT 0xA0
#define HID_KEY_OPER 0xA1
#define HID_KEY_CLEAR_AGAIN 0xA2
#define HID_KEY_CRSEL_PROPS 0xA3
#define HID_KEY_EXSEL 0xA4
// RESERVED 0xA5-DF
#define HID_KEY_CONTROL_LEFT 0xE0
#define HID_KEY_SHIFT_LEFT 0xE1
#define HID_KEY_ALT_LEFT 0xE2
#define HID_KEY_GUI_LEFT 0xE3
#define HID_KEY_CONTROL_RIGHT 0xE4
#define HID_KEY_SHIFT_RIGHT 0xE5
#define HID_KEY_ALT_RIGHT 0xE6
#define HID_KEY_GUI_RIGHT 0xE7
//--------------------------------------------------------------------+

View File

@@ -61,6 +61,51 @@ typedef enum
MIDI_JACK_EXTERNAL = 0x02
} midi_jack_type_t;
typedef enum
{
MIDI_CIN_MISC = 0,
MIDI_CIN_CABLE_EVENT = 1,
MIDI_CIN_SYSCOM_2BYTE = 2, // 2 byte system common message e.g MTC, SongSelect
MIDI_CIN_SYSCOM_3BYTE = 3, // 3 byte system common message e.g SPP
MIDI_CIN_SYSEX_START = 4, // SysEx starts or continue
MIDI_CIN_SYSEX_END_1BYTE = 5, // SysEx ends with 1 data, or 1 byte system common message
MIDI_CIN_SYSEX_END_2BYTE = 6, // SysEx ends with 2 data
MIDI_CIN_SYSEX_END_3BYTE = 7, // SysEx ends with 3 data
MIDI_CIN_NOTE_ON = 8,
MIDI_CIN_NOTE_OFF = 9,
MIDI_CIN_POLY_KEYPRESS = 10,
MIDI_CIN_CONTROL_CHANGE = 11,
MIDI_CIN_PROGRAM_CHANGE = 12,
MIDI_CIN_CHANNEL_PRESSURE = 13,
MIDI_CIN_PITCH_BEND_CHANGE = 14,
MIDI_CIN_1BYTE_DATA = 15
} midi_code_index_number_t;
// MIDI 1.0 status byte
enum
{
//------------- System Exclusive -------------//
MIDI_STATUS_SYSEX_START = 0xF0,
MIDI_STATUS_SYSEX_END = 0xF7,
//------------- System Common -------------//
MIDI_STATUS_SYSCOM_TIME_CODE_QUARTER_FRAME = 0xF1,
MIDI_STATUS_SYSCOM_SONG_POSITION_POINTER = 0xF2,
MIDI_STATUS_SYSCOM_SONG_SELECT = 0xF3,
// F4, F5 is undefined
MIDI_STATUS_SYSCOM_TUNE_REQUEST = 0xF6,
//------------- System RealTime -------------//
MIDI_STATUS_SYSREAL_TIMING_CLOCK = 0xF8,
// 0xF9 is undefined
MIDI_STATUS_SYSREAL_START = 0xFA,
MIDI_STATUS_SYSREAL_CONTINUE = 0xFB,
MIDI_STATUS_SYSREAL_STOP = 0xFC,
// 0xFD is undefined
MIDI_STATUS_SYSREAL_ACTIVE_SENSING = 0xFE,
MIDI_STATUS_SYSREAL_SYSTEM_RESET = 0xFF,
};
/// MIDI Interface Header Descriptor
typedef struct TU_ATTR_PACKED
{

View File

@@ -38,12 +38,26 @@
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
typedef struct
{
uint8_t buffer[4];
uint8_t index;
uint8_t total;
}midid_stream_t;
typedef struct
{
uint8_t itf_num;
uint8_t ep_in;
uint8_t ep_out;
// For Stream read()/write() API
// Messages are always 4 bytes long, queue them for reading and writing so the
// callers can use the Stream interface with single-byte read/write calls.
midid_stream_t stream_write;
midid_stream_t stream_read;
/*------------- From this point, data is not cleared by bus reset -------------*/
// FIFO
tu_fifo_t rx_ff;
@@ -56,16 +70,6 @@ typedef struct
osal_mutex_def_t tx_ff_mutex;
#endif
// Messages are always 4 bytes long, queue them for reading and writing so the
// callers can use the Stream interface with single-byte read/write calls.
uint8_t write_buffer[4];
uint8_t write_buffer_length;
uint8_t write_target_length;
uint8_t read_buffer[4];
uint8_t read_buffer_length;
uint8_t read_target_length;
// Endpoint Transfer buffer
CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_MIDI_EP_BUFSIZE];
CFG_TUSB_MEM_ALIGN uint8_t epin_buf[CFG_TUD_MIDI_EP_BUFSIZE];
@@ -120,53 +124,77 @@ uint32_t tud_midi_n_available(uint8_t itf, uint8_t cable_num)
return tu_fifo_count(&_midid_itf[itf].rx_ff);
}
uint32_t tud_midi_n_read(uint8_t itf, uint8_t cable_num, void* buffer, uint32_t bufsize)
uint32_t tud_midi_n_stream_read(uint8_t itf, uint8_t cable_num, void* buffer, uint32_t bufsize)
{
(void) cable_num;
TU_VERIFY(bufsize, 0);
uint8_t* buf8 = (uint8_t*) buffer;
midid_interface_t* midi = &_midid_itf[itf];
midid_stream_t* stream = &midi->stream_read;
// Fill empty buffer
if (midi->read_buffer_length == 0) {
if (!tud_midi_n_receive(itf, midi->read_buffer)) return 0;
uint32_t total_read = 0;
while( bufsize )
{
// Get new packet from fifo, then set packet expected bytes
if ( stream->total == 0 )
{
// return if there is no more data from fifo
if ( !tud_midi_n_packet_read(itf, stream->buffer) ) return total_read;
uint8_t code_index = midi->read_buffer[0] & 0x0f;
// We always copy over the first byte.
uint8_t count = 1;
// Ignore subsequent bytes based on the code.
if (code_index != 0x5 && code_index != 0xf) {
count = 2;
if (code_index != 0x2 && code_index != 0x6 && code_index != 0xc && code_index != 0xd) {
count = 3;
uint8_t const code_index = stream->buffer[0] & 0x0f;
// MIDI 1.0 Table 4-1: Code Index Number Classifications
switch(code_index)
{
case MIDI_CIN_MISC:
case MIDI_CIN_CABLE_EVENT:
// These are reserved and unused, possibly issue somewhere, skip this packet
return 0;
break;
case MIDI_CIN_SYSEX_END_1BYTE:
case MIDI_CIN_1BYTE_DATA:
stream->total = 1;
break;
case MIDI_CIN_SYSCOM_2BYTE :
case MIDI_CIN_SYSEX_END_2BYTE :
case MIDI_CIN_PROGRAM_CHANGE :
case MIDI_CIN_CHANNEL_PRESSURE :
stream->total = 2;
break;
default:
stream->total = 3;
break;
}
}
midi->read_buffer_length = count;
// Copy data up to bufsize
uint32_t const count = tu_min32(stream->total - stream->index, bufsize);
// Skip the header (1st byte) in the buffer
memcpy(buf8, stream->buffer + 1 + stream->index, count);
total_read += count;
stream->index += count;
buf8 += count;
bufsize -= count;
// complete current event packet, reset stream
if ( stream->total == stream->index )
{
stream->index = 0;
stream->total = 0;
}
}
uint32_t n = midi->read_buffer_length - midi->read_target_length;
if (bufsize < n) n = bufsize;
// Skip the header in the buffer
memcpy(buffer, midi->read_buffer + 1 + midi->read_target_length, n);
midi->read_target_length += n;
if (midi->read_target_length == midi->read_buffer_length) {
midi->read_buffer_length = 0;
midi->read_target_length = 0;
}
return n;
return total_read;
}
void tud_midi_n_read_flush (uint8_t itf, uint8_t cable_num)
{
(void) cable_num;
midid_interface_t* p_midi = &_midid_itf[itf];
tu_fifo_clear(&p_midi->rx_ff);
_prep_out_transaction(p_midi);
}
bool tud_midi_n_receive (uint8_t itf, uint8_t packet[4])
bool tud_midi_n_packet_read (uint8_t itf, uint8_t packet[4])
{
midid_interface_t* p_midi = &_midid_itf[itf];
uint32_t num_read = tu_fifo_read_n(&p_midi->rx_ff, packet, 4);
@@ -174,10 +202,6 @@ bool tud_midi_n_receive (uint8_t itf, uint8_t packet[4])
return (num_read == 4);
}
void midi_rx_done_cb(midid_interface_t* midi, uint8_t const* buffer, uint32_t bufsize) {
tu_fifo_write_n(&midi->rx_ff, buffer, bufsize);
}
//--------------------------------------------------------------------+
// WRITE API
//--------------------------------------------------------------------+
@@ -193,7 +217,8 @@ static uint32_t write_flush(midid_interface_t* midi)
TU_VERIFY( usbd_edpt_claim(rhport, midi->ep_in), 0 );
uint16_t count = tu_fifo_read_n(&midi->tx_ff, midi->epin_buf, CFG_TUD_MIDI_EP_BUFSIZE);
if (count > 0)
if (count)
{
TU_ASSERT( usbd_edpt_xfer(rhport, midi->ep_in, midi->epin_buf, count), 0 );
return count;
@@ -205,88 +230,131 @@ static uint32_t write_flush(midid_interface_t* midi)
}
}
uint32_t tud_midi_n_write(uint8_t itf, uint8_t cable_num, uint8_t const* buffer, uint32_t bufsize)
uint32_t tud_midi_n_stream_write(uint8_t itf, uint8_t cable_num, uint8_t const* buffer, uint32_t bufsize)
{
midid_interface_t* midi = &_midid_itf[itf];
if (midi->itf_num == 0) {
return 0;
}
TU_VERIFY(midi->itf_num, 0);
midid_stream_t* stream = &midi->stream_write;
uint32_t total_written = 0;
uint32_t i = 0;
while (i < bufsize) {
uint8_t data = buffer[i];
if (midi->write_buffer_length == 0) {
uint8_t msg = data >> 4;
midi->write_buffer[1] = data;
midi->write_buffer_length = 2;
// Check to see if we're still in a SysEx transmit.
if (midi->write_buffer[0] == 0x4) {
if (data == 0xf7) {
midi->write_buffer[0] = 0x5;
midi->write_target_length = 2;
} else {
midi->write_target_length = 4;
}
} else if ((msg >= 0x8 && msg <= 0xB) || msg == 0xE) {
midi->write_buffer[0] = cable_num << 4 | msg;
midi->write_target_length = 4;
} else if (msg == 0xf) {
if (data == 0xf0) {
midi->write_buffer[0] = 0x4;
midi->write_target_length = 4;
} else if (data == 0xf1 || data == 0xf3) {
midi->write_buffer[0] = 0x2;
midi->write_target_length = 3;
} else if (data == 0xf2) {
midi->write_buffer[0] = 0x3;
midi->write_target_length = 4;
} else {
midi->write_buffer[0] = 0x5;
midi->write_target_length = 2;
}
} else {
// Pack individual bytes if we don't support packing them into words.
midi->write_buffer[0] = cable_num << 4 | 0xf;
midi->write_buffer[2] = 0;
midi->write_buffer[3] = 0;
midi->write_buffer_length = 2;
midi->write_target_length = 2;
while ( i < bufsize )
{
uint8_t const data = buffer[i];
if ( stream->index == 0 )
{
// new event packet
uint8_t const msg = data >> 4;
stream->index = 2;
stream->buffer[1] = data;
// Check to see if we're still in a SysEx transmit.
if ( stream->buffer[0] == MIDI_CIN_SYSEX_START )
{
if ( data == MIDI_STATUS_SYSEX_END )
{
stream->buffer[0] = MIDI_CIN_SYSEX_END_1BYTE;
stream->total = 2;
}
} else {
midi->write_buffer[midi->write_buffer_length] = data;
midi->write_buffer_length += 1;
// See if this byte ends a SysEx.
if (midi->write_buffer[0] == 0x4 && data == 0xf7) {
midi->write_buffer[0] = 0x4 + (midi->write_buffer_length - 1);
midi->write_target_length = midi->write_buffer_length;
else
{
stream->total = 4;
}
}
else if ( (msg >= 0x8 && msg <= 0xB) || msg == 0xE )
{
// Channel Voice Messages
stream->buffer[0] = (cable_num << 4) | msg;
stream->total = 4;
}
else if ( msg == 0xf )
{
// System message
if ( data == MIDI_STATUS_SYSEX_START )
{
stream->buffer[0] = MIDI_CIN_SYSEX_START;
stream->total = 4;
}
else if ( data == MIDI_STATUS_SYSCOM_TIME_CODE_QUARTER_FRAME || data == MIDI_STATUS_SYSCOM_SONG_SELECT )
{
stream->buffer[0] = MIDI_CIN_SYSCOM_2BYTE;
stream->total = 3;
}
else if ( data == MIDI_STATUS_SYSCOM_SONG_POSITION_POINTER )
{
stream->buffer[0] = MIDI_CIN_SYSCOM_3BYTE;
stream->total = 4;
}
else
{
stream->buffer[0] = MIDI_CIN_SYSEX_END_1BYTE;
stream->total = 2;
}
}
else
{
// Pack individual bytes if we don't support packing them into words.
stream->buffer[0] = cable_num << 4 | 0xf;
stream->buffer[2] = 0;
stream->buffer[3] = 0;
stream->index = 2;
stream->total = 2;
}
}
else
{
// On-going (buffering) packet
TU_ASSERT(stream->index < 4, total_written);
stream->buffer[stream->index] = data;
stream->index++;
// See if this byte ends a SysEx.
if ( stream->buffer[0] == MIDI_CIN_SYSEX_START && data == MIDI_STATUS_SYSEX_END )
{
stream->buffer[0] = MIDI_CIN_SYSEX_START + (stream->index - 1);
stream->total = stream->index;
}
}
if (midi->write_buffer_length == midi->write_target_length) {
uint16_t written = tu_fifo_write_n(&midi->tx_ff, midi->write_buffer, 4);
if (written < 4) {
TU_ASSERT( written == 0 );
break;
}
midi->write_buffer_length = 0;
// Send out packet
if ( stream->index == stream->total )
{
// zeroes unused bytes
for(uint8_t idx = stream->total; idx < 4; idx++) stream->buffer[idx] = 0;
uint16_t const count = tu_fifo_write_n(&midi->tx_ff, stream->buffer, 4);
// complete current event packet, reset stream
stream->index = stream->total = 0;
// fifo overflow, here we assume FIFO is multiple of 4 and didn't check remaining before writing
if ( count != 4 ) break;
// updated written if succeeded
total_written = i;
}
i++;
}
write_flush(midi);
return i;
return total_written;
}
bool tud_midi_n_send (uint8_t itf, uint8_t const packet[4])
bool tud_midi_n_packet_write (uint8_t itf, uint8_t const packet[4])
{
midid_interface_t* midi = &_midid_itf[itf];
if (midi->itf_num == 0) {
return 0;
}
if (tu_fifo_remaining(&midi->tx_ff) < 4)
return false;
if (tu_fifo_remaining(&midi->tx_ff) < 4) return false;
tu_fifo_write_n(&midi->tx_ff, packet, 4);
write_flush(midi);
@@ -332,9 +400,9 @@ void midid_reset(uint8_t rhport)
uint16_t midid_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t max_len)
{
// 1st Interface is Audio Control v1
TU_VERIFY(TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass &&
AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass &&
AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_itf->bInterfaceProtocol, 0);
TU_VERIFY(TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass &&
AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass &&
AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_itf->bInterfaceProtocol, 0);
uint16_t drv_len = tu_desc_len(desc_itf);
uint8_t const * p_desc = tu_desc_next(desc_itf);
@@ -350,9 +418,9 @@ uint16_t midid_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint
TU_VERIFY(TUSB_DESC_INTERFACE == tu_desc_type(p_desc), 0);
tusb_desc_interface_t const * desc_midi = (tusb_desc_interface_t const *) p_desc;
TU_VERIFY(TUSB_CLASS_AUDIO == desc_midi->bInterfaceClass &&
AUDIO_SUBCLASS_MIDI_STREAMING == desc_midi->bInterfaceSubClass &&
AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_midi->bInterfaceProtocol, 0);
TU_VERIFY(TUSB_CLASS_AUDIO == desc_midi->bInterfaceClass &&
AUDIO_SUBCLASS_MIDI_STREAMING == desc_midi->bInterfaceSubClass &&
AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_midi->bInterfaceProtocol, 0);
// Find available interface
midid_interface_t * p_midi = NULL;

