Merge pull request #1768 from ftdigdm/port-ft90x

Port ft90x
This commit is contained in:
Ha Thach
2023-01-30 22:13:14 +07:00
committed by GitHub
10 changed files with 350 additions and 147 deletions

View File

@@ -38,9 +38,6 @@
#include <ft900.h>
#include <registers/ft900_registers.h>
#include "board.h"
#include "bsp/board.h"
#define USBD_USE_STREAMS
#include "device/dcd.h"
@@ -50,17 +47,21 @@
//--------------------------------------------------------------------+
// Board code will determine the state of VBUS from USB host.
extern int8_t board_ft90x_vbus(void);
extern int8_t board_ft9xx_vbus(void);
extern int board_uart_write(void const *buf, int len);
// Static array to store an incoming SETUP request for processing by tinyusb.
static uint8_t _ft90x_setup_packet[8];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN
static uint8_t _ft9xx_setup_packet[8];
struct ft90x_xfer_state
struct ft9xx_xfer_state
{
volatile uint8_t ready; // OUT Transfer has been received and waiting for transfer.
volatile uint8_t valid; // Transfer is pending and total_size, remain_size, and buff_ptr are valid.
volatile int16_t total_size; // Total transfer size in bytes for this transfer.
volatile int16_t remain_size; // Total remaining in transfer.
volatile uint8_t *buff_ptr; // Pointer to buffer to transmit from or receive to.
int16_t total_size; // Total transfer size in bytes for this transfer.
int16_t remain_size; // Total remaining in transfer.
uint8_t *buff_ptr; // Pointer to buffer to transmit from or receive to.
uint8_t type; // Endpoint type. Of type USBD_ENDPOINT_TYPE from endpoint descriptor.
uint8_t dir; // Endpoint direction. TUSB_DIR_OUT or TUSB_DIR_IN. For control endpoint this is the current direction.
@@ -68,24 +69,24 @@ struct ft90x_xfer_state
uint16_t size; // Max packet size for endpoint from endpoint descriptor.
};
// Endpoint description array for each endpoint.
static struct ft90x_xfer_state ep_xfer[USBD_MAX_ENDPOINT_COUNT];
static struct ft9xx_xfer_state ep_xfer[USBD_MAX_ENDPOINT_COUNT];
// USB speed.
static tusb_speed_t _speed;
// Interrupt handlers.
void _ft90x_usbd_ISR(void); // Interrupt handler for USB device.
void ft90x_usbd_pm_ISR(void); // Interrupt handler for USB device for power management (called by board).
void _ft9xx_usbd_ISR(void); // Interrupt handler for USB device.
void ft9xx_usbd_pm_ISR(void); // Interrupt handler for USB device for power management (called by board).
// Internal functions forward declarations.
static uint16_t _ft90x_edpt_xfer_out(uint8_t ep_number, uint8_t *buffer, uint16_t xfer_bytes);
static uint16_t _ft90x_edpt_xfer_in(uint8_t ep_number, uint8_t *buffer, uint16_t xfer_bytes);
static void _ft90x_reset_edpts(void);
static inline void _ft90x_phy_enable(bool en);
static void _ft90x_usb_speed(void);
static void _dcd_ft90x_attach(void);
static void _dcd_ft90x_detach(void) __attribute__((unused));
static uint16_t _ft90x_dusb_in(uint8_t ep_number, const uint8_t *buffer, uint16_t length);
static uint16_t _ft90x_dusb_out(uint8_t ep_number, uint8_t *buffer, uint16_t length);
static uint16_t _ft9xx_edpt_xfer_out(uint8_t ep_number, uint8_t *buffer, uint16_t xfer_bytes);
static uint16_t _ft9xx_edpt_xfer_in(uint8_t ep_number, uint8_t *buffer, uint16_t xfer_bytes);
static void _ft9xx_reset_edpts(void);
static inline void _ft9xx_phy_enable(bool en);
static void _ft9xx_usb_speed(void);
static void _dcd_ft9xx_attach(void);
static void _dcd_ft9xx_detach(void) __attribute__((unused));
static uint16_t _ft9xx_dusb_in(uint8_t ep_number, const uint8_t *buffer, uint16_t length);
static uint16_t _ft9xx_dusb_out(uint8_t ep_number, uint8_t *buffer, uint16_t length);
// Internal functions.
@@ -93,7 +94,7 @@ static uint16_t _ft90x_dusb_out(uint8_t ep_number, uint8_t *buffer, uint16_t len
// This can be up-to the maximum packet size of the endpoint.
// Continuation of a transfer beyond the maximum packet size is performed
// by the interrupt handler.
static uint16_t _ft90x_edpt_xfer_out(uint8_t ep_number, uint8_t *buffer, uint16_t xfer_bytes)
static uint16_t _ft9xx_edpt_xfer_out(uint8_t ep_number, uint8_t *buffer, uint16_t xfer_bytes)
{
//Note: this is called from only the interrupt handler when an OUT transfer is called.
uint16_t ep_size = ep_xfer[ep_number].size;
@@ -108,7 +109,7 @@ static uint16_t _ft90x_edpt_xfer_out(uint8_t ep_number, uint8_t *buffer, uint16_
//;
// Send the first packet of max packet size
xfer_bytes = _ft90x_dusb_out(ep_number, (uint8_t *)buffer, xfer_bytes);
xfer_bytes = _ft9xx_dusb_out(ep_number, (uint8_t *)buffer, xfer_bytes);
if (ep_number == USBD_EP_0)
{
// Set flags to indicate data ready.
@@ -126,7 +127,7 @@ static uint16_t _ft90x_edpt_xfer_out(uint8_t ep_number, uint8_t *buffer, uint16_
// This can be up-to the maximum packet size of the endpoint.
// Continuation of a transfer beyond the maximum packet size is performed
// by the interrupt handler.
static uint16_