View File

@@ -59,29 +59,64 @@
// Application API (Multiple Interfaces)
// CFG_TUD_MIDI > 1
//--------------------------------------------------------------------+
bool tud_midi_n_mounted (uint8_t itf);
uint32_t tud_midi_n_available (uint8_t itf, uint8_t cable_num);
uint32_t tud_midi_n_read (uint8_t itf, uint8_t cable_num, void* buffer, uint32_t bufsize);
void tud_midi_n_read_flush (uint8_t itf, uint8_t cable_num);
uint32_t tud_midi_n_write (uint8_t itf, uint8_t cable_num, uint8_t const* buffer, uint32_t bufsize);
static inline
uint32_t tud_midi_n_write24 (uint8_t itf, uint8_t cable_num, uint8_t b1, uint8_t b2, uint8_t b3);
// Check if midi interface is mounted
bool tud_midi_n_mounted (uint8_t itf);
bool tud_midi_n_receive (uint8_t itf, uint8_t packet[4]);
bool tud_midi_n_send (uint8_t itf, uint8_t const packet[4]);
// Get the number of bytes available for reading
uint32_t tud_midi_n_available (uint8_t itf, uint8_t cable_num);
// Read byte stream (legacy)
uint32_t tud_midi_n_stream_read (uint8_t itf, uint8_t cable_num, void* buffer, uint32_t bufsize);
// Write byte Stream (legacy)
uint32_t tud_midi_n_stream_write (uint8_t itf, uint8_t cable_num, uint8_t const* buffer, uint32_t bufsize);
// Read event packet (4 bytes)
bool tud_midi_n_packet_read (uint8_t itf, uint8_t packet[4]);
// Write event packet (4 bytes)
bool tud_midi_n_packet_write (uint8_t itf, uint8_t const packet[4]);
//--------------------------------------------------------------------+
// Application API (Single Interface)
//--------------------------------------------------------------------+
static inline bool tud_midi_mounted (void);
static inline uint32_t tud_midi_available (void);
static inline uint32_t tud_midi_read (void* buffer, uint32_t bufsize);
static inline void tud_midi_read_flush (void);
static inline uint32_t tud_midi_write (uint8_t cable_num, uint8_t const* buffer, uint32_t bufsize);
static inline uint32_t tud_midi_write24 (uint8_t cable_num, uint8_t b1, uint8_t b2, uint8_t b3);
static inline bool tud_midi_receive (uint8_t packet[4]);
static inline bool tud_midi_send (uint8_t const packet[4]);
static inline bool tud_midi_mounted (void);
static inline uint32_t tud_midi_available (void);
static inline uint32_t tud_midi_stream_read (void* buffer, uint32_t bufsize);
static inline uint32_t tud_midi_stream_write (uint8_t cable_num, uint8_t const* buffer, uint32_t bufsize);
static inline bool tud_midi_packet_read (uint8_t packet[4]);
static inline bool tud_midi_packet_write (uint8_t const packet[4]);
//------------- Deprecated API name -------------//
// TODO remove after 0.10.0 release
TU_ATTR_DEPRECATED("tud_midi_read() is renamed to tud_midi_stream_read()")
static inline uint32_t tud_midi_read (void* buffer, uint32_t bufsize)
{
return tud_midi_stream_read(buffer, bufsize);
}
TU_ATTR_DEPRECATED("tud_midi_write() is renamed to tud_midi_stream_write()")
static inline uint32_t tud_midi_write(uint8_t cable_num, uint8_t const* buffer, uint32_t bufsize)
{
return tud_midi_stream_write(cable_num, buffer, bufsize);
}
TU_ATTR_DEPRECATED("tud_midi_send() is renamed to tud_midi_packet_write()")
static inline bool tud_midi_send(uint8_t packet[4])
{
return tud_midi_packet_write(packet);
}
TU_ATTR_DEPRECATED("tud_midi_receive() is renamed to tud_midi_packet_read()")
static inline bool tud_midi_receive(uint8_t packet[4])
{
return tud_midi_packet_read(packet);
}
//--------------------------------------------------------------------+
// Application Callback API (weak is optional)
@@ -92,12 +127,6 @@ TU_ATTR_WEAK void tud_midi_rx_cb(uint8_t itf);
// Inline Functions
//--------------------------------------------------------------------+
static inline uint32_t tud_midi_n_write24 (uint8_t itf, uint8_t cable_num, uint8_t b1, uint8_t b2, uint8_t b3)
{
uint8_t msg[3] = { b1, b2, b3 };
return tud_midi_n_write(itf, cable_num, msg, 3);
}
static inline bool tud_midi_mounted (void)
{
return tud_midi_n_mounted(0);
@@ -108,35 +137,24 @@ static inline uint32_t tud_midi_available (void)
return tud_midi_n_available(0, 0);
}
static inline uint32_t tud_midi_read (void* buffer, uint32_t bufsize)
static inline uint32_t tud_midi_stream_read (void* buffer, uint32_t bufsize)
{
return tud_midi_n_read(0, 0, buffer, bufsize);
return tud_midi_n_stream_read(0, 0, buffer, bufsize);
}
static inline void tud_midi_read_flush (void)
static inline uint32_t tud_midi_stream_write (uint8_t cable_num, uint8_t const* buffer, uint32_t bufsize)
{
tud_midi_n_read_flush(0, 0);
return tud_midi_n_stream_write(0, cable_num, buffer, bufsize);
}
static inline uint32_t tud_midi_write (uint8_t cable_num, uint8_t const* buffer, uint32_t bufsize)
static inline bool tud_midi_packet_read (uint8_t packet[4])
{
return tud_midi_n_write(0, cable_num, buffer, bufsize);
return tud_midi_n_packet_read(0, packet);
}
static inline uint32_t tud_midi_write24 (uint8_t cable_num, uint8_t b1, uint8_t b2, uint8_t b3)
static inline bool tud_midi_packet_write (uint8_t const packet[4])
{
uint8_t msg[3] = { b1, b2, b3 };
return tud_midi_write(cable_num, msg, 3);
}
static inline bool tud_midi_receive (uint8_t packet[4])
{
return tud_midi_n_receive(0, packet);
}
static inline bool tud_midi_send (uint8_t const packet[4])
{
return tud_midi_n_send(0, packet);
return tud_midi_n_packet_write(0, packet);
}
//--------------------------------------------------------------------+

View File

@@ -131,9 +131,9 @@ typedef struct
uint8_t ep_int_in;
// IN buffer is only used for first packet, not the remainder
// in order to deal with prepending header
uint8_t ep_bulk_in_buf[USBTMCD_MAX_PACKET_SIZE];
CFG_TUSB_MEM_ALIGN uint8_t ep_bulk_in_buf[USBTMCD_MAX_PACKET_SIZE];
// OUT buffer receives one packet at a time
uint8_t ep_bulk_out_buf[USBTMCD_MAX_PACKET_SIZE];
CFG_TUSB_MEM_ALIGN uint8_t ep_bulk_out_buf[USBTMCD_MAX_PACKET_SIZE];
uint32_t transfer_size_remaining; // also used for requested length for bulk IN.
uint32_t transfer_size_sent; // To keep track of data bytes that have been queued in FIFO (not header bytes)
@@ -145,7 +145,7 @@ typedef struct
usbtmc_capabilities_specific_t const * capabilities;
} usbtmc_interface_state_t;
static usbtmc_interface_state_t usbtmc_state =
CFG_TUSB_MEM_SECTION static usbtmc_interface_state_t usbtmc_state =
{
.itf_id = 0xFF,
};

View File

@@ -53,13 +53,11 @@ enum
enum
{
// Endpoint number is fixed (8) for ISOOUT and ISOIN.
EP_ISO_NUM = 8,
// CBI endpoints count
EP_COUNT = 8
EP_ISO_NUM = 8, // Endpoint number is fixed (8) for ISOOUT and ISOIN
EP_CBI_COUNT = 8 // Control Bulk Interrupt endpoints count
};
// Transfer descriptor
// Transfer Descriptor
typedef struct
{
uint8_t* buffer;
@@ -67,9 +65,10 @@ typedef struct
volatile uint16_t actual_len;
uint16_t mps; // max packet size
// nrf52840 will auto ACK OUT packet after DMA is done
// nRF will auto accept OUT packet after DMA is done
// indicate packet is already ACK
volatile bool data_received;
// Set to true when data was transferred from RAM to ISO IN output buffer.
// New data can be put in ISO IN output buffer after SOF.
bool iso_in_transfer_ready;
@@ -81,7 +80,7 @@ static struct
{
// All 8 endpoints including control IN & OUT (offset 1)
// +1 for ISO endpoints
xfer_td_t xfer[EP_COUNT + 1][2];
xfer_td_t xfer[EP_CBI_COUNT + 1][2];
// Number of pending DMA that is started but not handled yet by dcd_int_handler().
// Since nRF can only carry one DMA can run at a time, this value is normally be either 0 or 1.
@@ -133,7 +132,7 @@ static void edpt_dma_start(volatile uint32_t* reg_startep)
{
ended = NRF_USBD->EVENTS_ENDISOIN + NRF_USBD->EVENTS_ENDISOOUT;
for (uint8_t i=0; i<EP_COUNT; i++)
for (uint8_t i=0; i<EP_CBI_COUNT; i++)
{
ended += NRF_USBD->EVENTS_ENDEPIN[i] + NRF_USBD->EVENTS_ENDEPOUT[i];
}
@@ -166,27 +165,6 @@ static inline xfer_td_t* get_td(uint8_t epnum, uint8_t dir)
return &_dcd.xfer[epnum][dir];
}
/*------------- CBI OUT Transfer -------------*/
// Prepare for a CBI transaction OUT, call at the start
// Allow ACK incoming data
static void xact_out_prepare(uint8_t epnum)
{
if ( epnum == 0 )
{
NRF_USBD->TASKS_EP0RCVOUT = 1;
}
else
{
// Write zero value to SIZE register will allow hw to ACK (accept data)
// If it is not already done by DMA
// SIZE.ISOOUT can also be accessed this way
NRF_USBD->SIZE.EPOUT[epnum] = 0;
}
__ISB(); __DSB();
}
// Start DMA to move data from Endpoint -> RAM
static void xact_out_dma(uint8_t epnum)
{
@@ -217,15 +195,14 @@ static void xact_out_dma(uint8_t epnum)
edpt_dma_start(&NRF_USBD->TASKS_STARTEPOUT[epnum]);
}
xfer->buffer += xact_len;
xfer->actual_len += xact_len;
}
/*------------- CBI IN Transfer -------------*/
// Prepare for a CBI transaction IN, call at the start
// it start DMA to transfer data from RAM -> Endpoint
static void xact_in_prepare(uint8_t epnum)
static void xact_in_dma(uint8_t epnum)
{
xfer_td_t* xfer = get_td(epnum, TUSB_DIR_IN);
@@ -327,6 +304,9 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
NRF_USBD->INTENSET = TU_BIT(USBD_INTEN_ENDEPOUT0_Pos + epnum);
NRF_USBD->EPOUTEN |= TU_BIT(epnum);
// Write any value to SIZE register will allow nRF to ACK/accept data
NRF_USBD->SIZE.EPOUT[epnum] = 0;
}else
{
NRF_USBD->INTENSET = TU_BIT(USBD_INTEN_ENDEPIN0_Pos + epnum);
@@ -438,20 +418,31 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
}
else if ( dir == TUSB_DIR_OUT )
{
if ( xfer->data_received )
if ( epnum == 0 )
{
// nrf52840 auto ACK OUT packet after DMA is done
// Data already received previously --> trigger DMA to copy to SRAM
xact_out_dma(epnum);
}
else
// Accept next Control Out packet
NRF_USBD->TASKS_EP0RCVOUT = 1;
}else
{
xact_out_prepare(epnum);
if ( xfer->data_received )
{
// Data may already be received previously
xfer->data_received = false;
// start DMA to copy to SRAM
xact_out_dma(epnum);
}
else
{
// nRF auto accept next Bulk/Interrupt OUT packet
// nothing to do
}
}
}
else
{
xact_in_prepare(epnum);
// Start DMA to copy data from RAM -> Endpoint
xact_in_dma(epnum);
}
return true;
@@ -477,6 +468,7 @@ void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
if ( epnum != 0 && epnum != EP_ISO_NUM )
{
@@ -486,6 +478,10 @@ void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
// reset data toggle to DATA0
NRF_USBD->DTOGGLE = (USBD_DTOGGLE_VALUE_Data0 << USBD_DTOGGLE_VALUE_Pos) | ep_addr;
// Write any value to SIZE register will allow nRF to ACK/accept data
// Drop any pending data
if (dir == TUSB_DIR_OUT) NRF_USBD->SIZE.EPOUT[epnum] = 0;
__ISB(); __DSB();
}
}
@@ -594,17 +590,18 @@ void dcd_int_handler(uint8_t rhport)
// Setup tokens are specific to the Control endpoint.
if ( int_status & USBD_INTEN_EP0SETUP_Msk )
{
uint8_t const setup[8] = {
NRF_USBD->BMREQUESTTYPE , NRF_USBD->BREQUEST, NRF_USBD->WVALUEL , NRF_USBD->WVALUEH,
NRF_USBD->WINDEXL , NRF_USBD->WINDEXH , NRF_USBD->WLENGTHL, NRF_USBD->WLENGTHH
uint8_t const setup[8] =
{
NRF_USBD->BMREQUESTTYPE , NRF_USBD->BREQUEST, NRF_USBD->WVALUEL , NRF_USBD->WVALUEH,
NRF_USBD->WINDEXL , NRF_USBD->WINDEXH , NRF_USBD->WLENGTHL, NRF_USBD->WLENGTHH
};
// nrf5x hw auto handle set address, there is no need to inform usb stack
tusb_control_request_t const * request = (tusb_control_request_t const *) setup;
if ( !(TUSB_REQ_RCPT_DEVICE == request->bmRequestType_bit.recipient &&
if ( !(TUSB_REQ_RCPT_DEVICE == request->bmRequestType_bit.recipient &&
TUSB_REQ_TYPE_STANDARD == request->bmRequestType_bit.type &&
TUSB_REQ_SET_ADDRESS == request->bRequest) )
TUSB_REQ_SET_ADDRESS == request->bRequest) )
{
dcd_event_setup_received(0, setup, true);
}
@@ -620,15 +617,15 @@ void dcd_int_handler(uint8_t rhport)
* For CBI OUT:
* - Host -> Endpoint
* EPDATA (or EP0DATADONE) interrupted, check EPDATASTATUS.EPOUT[i]
* to start DMA. This step can occur automatically (without sw),
* which means data may or may not ready (data_received flag).
* to start DMA. For Bulk/Interrupt, this step can occur automatically (without sw),
* which means data may or may not be ready (data_received flag).
* - Endpoint -> RAM
* ENDEPOUT[i] interrupted, transaction complete, sw prepare next transaction
*
* For CBI IN:
* - RAM -> Endpoint
* ENDEPIN[i] interrupted indicate DMA is complete. HW will start
* to move daat to host
* to move data to host
* - Endpoint -> Host
* EPDATA (or EP0DATADONE) interrupted, check EPDATASTATUS.EPIN[i].
* Transaction is complete, sw prepare next transaction
@@ -640,27 +637,31 @@ void dcd_int_handler(uint8_t rhport)
/* CBI OUT: Endpoint -> SRAM (aka transaction complete)
* Note: Since nRF controller auto ACK next packet without SW awareness
* We must handle this stage before Host -> Endpoint just in case
* 2 event happens at once
* ISO OUT: Transaction must fit in single packed, it can be shorter then total
* We must handle this stage before Host -> Endpoint just in case 2 event happens at once
*
* ISO OUT: Transaction must fit in single packet, it can be shorter then total
* len if Host decides to sent fewer bytes, it this case transaction is also
* complete and next transfer is not initiated here like for CBI.
*/
for(uint8_t epnum=0; epnum<EP_COUNT+1; epnum++)
for(uint8_t epnum=0; epnum<EP_CBI_COUNT+1; epnum++)
{
if ( tu_bit_test(int_status, USBD_INTEN_ENDEPOUT0_Pos+epnum))
{
xfer_td_t* xfer = get_td(epnum, TUSB_DIR_OUT);
uint8_t const xact_len = NRF_USBD->EPOUT[epnum].AMOUNT;
// Data in endpoint has been consumed
xfer->data_received = false;
// Transfer complete if transaction len < Max Packet Size or total len is transferred
if ( (epnum != EP_ISO_NUM) && (xact_len == xfer->mps) && (xfer->actual_len < xfer->total_len) )
{
// Prepare for next transaction
xact_out_prepare(epnum);
if ( epnum == 0 )
{
// Accept next Control Out packet
NRF_USBD->TASKS_EP0RCVOUT = 1;
}else
{
// nRF auto accept next Bulk/Interrupt OUT packet
// nothing to do
}
}else
{
xfer->total_len = xfer->actual_len;
@@ -673,7 +674,7 @@ void dcd_int_handler(uint8_t rhport)
// Ended event for CBI IN : nothing to do
}
// Endpoint <-> Host
// Endpoint <-> Host ( In & OUT )
if ( int_status & (USBD_INTEN_EPDATA_Msk | USBD_INTEN_EP0DATADONE_Msk) )
{
uint32_t data_status = NRF_USBD->EPDATASTATUS;
@@ -687,9 +688,9 @@ void dcd_int_handler(uint8_t rhport)
bool const is_control_out = (int_status & USBD_INTEN_EP0DATADONE_Msk) && !(NRF_USBD->BMREQUESTTYPE & TUSB_DIR_IN_MASK);
// CBI In: Endpoint -> Host (transaction complete)
for(uint8_t epnum=0; epnum<8; epnum++)
for(uint8_t epnum=0; epnum<EP_CBI_COUNT; epnum++)
{
if ( tu_bit_test(data_status, epnum ) || ( epnum == 0 && is_control_in) )
if ( tu_bit_test(data_status, epnum) || (epnum == 0 && is_control_in) )
{
xfer_td_t* xfer = get_td(epnum, TUSB_DIR_IN);
@@ -697,8 +698,8 @@ void dcd_int_handler(uint8_t rhport)
if ( xfer->actual_len < xfer->total_len )
{
// prepare next transaction
xact_in_prepare(epnum);
// Start DMA to copy next data packet
xact_in_dma(epnum);
} else
{
// CBI IN complete
@@ -708,9 +709,9 @@ void dcd_int_handler(uint8_t rhport)
}
// CBI OUT: Host -> Endpoint
for(uint8_t epnum=0; epnum<8; epnum++)
for(uint8_t epnum=0; epnum<EP_CBI_COUNT; epnum++)
{
if ( tu_bit_test(data_status, 16+epnum ) || ( epnum == 0 && is_control_out) )
if ( tu_bit_test(data_status, 16+epnum) || (epnum == 0 && is_control_out) )
{
xfer_td_t* xfer = get_td(epnum, TUSB_DIR_OUT);
@@ -719,7 +720,7 @@ void dcd_int_handler(uint8_t rhport)
xact_out_dma(epnum);
}else
{
// Data overflow !!! Nah, nrf52840 will auto ACK OUT packet after DMA is done
// Data overflow !!! Nah, nRF will auto accept next Bulk/Interrupt OUT packet
// Mark this endpoint with data received
xfer->data_received = true;
}

View File

@@ -26,7 +26,8 @@
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_LPC175X_6X || CFG_TUSB_MCU == OPT_MCU_LPC40XX)
#if TUSB_OPT_DEVICE_ENABLED && \
(CFG_TUSB_MCU == OPT_MCU_LPC175X_6X || CFG_TUSB_MCU == OPT_MCU_LPC177X_8X || CFG_TUSB_MCU == OPT_MCU_LPC40XX)
#include "device/dcd.h"
#include "dcd_lpc17_40.h"

View File

@@ -24,8 +24,8 @@
* This file is part of the TinyUSB stack.
*/
#ifndef _TUSB_DCD_LPC175X_6X_H_
#define _TUSB_DCD_LPC175X_6X_H_
#ifndef _TUSB_DCD_LPC17_40_H_
#define _TUSB_DCD_LPC17_40_H_
#include "common/tusb_common.h"
@@ -149,4 +149,4 @@ enum {
}
#endif
#endif /* _TUSB_DCD_LPC175X_6X_H_ */
#endif

View File

@@ -26,7 +26,8 @@
#include "tusb_option.h"
#if (CFG_TUSB_MCU == OPT_MCU_LPC175X_6X || CFG_TUSB_MCU == OPT_MCU_LPC40XX)
#if TUSB_OPT_HOST_ENABLED && \
(CFG_TUSB_MCU == OPT_MCU_LPC175X_6X || CFG_TUSB_MCU == OPT_MCU_LPC177X_8X || CFG_TUSB_MCU == OPT_MCU_LPC40XX)
#include "chip.h"

View File

@@ -0,0 +1,736 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Koji Kitayama
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && ( CFG_TUSB_MCU == OPT_MCU_RX63X )
#include "device/dcd.h"
#include "iodefine.h"
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
#define SYSTEM_PRCR_PRC1 (1<<1)
#define SYSTEM_PRCR_PRKEY (0xA5u<<8)
#define USB_FIFOSEL_TX ((uint16_t)(1u<<5))
#define USB_FIFOSEL_MBW_8 ((uint16_t)(0u<<10))
#define USB_FIFOSEL_MBW_16 ((uint16_t)(1u<<10))
#define USB_IS0_CTSQ ((uint16_t)(7u))
#define USB_IS0_DVSQ ((uint16_t)(7u<<4))
#define USB_IS0_VALID ((uint16_t)(1u<<3))
#define USB_IS0_BRDY ((uint16_t)(1u<<8))
#define USB_IS0_NRDY ((uint16_t)(1u<<9))
#define USB_IS0_BEMP ((uint16_t)(1u<<10))
#define USB_IS0_CTRT ((uint16_t)(1u<<11))
#define USB_IS0_DVST ((uint16_t)(1u<<12))
#define USB_IS0_SOFR ((uint16_t)(1u<<13))
#define USB_IS0_RESM ((uint16_t)(1u<<14))
#define USB_IS0_VBINT ((uint16_t)(1u<<15))
#define USB_IS1_SACK ((uint16_t)(1u<<4))
#define USB_IS1_SIGN ((uint16_t)(1u<<5))
#define USB_IS1_EOFERR ((uint16_t)(1u<<6))
#define USB_IS1_ATTCH ((uint16_t)(1u<<11))
#define USB_IS1_DTCH ((uint16_t)(1u<<12))
#define USB_IS1_BCHG ((uint16_t)(1u<<14))
#define USB_IS1_OVRCR ((uint16_t)(1u<<15))
#define USB_IS0_CTSQ_MSK (7u)
#define USB_IS0_CTSQ_SETUP (1u)
#define USB_IS0_DVSQ_DEF (1u<<4)
#define USB_IS0_DVSQ_ADDR (2u<<4)
#define USB_IS0_DVSQ_SUSP (4u<<4)
#define USB_PIPECTR_PID_NAK (0u)
#define USB_PIPECTR_PID_BUF (1u)
#define USB_PIPECTR_PID_STALL (2u)
#define USB_PIPECTR_CCPL (1u<<2)
#define USB_PIPECTR_SQMON (1u<<6)
#define USB_PIPECTR_SQCLR (1u<<8)
#define USB_PIPECTR_ACLRM (1u<<9)
#define USB_PIPECTR_INBUFM (1u<<14)
#define USB_PIPECTR_BSTS (1u<<15)
#define USB_FIFOCTR_DTLN (0x1FF)
#define USB_FIFOCTR_FRDY (1u<<13)
#define USB_FIFOCTR_BCLR (1u<<14)
#define USB_FIFOCTR_BVAL (1u<<15)
#define USB_PIPECFG_SHTNAK (1u<<7)
#define USB_PIPECFG_DBLB (1u<<9)
#define USB_PIPECFG_BULK (1u<<14)
#define USB_PIPECFG_ISO (3u<<14)
#define USB_PIPECFG_INT (2u<<14)
#define FIFO_REQ_CLR (1u)
#define FIFO_COMPLETE (1u<<1)
typedef struct {
union {
struct {
uint16_t : 8;
uint16_t TRCLR: 1;
uint16_t TRENB: 1;
uint16_t : 0;
};
uint16_t TRE;
};
uint16_t TRN;
} reg_pipetre_t;
typedef union {
struct {
volatile uint16_t u8: 8;
volatile uint16_t : 0;
};
volatile uint16_t u16;
} hw_fifo_t;
typedef struct TU_ATTR_PACKED
{
uintptr_t addr; /* the start address of a transfer data buffer */
uint16_t length; /* the number of bytes in the buffer */
uint16_t remaining; /* the number of bytes remaining in the buffer */
struct {
uint32_t ep : 8; /* an assigned endpoint address */
uint32_t : 0;
};
} pipe_state_t;
typedef struct
{
pipe_state_t pipe[9];
uint8_t ep[2][16]; /* a lookup table for a pipe index from an endpoint address */
} dcd_data_t;
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
CFG_TUSB_MEM_SECTION static dcd_data_t _dcd;
static uint32_t disable_interrupt(void)
{
uint32_t pswi;
pswi = __builtin_rx_mvfc(0) & 0x010000;
__builtin_rx_clrpsw('I');
return pswi;
}
static void enable_interrupt(uint32_t pswi)
{
__builtin_rx_mvtc(0, __builtin_rx_mvfc(0) | pswi);
}
static unsigned find_pipe(unsigned xfer)
{
switch (xfer) {
case TUSB_XFER_ISOCHRONOUS:
for (int i = 1; i <= 2; ++i) {
if (0 == _dcd.pipe[i].ep) return i;
}
break;
case TUSB_XFER_BULK:
for (int i = 3; i <= 5; ++i) {
if (0 == _dcd.pipe[i].ep) return i;
}
for (int i = 1; i <= 1; ++i) {
if (0 == _dcd.pipe[i].ep) return i;
}
break;
case TUSB_XFER_INTERRUPT:
for (int i = 6; i <= 9; ++i) {
if (0 == _dcd.pipe[i].ep) return i;
}
break;
default:
/* No support for control transfer */
break;
}
return 0;
}
static volatile uint16_t* get_pipectr(unsigned num)
{
volatile uint16_t *ctr = NULL;
if (num) {
ctr = (volatile uint16_t*)&USB0.PIPE1CTR.WORD;
ctr += num - 1;
} else {
ctr = (volatile uint16_t*)&USB0.DCPCTR.WORD;
}
return ctr;
}
static volatile reg_pipetre_t* get_pipetre(unsigned num)
{
volatile reg_pipetre_t* tre = NULL;
if ((1 <= num) && (num <= 5)) {
tre = (volatile reg_pipetre_t*)&USB0.PIPE1TRE.WORD;
tre += num - 1;
}
return tre;
}
static volatile uint16_t* ep_addr_to_pipectr(uint8_t rhport, unsigned ep_addr)
{
(void)rhport;
volatile uint16_t *ctr = NULL;
const unsigned epn = tu_edpt_number(ep_addr);
if (epn) {
const unsigned dir = tu_edpt_dir(ep_addr);
const unsigned num = _dcd.ep[dir][epn];
if (num) {
ctr = (volatile uint16_t*)&USB0.PIPE1CTR.WORD;
ctr += num - 1;
}
} else {
ctr = (volatile uint16_t*)&USB0.DCPCTR.WORD;
}
return ctr;
}
static unsigned wait_for_pipe_ready(void)
{
unsigned ctr;
do {
ctr = USB0.D0FIFOCTR.WORD;
} while (!(ctr & USB_FIFOCTR_FRDY));
return ctr;
}
static unsigned select_pipe(unsigned num, unsigned attr)
{
USB0.PIPESEL.WORD = num;
USB0.D0FIFOSEL.WORD = num | attr;
while (!(USB0.D0FIFOSEL.BIT.CURPIPE != num)) ;
return wait_for_pipe_ready();
}
/* 1 less than mps bytes were written to FIFO
* 2 no bytes were written to FIFO
* 0 mps bytes were written to FIFO */
static int fifo_write(volatile void *fifo, pipe_state_t* pipe, unsigned mps)
{
unsigned rem = pipe->remaining;
if (!rem) return 2;
unsigned len = TU_MIN(rem, mps);
hw_fifo_t *reg = (hw_fifo_t*)fifo;
uintptr_t addr = pipe->addr + pipe->length - rem;
if (addr & 1u) {
/* addr is not 2-byte aligned */
reg->u8 = *(const uint8_t *)addr;
++addr;
--len;
}
while (len >= 2) {
reg->u16 = *(const uint16_t *)addr;
addr += 2;
len -= 2;
}
if (len) {
reg->u8 = *(const uint8_t *)addr;
++addr;
}
if (rem < mps) return 1;
return 0;
}
/* 1 less than mps bytes were read from FIFO
* 2 the end of the buffer reached.
* 0 mps bytes were read from FIFO */
static int fifo_read(volatile void *fifo, pipe_state_t* pipe, unsigned mps, size_t len)
{
unsigned rem = pipe->remaining;
if (!rem) return 2;
if (rem < len) len = rem;
pipe->remaining = rem - len;
hw_fifo_t *reg = (hw_fifo_t*)fifo;
uintptr_t addr = pipe->addr;
unsigned loop = len;
while (loop--) {
*(uint8_t *)addr = reg->u8;
++addr;
}
pipe->addr = addr;
if (rem < mps) return 1;
if (rem == len) return 2;
return 0;
}
static void process_setup_packet(uint8_t rhport)
{
uint16_t setup_packet[4];
if (0 == (USB0.INTSTS0.WORD & USB_IS0_VALID)) return;
USB0.CFIFOCTR.WORD = USB_FIFOCTR_BCLR;
setup_packet[0] = USB0.USBREQ.WORD;
setup_packet[1] = USB0.USBVAL;
setup_packet[2] = USB0.USBINDX;
setup_packet[3] = USB0.USBLENG;
USB0.INTSTS0.WORD = ~USB_IS0_VALID;
dcd_event_setup_received(rhport, (const uint8_t*)&setup_packet[0], true);
}
static void process_status_completion(uint8_t rhport)
{
uint8_t ep_addr;
/* Check the data stage direction */
if (USB0.CFIFOSEL.WORD & USB_FIFOSEL_TX) {
/* IN transfer. */
ep_addr = tu_edpt_addr(0, TUSB_DIR_IN);
} else {
/* OUT transfer. */
ep_addr = tu_edpt_addr(0, TUSB_DIR_OUT);
}
dcd_event_xfer_complete(rhport, ep_addr, 0, XFER_RESULT_SUCCESS, true);
}
static bool process_edpt0_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
(void)rhport;
pipe_state_t *pipe = &_dcd.pipe[0];
/* configure fifo direction and access unit settings */
if (ep_addr) { /* IN, 2 bytes */
USB0.CFIFOSEL.WORD = USB_FIFOSEL_TX | USB_FIFOSEL_MBW_16;
while (!(USB0.CFIFOSEL.WORD & USB_FIFOSEL_TX)) ;
} else { /* OUT, a byte */
USB0.CFIFOSEL.WORD = USB_FIFOSEL_MBW_8;
while (USB0.CFIFOSEL.WORD & USB_FIFOSEL_TX) ;
}
if (total_bytes) {
pipe->addr = (uintptr_t)buffer;
pipe->length = total_bytes;
pipe->remaining = total_bytes;
if (ep_addr) { /* IN */
TU_ASSERT(USB0.DCPCTR.BIT.BSTS && (USB0.USBREQ.WORD & 0x80));
if (fifo_write(&USB0.CFIFO.WORD, pipe, 64)) {
USB0.CFIFOCTR.WORD = USB_FIFOCTR_BVAL;
}
}
USB0.DCPCTR.WORD = USB_PIPECTR_PID_BUF;
} else {
/* ZLP */
pipe->addr = 0;
pipe->length = 0;
pipe->remaining = 0;
USB0.DCPCTR.WORD = USB_PIPECTR_CCPL | USB_PIPECTR_PID_BUF;
}
return true;
}
static void process_edpt0_bemp(uint8_t rhport)
{
pipe_state_t *pipe = &_dcd.pipe[0];
const unsigned rem = pipe->remaining;
if (rem > 64) {
pipe->remaining = rem - 64;
int r = fifo_write(&USB0.CFIFO.WORD, &_dcd.pipe[0], 64);
if (r) USB0.CFIFOCTR.WORD = USB_FIFOCTR_BVAL;
return;
}
pipe->addr = 0;
pipe->remaining = 0;
dcd_event_xfer_complete(rhport, tu_edpt_addr(0, TUSB_DIR_IN),
pipe->length, XFER_RESULT_SUCCESS, true);
}
static void process_edpt0_brdy(uint8_t rhport)
{
size_t len = USB0.CFIFOCTR.BIT.DTLN;
int cplt = fifo_read(&USB0.CFIFO.WORD, &_dcd.pipe[0], 64, len);
if (cplt || (len < 64)) {
if (2 != cplt) {
USB0.CFIFOCTR.WORD = USB_FIFOCTR_BCLR;
}
dcd_event_xfer_complete(rhport, tu_edpt_addr(0, TUSB_DIR_OUT),
_dcd.pipe[0].length - _dcd.pipe[0].remaining,
XFER_RESULT_SUCCESS, true);
}
}
static bool process_pipe_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
(void)rhport;
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir = tu_edpt_dir(ep_addr);
const unsigned num = _dcd.ep[dir][epn];
TU_ASSERT(num);
pipe_state_t *pipe = &_dcd.pipe[num];
pipe->addr = (uintptr_t)buffer;
pipe->length = total_bytes;
pipe->remaining = total_bytes;
USB0.PIPESEL.WORD = num;
const unsigned mps = USB0.PIPEMAXP.WORD;
if (dir) { /* IN */
USB0.D0FIFOSEL.WORD = num | USB_FIFOSEL_MBW_16;
while (!(USB0.D0FIFOSEL.BIT.CURPIPE != num)) ;
int r = fifo_write(&USB0.D0FIFO.WORD, pipe, mps);
if (r) USB0.D0FIFOCTR.WORD = USB_FIFOCTR_BVAL;
USB0.D0FIFOSEL.WORD = 0;
} else {
volatile reg_pipetre_t *pt = get_pipetre(num);
if (pt) {
volatile uint16_t *ctr = get_pipectr(num);
if (*ctr & 0x3) *ctr = USB_PIPECTR_PID_NAK;
pt->TRE = TU_BIT(8);
pt->TRN = (total_bytes + mps - 1) / mps;
pt->TRENB = 1;
*ctr = USB_PIPECTR_PID_BUF;
}
}
// TU_LOG1("X %x %d\r\n", ep_addr, total_bytes);
return true;
}
static void process_pipe_brdy(uint8_t rhport, unsigned num)
{
pipe_state_t *pipe = &_dcd.pipe[num];
if (tu_edpt_dir(pipe->ep)) { /* IN */
select_pipe(num, USB_FIFOSEL_MBW_16);
const unsigned mps = USB0.PIPEMAXP.WORD;
unsigned rem = pipe->remaining;
rem -= TU_MIN(rem, mps);
pipe->remaining = rem;
if (rem) {
int r = 0;
r = fifo_write(&USB0.D0FIFO.WORD, pipe, mps);
if (r) USB0.D0FIFOCTR.WORD = USB_FIFOCTR_BVAL;
USB0.D0FIFOSEL.WORD = 0;
return;
}
USB0.D0FIFOSEL.WORD = 0;
pipe->addr = 0;
pipe->remaining = 0;
dcd_event_xfer_complete(rhport, pipe->ep, pipe->length,
XFER_RESULT_SUCCESS, true);
} else {
const unsigned ctr = select_pipe(num, USB_FIFOSEL_MBW_8);
const unsigned len = ctr & USB_FIFOCTR_DTLN;
const unsigned mps = USB0.PIPEMAXP.WORD;
int cplt = fifo_read(&USB0.D0FIFO.WORD, pipe, mps, len);
if (cplt || (len < mps)) {
if (2 != cplt) {
USB0.D0FIFO.WORD = USB_FIFOCTR_BCLR;
}
USB0.D0FIFOSEL.WORD = 0;
dcd_event_xfer_complete(rhport, pipe->ep,
pipe->length - pipe->remaining,
XFER_RESULT_SUCCESS, true);
return;
}
USB0.D0FIFOSEL.WORD = 0;
}
}
static void process_bus_reset(uint8_t rhport)
{
USB0.BEMPENB.WORD = 1;
USB0.BRDYENB.WORD = 1;
USB0.CFIFOCTR.WORD = USB_FIFOCTR_BCLR;
USB0.D0FIFOSEL.WORD = 0;
USB0.D1FIFOSEL.WORD = 0;
volatile uint16_t *ctr = (volatile uint16_t*)((uintptr_t)(&USB0.PIPE1CTR.WORD));
volatile uint16_t *tre = (volatile uint16_t*)((uintptr_t)(&USB0.PIPE1TRE.WORD));
for (int i = 1; i <= 5; ++i) {
USB0.PIPESEL.WORD = i;
USB0.PIPECFG.WORD = 0;
*ctr = USB_PIPECTR_ACLRM;
*ctr = 0;
++ctr;
*tre = TU_BIT(8);
tre += 2;
}
for (int i = 6; i <= 9; ++i) {
USB0.PIPESEL.WORD = i;
USB0.PIPECFG.WORD = 0;
*ctr = USB_PIPECTR_ACLRM;
*ctr = 0;
++ctr;
}
tu_varclr(&_dcd);
dcd_event_bus_reset(rhport, TUSB_SPEED_FULL, true);
}
static void process_set_address(uint8_t rhport)
{
const uint32_t addr = USB0.USBADDR.BIT.USBADDR;
if (!addr) return;
const tusb_control_request_t setup_packet = {
.bmRequestType = 0,
.bRequest = 5,
.wValue = addr,
.wIndex = 0,
.wLength = 0,
};
dcd_event_setup_received(rhport, (const uint8_t*)&setup_packet, true);
}
/*------------------------------------------------------------------*/
/* Device API
*------------------------------------------------------------------*/
void dcd_init(uint8_t rhport)
{
(void)rhport;
/* Enable USB0 */
uint32_t pswi = disable_interrupt();
SYSTEM.PRCR.WORD = SYSTEM_PRCR_PRKEY | SYSTEM_PRCR_PRC1;
MSTP(USB0) = 0;
SYSTEM.PRCR.WORD = SYSTEM_PRCR_PRKEY;
enable_interrupt(pswi);
USB0.SYSCFG.BIT.SCKE = 1;
while (!USB0.SYSCFG.BIT.SCKE) ;
USB0.SYSCFG.BIT.DRPD = 0;
USB0.SYSCFG.BIT.DCFM = 0;
USB0.SYSCFG.BIT.USBE = 1;
IR(USB0, USBI0) = 0;
/* Setup default control pipe */
USB0.DCPMAXP.BIT.MXPS = 64;
USB0.INTENB0.WORD = USB_IS0_VBINT | USB_IS0_BRDY | USB_IS0_BEMP | USB_IS0_DVST | USB_IS0_CTRT;
USB0.BEMPENB.WORD = 1;
USB0.BRDYENB.WORD = 1;
if (USB0.INTSTS0.BIT.VBSTS) {
dcd_connect(rhport);
}
}
void dcd_int_enable(uint8_t rhport)
{
(void)rhport;
IEN(USB0, USBI0) = 1;
}
void dcd_int_disable(uint8_t rhport)
{
(void)rhport;
IEN(USB0, USBI0) = 0;
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
(void)rhport;
(void)dev_addr;
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void)rhport;
/* TODO */
}
void dcd_connect(uint8_t rhport)
{
(void)rhport;
USB0.SYSCFG.BIT.DPRPU = 1;
}
void dcd_disconnect(uint8_t rhport)
{
(void)rhport;
USB0.SYSCFG.BIT.DPRPU = 0;
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void)rhport;
const unsigned ep_addr = ep_desc->bEndpointAddress;
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir = tu_edpt_dir(ep_addr);
const unsigned xfer = ep_desc->bmAttributes.xfer;
const unsigned mps = ep_desc->wMaxPacketSize.size;
if (xfer == TUSB_XFER_ISOCHRONOUS && mps > 256) {
/* USBa supports up to 256 bytes */
return false;
}
const unsigned num = find_pipe(xfer);
if (!num) return false;
_dcd.pipe[num].ep = ep_addr;
_dcd.ep[dir][epn] = num;
/* setup pipe */
dcd_int_disable(rhport);
USB0.PIPESEL.WORD = num;
USB0.PIPEMAXP.WORD = mps;
volatile uint16_t *ctr = get_pipectr(num);
*ctr = USB_PIPECTR_ACLRM;
*ctr = 0;
unsigned cfg = (dir << 4) | epn;
if (xfer == TUSB_XFER_BULK) {
cfg |= USB_PIPECFG_BULK | USB_PIPECFG_SHTNAK | USB_PIPECFG_DBLB;
} else if (xfer == TUSB_XFER_INTERRUPT) {
cfg |= USB_PIPECFG_INT;
} else {
cfg |= USB_PIPECFG_ISO | USB_PIPECFG_DBLB;
}
USB0.PIPECFG.WORD = cfg;
USB0.BRDYSTS.WORD = 0x1FFu ^ TU_BIT(num);
USB0.BRDYENB.WORD |= TU_BIT(num);
if (dir || (xfer != TUSB_XFER_BULK)) {
*ctr = USB_PIPECTR_PID_BUF;
}
// TU_LOG1("O %d %x %x\r\n", USB0.PIPESEL.WORD, USB0.PIPECFG.WORD, USB0.PIPEMAXP.WORD);
dcd_int_enable(rhport);
return true;
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir = tu_edpt_dir(ep_addr);
const unsigned num = _dcd.ep[dir][epn];
USB0.BRDYENB.WORD &= ~TU_BIT(num);
volatile uint16_t *ctr = get_pipectr(num);
*ctr = 0;
USB0.PIPESEL.WORD = num;
USB0.PIPECFG.WORD = 0;
_dcd.pipe[num].ep = 0;
_dcd.ep[dir][epn] = 0;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
bool r;
const unsigned epn = tu_edpt_number(ep_addr);
dcd_int_disable(rhport);
if (0 == epn) {
r = process_edpt0_xfer(rhport, ep_addr, buffer, total_bytes);
} else {
r = process_pipe_xfer(rhport, ep_addr, buffer, total_bytes);
}
dcd_int_enable(rhport);
return r;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
volatile uint16_t *ctr = ep_addr_to_pipectr(rhport, ep_addr);
if (!ctr) return;
dcd_int_disable(rhport);
const uint32_t pid = *ctr & 0x3;
*ctr = pid | USB_PIPECTR_PID_STALL;
*ctr = USB_PIPECTR_PID_STALL;
dcd_int_enable(rhport);
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
volatile uint16_t *ctr = ep_addr_to_pipectr(rhport, ep_addr);
if (!ctr) return;
dcd_int_disable(rhport);
*ctr = USB_PIPECTR_SQCLR;
if (tu_edpt_dir(ep_addr)) { /* IN */
*ctr = USB_PIPECTR_PID_BUF;
} else {
const unsigned num = _dcd.ep[0][tu_edpt_number(ep_addr)];
USB0.PIPESEL.WORD = num;
if (USB0.PIPECFG.BIT.TYPE != 1) {
*ctr = USB_PIPECTR_PID_BUF;
}
}
dcd_int_enable(rhport);
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
void dcd_int_handler(uint8_t rhport)
{
(void)rhport;
unsigned is0 = USB0.INTSTS0.WORD;
/* clear bits except VALID */
USB0.INTSTS0.WORD = USB_IS0_VALID;
if (is0 & USB_IS0_VBINT) {
if (USB0.INTSTS0.BIT.VBSTS) {
dcd_connect(rhport);
} else {
dcd_disconnect(rhport);
}
}
if (is0 & USB_IS0_DVST) {
switch (is0 & USB_IS0_DVSQ) {
case USB_IS0_DVSQ_DEF:
process_bus_reset(rhport);
break;
case USB_IS0_DVSQ_ADDR:
process_set_address(rhport);
break;
default:
break;
}
}
if (is0 & USB_IS0_CTRT) {
if (is0 & USB_IS0_CTSQ_SETUP) {
/* A setup packet has been received. */
process_setup_packet(rhport);
} else if (0 == (is0 & USB_IS0_CTSQ_MSK)) {
/* A ZLP has been sent/received. */
process_status_completion(rhport);
}
}
if (is0 & USB_IS0_BEMP) {
const unsigned s = USB0.BEMPSTS.WORD;
USB0.BEMPSTS.WORD = 0;
if (s & 1) {
process_edpt0_bemp(rhport);
}
}
if (is0 & USB_IS0_BRDY) {
const unsigned m = USB0.BRDYENB.WORD;
unsigned s = USB0.BRDYSTS.WORD & m;
USB0.BRDYSTS.WORD = 0;
if (s & 1) {
process_edpt0_brdy(rhport);
s &= ~1;
}
while (s) {
const unsigned num = __builtin_ctz(s);
process_pipe_brdy(rhport, num);
s &= ~TU_BIT(num);
}
}
}
#endif

View File

@@ -0,0 +1,931 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2021 Rafael Silva (@perigoso)
* Copyright (c) 2021 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && ( \
(CFG_TUSB_MCU == OPT_MCU_EFM32GG) || \
(CFG_TUSB_MCU == OPT_MCU_EFM32GG11) || \
(CFG_TUSB_MCU == OPT_MCU_EFM32GG12) )
/* Silabs */
#include "em_device.h"
#include "device/dcd.h"
/*
* Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval)
* We disable SOF for now until needed later on
*/
#define USE_SOF 0
/*
* Number of endpoints
* 12 software-configurable endpoints (6 IN, 6 OUT) in addition to endpoint 0
*/
#define EP_COUNT 7
/* FIFO size in bytes */
#define EP_FIFO_SIZE 2048
/* Max number of IN EP FIFOs */
#define EP_FIFO_NUM 7
/* */
typedef struct {
uint8_t *buffer;
uint16_t total_len;
uint16_t queued_len;
uint16_t max_size;
bool short_packet;
} xfer_ctl_t;
static uint32_t _setup_packet[2];
#define XFER_CTL_BASE(_ep, _dir) &xfer_status[_ep][_dir]
static xfer_ctl_t xfer_status[EP_COUNT][2];
/* Keep count of how many FIFOs are in use */
static uint8_t _allocated_fifos = 1; /* FIFO0 is always in use */
static volatile uint32_t* tx_fifo[EP_FIFO_NUM] = {
USB->FIFO0D,
USB->FIFO1D,
USB->FIFO2D,
USB->FIFO3D,
USB->FIFO4D,
USB->FIFO5D,
USB->FIFO6D,
};
/* Register Helpers */
#define DCTL_WO_BITMASK (USB_DCTL_CGOUTNAK | USB_DCTL_SGOUTNAK | USB_DCTL_CGNPINNAK | USB_DCTL_SGNPINNAK)
#define GUSBCFG_WO_BITMASK (USB_GUSBCFG_CORRUPTTXPKT)
#define DEPCTL_WO_BITMASK (USB_DIEP_CTL_CNAK | USB_DIEP_CTL_SNAK | USB_DIEP_CTL_SETD0PIDEF | USB_DIEP_CTL_SETD1PIDOF)
/* Will either return an unused FIFO number, or 0 if all are used. */
static uint8_t get_free_fifo(void)
{
if(_allocated_fifos < EP_FIFO_NUM) return _allocated_fifos++;
return 0;
}
/*
static void flush_rx_fifo(void)
{
USB->GRSTCTL = USB_GRSTCTL_RXFFLSH;
while(USB->GRSTCTL & USB_GRSTCTL_RXFFLSH);
}
*/
static void flush_tx_fifo(uint8_t fifo_num)
{
USB->GRSTCTL = USB_GRSTCTL_TXFFLSH | (fifo_num << _USB_GRSTCTL_TXFNUM_SHIFT);
while(USB->GRSTCTL & USB_GRSTCTL_TXFFLSH);
}
/* Setup the control endpoint 0. */
static void bus_reset(void)
{
USB->DOEP0CTL |= USB_DIEP_CTL_SNAK;
for(uint8_t i = 0; i < EP_COUNT - 1; i++)
{
USB->DOEP[i].CTL |= USB_DIEP_CTL_SNAK;
}
/* reset address */
USB->DCFG &= ~_USB_DCFG_DEVADDR_MASK;
USB->DAINTMSK |= USB_DAINTMSK_OUTEPMSK0 | USB_DAINTMSK_INEPMSK0;
USB->DOEPMSK |= USB_DOEPMSK_SETUPMSK | USB_DOEPMSK_XFERCOMPLMSK;
USB->DIEPMSK |= USB_DIEPMSK_TIMEOUTMSK | USB_DIEPMSK_XFERCOMPLMSK;
/*
* - All EP OUT shared a unique OUT FIFO which uses
* * 10 locations in hardware for setup packets + setup control words (up to 3 setup packets).
* * 2 locations for OUT endpoint control words.
* * 16 for largest packet size of 64 bytes. ( TODO Highspeed is 512 bytes)
* * 1 location for global NAK (not required/used here).
* * It is recommended to allocate 2 times the largest packet size, therefore
* Recommended value = 10 + 1 + 2 x (16+2) = 47 --> Let's make it 52
*/
flush_tx_fifo(_USB_GRSTCTL_TXFNUM_FALL); // Flush All
USB->GRXFSIZ = 52;
/* Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word ) */
USB->GNPTXFSIZ = (16 << _USB_GNPTXFSIZ_NPTXFINEPTXF0DEP_SHIFT) | (USB->GRXFSIZ & _USB_GNPTXFSIZ_NPTXFSTADDR_MASK);
/* Ready to receive SETUP packet */
USB->DOEP0TSIZ |= (1 << _USB_DOEP0TSIZ_SUPCNT_SHIFT);
USB->GINTMSK |= USB_GINTMSK_IEPINTMSK | USB_GINTMSK_OEPINTMSK;
}
static void enum_done_processing(void)
{
/* Maximum packet size for EP 0 is set for both directions by writing DIEPCTL */
if((USB->DSTS & _USB_DSTS_ENUMSPD_MASK) == USB_DSTS_ENUMSPD_FS)
{
/* Full Speed (PHY on 48 MHz) */
USB->DOEP0CTL = (USB->DOEP0CTL & ~_USB_DOEP0CTL_MPS_MASK) | _USB_DOEP0CTL_MPS_64B; /* Maximum Packet Size 64 bytes */
USB->DOEP0CTL &= ~_USB_DOEP0CTL_STALL_MASK; /* clear Stall */
xfer_status[0][TUSB_DIR_OUT].max_size = 64;
xfer_status[0][TUSB_DIR_IN].max_size = 64;
}
else
{
/* Low Speed (PHY on 6 MHz) */
USB->DOEP0CTL = (USB->DOEP0CTL & ~_USB_DOEP0CTL_MPS_MASK) | _USB_DOEP0CTL_MPS_8B; /* Maximum Packet Size 64 bytes */
USB->DOEP0CTL &= ~_USB_DOEP0CTL_STALL_MASK; /* clear Stall */
xfer_status[0][TUSB_DIR_OUT].max_size = 8;
xfer_status[0][TUSB_DIR_IN].max_size = 8;
}
}
/*------------------------------------------------------------------*/
/* Controller API */
/*------------------------------------------------------------------*/
void dcd_init(uint8_t rhport)
{
(void) rhport;
/* Reset Core */
USB->PCGCCTL &= ~USB_PCGCCTL_STOPPCLK;
USB->PCGCCTL &= ~(USB_PCGCCTL_PWRCLMP | USB_PCGCCTL_RSTPDWNMODULE);
/* Core Soft Reset */
USB->GRSTCTL |= USB_GRSTCTL_CSFTRST;
while(USB->GRSTCTL & USB_GRSTCTL_CSFTRST);
while(!(USB->GRSTCTL & USB_GRSTCTL_AHBIDLE));
/* Enable PHY pins */
USB->ROUTE = USB_ROUTE_PHYPEN;
dcd_disconnect(rhport);
/*
* Set device speed (Full speed PHY)
* Stall on non-zero len status OUT packets (ctrl transfers)
* periodic frame interval to 80%
*/
USB->DCFG = (USB->DCFG & ~(_USB_DCFG_DEVSPD_MASK | _USB_DCFG_PERFRINT_MASK)) | USB_DCFG_DEVSPD_FS | USB_DCFG_NZSTSOUTHSHK;
/* Enable Global Interrupts */
USB->GAHBCFG = (USB->GAHBCFG & ~_USB_GAHBCFG_HBSTLEN_MASK) | USB_GAHBCFG_GLBLINTRMSK;
/* Force Device Mode */
USB->GUSBCFG = (USB->GUSBCFG & ~(GUSBCFG_WO_BITMASK | USB_GUSBCFG_FORCEHSTMODE)) | USB_GUSBCFG_FORCEDEVMODE;
/* No Overrides */
USB->GOTGCTL &= ~(USB_GOTGCTL_BVALIDOVVAL | USB_GOTGCTL_BVALIDOVEN | USB_GOTGCTL_VBVALIDOVVAL);
/* Ignore frame numbers on ISO transfers. */
USB->DCTL = (USB->DCTL & ~DCTL_WO_BITMASK) | USB_DCTL_IGNRFRMNUM;
/* Setting SNAKs */
USB->DOEP0CTL |= USB_DIEP_CTL_SNAK;
for(uint8_t i = 0; i < EP_COUNT - 1; i++)
{
USB->DOEP[i].CTL |= USB_DIEP_CTL_SNAK;
}
/* D. Interruption masking */
/* Disable all device interrupts */
USB->DIEPMSK = 0;
USB->DOEPMSK = 0;
USB->DAINTMSK = 0;
USB->DIEPEMPMSK = 0;
USB->GINTMSK = 0;
USB->GOTGINT = ~0U; /* clear OTG ints */
USB->GINTSTS = ~0U; /* clear pending ints */
USB->GINTMSK = USB_GINTMSK_MODEMISMSK |
#if USE_SOF
USB_GINTMSK_SOFMSK |
#endif
USB_GINTMSK_ERLYSUSPMSK |
USB_GINTMSK_USBSUSPMSK |
USB_GINTMSK_USBRSTMSK |
USB_GINTMSK_ENUMDONEMSK |
USB_GINTMSK_RESETDETMSK |
USB_GINTMSK_DISCONNINTMSK;
NVIC_ClearPendingIRQ(USB_IRQn);
dcd_connect(rhport);
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
(void) rhport;
USB->DCFG = (USB->DCFG & ~_USB_DCFG_DEVADDR_MASK) | (dev_addr << _USB_DCFG_DEVADDR_SHIFT);
/* Response with status after changing device address */
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
}
void dcd_connect(uint8_t rhport)
{
(void) rhport;
/* connect by enabling internal pull-up resistor on D+/D- */
USB->DCTL &= ~(DCTL_WO_BITMASK | USB_DCTL_SFTDISCON);
}
void dcd_disconnect(uint8_t rhport)
{
(void) rhport;
/* disconnect by disabling internal pull-up resistor on D+/D- */
USB->DCTL = (USB->DCTL & ~(DCTL_WO_BITMASK)) | USB_DCTL_SFTDISCON;
}
/*------------------------------------------------------------------*/
/* DCD Endpoint Port */
/*------------------------------------------------------------------*/
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
if(dir == TUSB_DIR_IN)
{
if(epnum == 0)
{
USB->DIEP0CTL = (USB->DIEP0CTL & ~DEPCTL_WO_BITMASK) | USB_DIEP0CTL_SNAK | USB_DIEP0CTL_STALL;
flush_tx_fifo(_USB_GRSTCTL_TXFNUM_F0);
}
else
{
/* Only disable currently enabled non-control endpoint */
if(USB->DIEP[epnum - 1].CTL & USB_DIEP_CTL_EPENA)
{
USB->DIEP[epnum - 1].CTL = (USB->DIEP[epnum - 1].CTL & ~DEPCTL_WO_BITMASK) | USB_DIEP_CTL_EPDIS | USB_DIEP_CTL_SNAK | USB_DIEP_CTL_STALL;
while(!(USB->DIEP[epnum - 1].INT & USB_DIEP_INT_EPDISBLD));
USB->DIEP[epnum - 1].INT |= USB_DIEP_INT_EPDISBLD;
}
else
{
USB->DIEP[epnum - 1].CTL = (USB->DIEP[epnum - 1].CTL & ~DEPCTL_WO_BITMASK) | USB_DIEP_CTL_SNAK | USB_DIEP_CTL_STALL;
}
/* Flush the FIFO */
uint8_t const fifo_num = ((USB->DIEP[epnum - 1].CTL & _USB_DIEP_CTL_TXFNUM_MASK) >> _USB_DIEP_CTL_TXFNUM_SHIFT);
flush_tx_fifo(fifo_num);
}
}
else
{
if(epnum == 0)
{
USB->DOEP0CTL = (USB->DOEP0CTL & ~DEPCTL_WO_BITMASK) | USB_DIEP0CTL_STALL;
}
else
{
/* Only disable currently enabled non-control endpoint */
if(USB->DOEP[epnum - 1].CTL & USB_DIEP_CTL_EPENA)
{
/* Asserting GONAK is required to STALL an OUT endpoint. */
USB->DCTL |= USB_DCTL_SGOUTNAK;
while(!(USB->GINTSTS & USB_GINTSTS_GOUTNAKEFF));
/* Disable the endpoint. Note that only STALL and not SNAK is set here. */
USB->DOEP[epnum - 1].CTL = (USB->DOEP[epnum - 1].CTL & ~DEPCTL_WO_BITMASK) | USB_DIEP_CTL_EPDIS | USB_DIEP_CTL_STALL;
while(USB->DOEP[epnum - 1].INT & USB_DIEP_INT_EPDISBLD);
USB->DOEP[epnum - 1].INT |= USB_DIEP_INT_EPDISBLD;
/* Allow other OUT endpoints to keep receiving. */
USB->DCTL |= USB_DCTL_CGOUTNAK;
}
else
{
USB->DIEP[epnum - 1].CTL = (USB->DIEP[epnum - 1].CTL & ~DEPCTL_WO_BITMASK) | USB_DIEP_CTL_STALL;
}
}
}
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
if(dir == TUSB_DIR_IN)
{
if(epnum == 0)
{
USB->DIEP0CTL &= ~(DEPCTL_WO_BITMASK | USB_DIEP0CTL_STALL);
}
else
{
USB->DIEP[epnum - 1].CTL &= ~(DEPCTL_WO_BITMASK | USB_DIEP_CTL_STALL);
/* Required by USB spec to reset DATA toggle bit to DATA0 on interrupt and bulk endpoints. */
uint8_t eptype = (USB->DIEP[epnum - 1].CTL & _USB_DIEP_CTL_EPTYPE_MASK) >> _USB_DIEP_CTL_EPTYPE_SHIFT;
if((eptype == _USB_DIEP_CTL_EPTYPE_BULK) || (eptype == _USB_DIEP_CTL_EPTYPE_INT))
{
USB->DIEP[epnum - 1].CTL |= USB_DIEP_CTL_SETD0PIDEF;
}
}
}
else
{
if(epnum == 0)
{
USB->DOEP0CTL &= ~(DEPCTL_WO_BITMASK | USB_DOEP0CTL_STALL);
}
else
{
USB->DOEP[epnum - 1].CTL &= ~(DEPCTL_WO_BITMASK | USB_DOEP_CTL_STALL);
/* Required by USB spec to reset DATA toggle bit to DATA0 on interrupt and bulk endpoints. */
uint8_t eptype = (USB->DOEP[epnum - 1].CTL & _USB_DOEP_CTL_EPTYPE_MASK) >> _USB_DOEP_CTL_EPTYPE_SHIFT;
if((eptype == _USB_DOEP_CTL_EPTYPE_BULK) || (eptype == _USB_DOEP_CTL_EPTYPE_INT))
{
USB->DOEP[epnum - 1].CTL |= USB_DOEP_CTL_SETD0PIDEF;
}
}
}
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
{
(void)rhport;
uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
TU_ASSERT(p_endpoint_desc->wMaxPacketSize.size <= 64);
TU_ASSERT(epnum < EP_COUNT);
TU_ASSERT(epnum != 0);
xfer_ctl_t *xfer = XFER_CTL_BASE(epnum, dir);
xfer->max_size = p_endpoint_desc->wMaxPacketSize.size;
if(dir == TUSB_DIR_OUT)
{
USB->DOEP[epnum - 1].CTL |= USB_DOEP_CTL_USBACTEP |
(p_endpoint_desc->bmAttributes.xfer << _USB_DOEP_CTL_EPTYPE_SHIFT) |
(p_endpoint_desc->wMaxPacketSize.size << _USB_DOEP_CTL_MPS_SHIFT);
USB->DAINTMSK |= (1 << (_USB_DAINTMSK_OUTEPMSK0_SHIFT + epnum));
}
else
{
uint8_t fifo_num = get_free_fifo();
TU_ASSERT(fifo_num != 0);
USB->DIEP[epnum - 1].CTL &= ~(_USB_DIEP_CTL_TXFNUM_MASK | _USB_DIEP_CTL_EPTYPE_MASK | USB_DIEP_CTL_SETD0PIDEF | _USB_DIEP_CTL_MPS_MASK);
USB->DIEP[epnum - 1].CTL |= USB_DIEP_CTL_USBACTEP |
(fifo_num << _USB_DIEP_CTL_TXFNUM_SHIFT) |
(p_endpoint_desc->bmAttributes.xfer << _USB_DIEP_CTL_EPTYPE_SHIFT) |
((p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS) ? USB_DIEP_CTL_SETD0PIDEF : 0) |
(p_endpoint_desc->wMaxPacketSize.size << 0);
USB->DAINTMSK |= (1 << epnum);
/* Both TXFD and TXSA are in unit of 32-bit words. */
/* IN FIFO 0 was configured during enumeration, hence the "+ 16". */
uint16_t const allocated_size = (USB->GRXFSIZ & _USB_GRXFSIZ_RXFDEP_MASK) + 16;
uint16_t const fifo_size = (EP_FIFO_SIZE/4 - allocated_size) / (EP_FIFO_NUM-1);
uint32_t const fifo_offset = allocated_size + fifo_size*(fifo_num-1);
/* DIEPTXF starts at FIFO #1. */
volatile uint32_t* usb_dieptxf = &USB->DIEPTXF1;
usb_dieptxf[epnum - 1] = (fifo_size << _USB_DIEPTXF1_INEPNTXFDEP_SHIFT) | fifo_offset;
}
return true;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes)
{
(void)rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
xfer->buffer = buffer;
xfer->total_len = total_bytes;
xfer->queued_len = 0;
xfer->short_packet = false;
uint16_t num_packets = (total_bytes / xfer->max_size);
uint8_t short_packet_size = total_bytes % xfer->max_size;
// Zero-size packet is special case.
if(short_packet_size > 0 || (total_bytes == 0))
{
num_packets++;
}
// IN and OUT endpoint xfers are interrupt-driven, we just schedule them
// here.
if(dir == TUSB_DIR_IN)
{
if(epnum == 0)
{
// A full IN transfer (multiple packets, possibly) triggers XFRC.
USB->DIEP0TSIZ = (num_packets << _USB_DIEP0TSIZ_PKTCNT_SHIFT) | total_bytes;
USB->DIEP0CTL |= USB_DIEP0CTL_EPENA | USB_DIEP0CTL_CNAK; // Enable | CNAK
}
else
{
// A full IN transfer (multiple packets, possibly) triggers XFRC.
USB->DIEP[epnum - 1].TSIZ = (num_packets << _USB_DIEP_TSIZ_PKTCNT_SHIFT) | total_bytes;
USB->DIEP[epnum - 1].CTL |= USB_DIEP_CTL_EPENA | USB_DIEP_CTL_CNAK; // Enable | CNAK
}
// Enable fifo empty interrupt only if there are something to put in the fifo.
if(total_bytes != 0)
{
USB->DIEPEMPMSK |= (1 << epnum);
}
}
else
{
if(epnum == 0)
{
// A full IN transfer (multiple packets, possibly) triggers XFRC.
USB->DOEP0TSIZ |= (1 << _USB_DOEP0TSIZ_PKTCNT_SHIFT) | ((xfer->max_size & _USB_DOEP0TSIZ_XFERSIZE_MASK) << _USB_DOEP0TSIZ_XFERSIZE_SHIFT);
USB->DOEP0CTL |= USB_DOEP0CTL_EPENA | USB_DOEP0CTL_CNAK;
}
else
{
// A full IN transfer (multiple packets, possibly) triggers XFRC.
USB->DOEP[epnum - 1].TSIZ |= (1 << _USB_DOEP_TSIZ_PKTCNT_SHIFT) | ((xfer->max_size & _USB_DOEP_TSIZ_XFERSIZE_MASK) << _USB_DOEP_TSIZ_XFERSIZE_SHIFT);
USB->DOEP[epnum - 1].CTL |= USB_DOEP_CTL_EPENA | USB_DOEP_CTL_CNAK;
}
}
return true;
}
/*------------------------------------------------------------------*/
/* IRQ */
/*------------------------------------------------------------------*/
void dcd_int_enable(uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(USB_IRQn);
}
void dcd_int_disable(uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(USB_IRQn);
}
static void receive_packet(xfer_ctl_t *xfer, uint16_t xfer_size)
{
uint16_t remaining = xfer->total_len - xfer->queued_len;
uint16_t to_recv_size;
if(remaining <= xfer->max_size)
{
/* Avoid buffer overflow. */
to_recv_size = (xfer_size > remaining) ? remaining : xfer_size;
}
else
{
/* Room for full packet, choose recv_size based on what the microcontroller claims. */
to_recv_size = (xfer_size > xfer->max_size) ? xfer->max_size : xfer_size;
}
uint8_t to_recv_rem = to_recv_size % 4;
uint16_t to_recv_size_aligned = to_recv_size - to_recv_rem;
/* Do not assume xfer buffer is aligned. */
uint8_t *base = (xfer->buffer + xfer->queued_len);
/* This for loop always runs at least once- skip if less than 4 bytes to collect. */
if(to_recv_size >= 4)
{
for(uint16_t i = 0; i < to_recv_size_aligned; i += 4)
{
uint32_t tmp = (*USB->FIFO0D);
base[i] = tmp & 0x000000FF;
base[i + 1] = (tmp & 0x0000FF00) >> 8;
base[i + 2] = (tmp & 0x00FF0000) >> 16;
base[i + 3] = (tmp & 0xFF000000) >> 24;
}
}
/* Do not read invalid bytes from RX FIFO. */
if(to_recv_rem != 0)
{
uint32_t tmp = (*USB->FIFO0D);
uint8_t *last_32b_bound = base + to_recv_size_aligned;
last_32b_bound[0] = tmp & 0x000000FF;
if(to_recv_rem > 1)
{
last_32b_bound[1] = (tmp & 0x0000FF00) >> 8;
}
if(to_recv_rem > 2)
{
last_32b_bound[2] = (tmp & 0x00FF0000) >> 16;
}
}
xfer->queued_len += xfer_size;
/* Per USB spec, a short OUT packet (including length 0) is always */
/* indicative of the end of a transfer (at least for ctl, bulk, int). */
xfer->short_packet = (xfer_size < xfer->max_size);
}
static void transmit_packet(xfer_ctl_t *xfer, uint8_t fifo_num)
{
uint16_t remaining;
if(fifo_num == 0)
{
remaining = (USB->DIEP0TSIZ & 0x7FFFFU) >> _USB_DIEP0TSIZ_XFERSIZE_SHIFT;
}
else
{
remaining = (USB->DIEP[fifo_num - 1].TSIZ & 0x7FFFFU) >> _USB_DIEP_TSIZ_XFERSIZE_SHIFT;
}
xfer->queued_len = xfer->total_len - remaining;
uint16_t to_xfer_size = (remaining > xfer->max_size) ? xfer->max_size : remaining;
uint8_t to_xfer_rem = to_xfer_size % 4;
uint16_t to_xfer_size_aligned = to_xfer_size - to_xfer_rem;
/* Buffer might not be aligned to 32b, so we need to force alignment by copying to a temp var. */
uint8_t *base = (xfer->buffer + xfer->queued_len);
/* This for loop always runs at least once- skip if less than 4 bytes to send off. */
if(to_xfer_size >= 4)
{
for(uint16_t i = 0; i < to_xfer_size_aligned; i += 4)
{
uint32_t tmp = base[i] | (base[i + 1] << 8) | (base[i + 2] << 16) | (base[i + 3] << 24);
*tx_fifo[fifo_num] = tmp;
}
}
/* Do not read beyond end of buffer if not divisible by 4. */
if(to_xfer_rem != 0)
{
uint32_t tmp = 0;
uint8_t *last_32b_bound = base + to_xfer_size_aligned;
tmp |= last_32b_bound[0];
if(to_xfer_rem > 1)
{
tmp |= (last_32b_bound[1] << 8);
}
if(to_xfer_rem > 2)
{
tmp |= (last_32b_bound[2] << 16);
}
*tx_fifo[fifo_num] = tmp;
}
}
static void read_rx_fifo(void)
{
/*
* Pop control word off FIFO (completed xfers will have 2 control words,
* we only pop one ctl word each interrupt).
*/
uint32_t const ctl_word = USB->GRXSTSP;
uint8_t const pktsts = (ctl_word & _USB_GRXSTSP_PKTSTS_MASK) >> _USB_GRXSTSP_PKTSTS_SHIFT;
uint8_t const epnum = (ctl_word & _USB_GRXSTSP_CHNUM_MASK ) >> _USB_GRXSTSP_CHNUM_SHIFT;
uint16_t const bcnt = (ctl_word & _USB_GRXSTSP_BCNT_MASK ) >> _USB_GRXSTSP_BCNT_SHIFT;
switch(pktsts)
{
case 0x01: /* Global OUT NAK (Interrupt) */
break;
case 0x02:
{
/* Out packet recvd */
xfer_ctl_t *xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT);
receive_packet(xfer, bcnt);
}
break;
case 0x03:
/* Out packet done (Interrupt) */
break;
case 0x04:
/* Step 2: Setup transaction completed (Interrupt) */
/* After this event, OEPINT interrupt will occur with SETUP bit set */
if(epnum == 0)
{
USB->DOEP0TSIZ |= (1 << _USB_DOEP0TSIZ_SUPCNT_SHIFT);
}
break;
case 0x06:
{
/* Step1: Setup data packet received */
/*
* We can receive up to three setup packets in succession, but
* only the last one is valid. Therefore we just overwrite it
*/
_setup_packet[0] = (*USB->FIFO0D);
_setup_packet[1] = (*USB->FIFO0D);
}
break;
default:
/* Invalid, breakpoint. */
TU_BREAKPOINT();
break;
}
}
static void handle_epout_ints(void)
{
// GINTSTS will be cleared with DAINT == 0
// DAINT for a given EP clears when DOEPINTx is cleared.
// DOEPINT will be cleared when DAINT's out bits are cleared.
for(uint8_t n = 0; n < EP_COUNT; n++)
{
xfer_ctl_t *xfer = XFER_CTL_BASE(n, TUSB_DIR_OUT);
if(n == 0)
{
if(USB->DAINT & (1 << (_USB_DAINT_OUTEPINT0_SHIFT + n)))
{
// SETUP packet Setup Phase done.
if((USB->DOEP0INT & USB_DOEP0INT_SETUP))
{
USB->DOEP0INT = USB_DOEP0INT_STUPPKTRCVD | USB_DOEP0INT_SETUP; // clear
dcd_event_setup_received(0, (uint8_t *)&_setup_packet[0], true);
}
// OUT XFER complete (single packet).q
if(USB->DOEP0INT & USB_DOEP0INT_XFERCOMPL)
{
USB->DOEP0INT = USB_DOEP0INT_XFERCOMPL;
// Transfer complete if short packet or total len is transferred
if(xfer->short_packet || (xfer->queued_len == xfer->total_len))
{
xfer->short_packet = false;
dcd_event_xfer_complete(0, n, xfer->queued_len, XFER_RESULT_SUCCESS, true);
}
else
{
// Schedule another packet to be received.
USB->DOEP0TSIZ |= (1 << _USB_DOEP0TSIZ_PKTCNT_SHIFT) | ((xfer->max_size & _USB_DOEP0TSIZ_XFERSIZE_MASK) << _USB_DOEP0TSIZ_XFERSIZE_SHIFT);
USB->DOEP0CTL |= USB_DOEP0CTL_EPENA | USB_DOEP0CTL_CNAK;
}
}
}
}
else
{
if(USB->DAINT & (1 << (_USB_DAINT_OUTEPINT0_SHIFT + n)))
{
// SETUP packet Setup Phase done.
if((USB->DOEP[n - 1].INT & USB_DOEP_INT_SETUP))
{
USB->DOEP[n - 1].INT = USB_DOEP_INT_STUPPKTRCVD | USB_DOEP_INT_SETUP; // clear
dcd_event_setup_received(0, (uint8_t *)&_setup_packet[0], true);
}
// OUT XFER complete (single packet).q
if(USB->DOEP[n - 1].INT & USB_DOEP_INT_XFERCOMPL)
{
USB->DOEP[n - 1].INT = USB_DOEP_INT_XFERCOMPL;
// Transfer complete if short packet or total len is transferred
if(xfer->short_packet || (xfer->queued_len == xfer->total_len))
{
xfer->short_packet = false;
dcd_event_xfer_complete(0, n, xfer->queued_len, XFER_RESULT_SUCCESS, true);
}
else
{
// Schedule another packet to be received.
USB->DOEP[n - 1].TSIZ |= (1 << _USB_DOEP_TSIZ_PKTCNT_SHIFT) | ((xfer->max_size & _USB_DOEP_TSIZ_XFERSIZE_MASK) << _USB_DOEP_TSIZ_XFERSIZE_SHIFT);
USB->DOEP[n - 1].CTL |= USB_DOEP_CTL_EPENA | USB_DOEP_CTL_CNAK;
}
}
}
}
}
}
static void handle_epin_ints(void)
{
for(uint32_t n = 0; n < EP_COUNT; n++)
{
xfer_ctl_t *xfer = &xfer_status[n][TUSB_DIR_IN];
if(n == 0)
{
if(USB->DAINT & (1 << n))
{
/* IN XFER complete (entire xfer). */
if(USB->DIEP0INT & USB_DIEP0INT_XFERCOMPL)
{
USB->DIEP0INT = USB_DIEP0INT_XFERCOMPL;
dcd_event_xfer_complete(0, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true);
}
/* XFER FIFO empty */
if(USB->DIEP0INT & USB_DIEP0INT_TXFEMP)
{
USB->DIEP0INT = USB_DIEP0INT_TXFEMP;
transmit_packet(xfer, n);
/* Turn off TXFE if all bytes are written. */
if(xfer->queued_len == xfer->total_len)
{
USB->DIEPEMPMSK &= ~(1 << n);
}
}
/* XFER Timeout */
if(USB->DIEP0INT & USB_DIEP0INT_TIMEOUT)
{
/* Clear interrupt or enpoint will hang. */
USB->DIEP0INT = USB_DIEP0INT_TIMEOUT;
}
}
}
else
{
if(USB->DAINT & (1 << n))
{
/* IN XFER complete (entire xfer). */
if(USB->DIEP[n - 1].INT & USB_DIEP_INT_XFERCOMPL)
{
USB->DIEP[n - 1].INT = USB_DIEP_INT_XFERCOMPL;
dcd_event_xfer_complete(0, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true);
}
/* XFER FIFO empty */
if(USB->DIEP[n - 1].INT & USB_DIEP_INT_TXFEMP)
{
USB->DIEP[n - 1].INT = USB_DIEP_INT_TXFEMP;
transmit_packet(xfer, n);
/* Turn off TXFE if all bytes are written. */
if(xfer->queued_len == xfer->total_len)
{
USB->DIEPEMPMSK &= ~(1 << n);
}
}
/* XFER Timeout */
if(USB->DIEP[n - 1].INT & USB_DIEP_INT_TIMEOUT)
{
/* Clear interrupt or enpoint will hang. */
USB->DIEP[n - 1].INT = USB_DIEP_INT_TIMEOUT;
}
}
}
}
}
void dcd_int_handler(uint8_t rhport)
{
(void) rhport;
const uint32_t int_status = USB->GINTSTS;
/* USB Reset */
if(int_status & USB_GINTSTS_USBRST)
{
/* start of reset */
USB->GINTSTS = USB_GINTSTS_USBRST;
/* FIFOs will be reassigned when the endpoints are reopen */
_allocated_fifos = 1;
bus_reset();
}
/* Reset detected Interrupt */
if(int_status & USB_GINTSTS_RESETDET)
{
USB->GINTSTS = USB_GINTSTS_RESETDET;
bus_reset();
}
/* Enumeration Done */
if(int_status & USB_GINTSTS_ENUMDONE)
{
/* This interrupt is considered the end of reset. */
USB->GINTSTS = USB_GINTSTS_ENUMDONE;
enum_done_processing();
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
}
/* OTG Interrupt */
if(int_status & USB_GINTSTS_OTGINT)
{
/* OTG INT bit is read-only */
uint32_t const otg_int = USB->GOTGINT;
if(otg_int & USB_GOTGINT_SESENDDET)
{
dcd_event_bus_signal(0, DCD_EVENT_UNPLUGGED, true);
}
USB->GOTGINT = otg_int;
}
#if USE_SOF
if(int_status & USB_GINTSTS_SOF)
{
USB->GINTSTS = USB_GINTSTS_SOF;
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
#endif
/* RxFIFO Non-Empty */
if(int_status & USB_GINTSTS_RXFLVL)
{
/* RXFLVL bit is read-only */
/* Mask out RXFLVL while reading data from FIFO */
USB->GINTMSK &= ~USB_GINTMSK_RXFLVLMSK;
read_rx_fifo();
USB->GINTMSK |= USB_GINTMSK_RXFLVLMSK;
}
/* OUT Endpoints Interrupt */
if(int_status & USB_GINTMSK_OEPINTMSK)
{
/* OEPINT is read-only */
handle_epout_ints();
}
/* IN Endpoints Interrupt */
if(int_status & USB_GINTMSK_IEPINTMSK)
{
/* IEPINT bit read-only */
handle_epin_ints();
}
/* unhandled */
USB->GINTSTS |= USB_GINTSTS_CURMOD |
USB_GINTSTS_MODEMIS |
USB_GINTSTS_OTGINT |
USB_GINTSTS_NPTXFEMP |
USB_GINTSTS_GINNAKEFF |
USB_GINTSTS_GOUTNAKEFF |
USB_GINTSTS_ERLYSUSP |
USB_GINTSTS_USBSUSP |
USB_GINTSTS_ISOOUTDROP |
USB_GINTSTS_EOPF |
USB_GINTSTS_EPMIS |
USB_GINTSTS_INCOMPISOIN |
USB_GINTSTS_INCOMPLP |
USB_GINTSTS_FETSUSP |
USB_GINTSTS_PTXFEMP;
}
#endif

View File

@@ -28,7 +28,7 @@
#define _TUSB_OPTION_H_
#define TUSB_VERSION_MAJOR 0
#define TUSB_VERSION_MINOR 8
#define TUSB_VERSION_MINOR 9
#define TUSB_VERSION_REVISION 0
#define TUSB_VERSION_STRING TU_STRING(TUSB_VERSION_MAJOR) "." TU_STRING(TUSB_VERSION_MINOR) "." TU_STRING(TUSB_VERSION_REVISION)
@@ -103,6 +103,14 @@
// NXP Kinetis
#define OPT_MCU_MKL25ZXX 1200 ///< NXP MKL25Zxx
// Silabs
#define OPT_MCU_EFM32GG 1300 ///< Silabs EFM32GG
#define OPT_MCU_EFM32GG11 1301 ///< Silabs EFM32GG11
#define OPT_MCU_EFM32GG12 1302 ///< Silabs EFM32GG12
// Renesas RX
#define OPT_MCU_RX63X 1400 ///< Renesas RX63N/631
/** @} */
/** \defgroup group_supported_os Supported RTOS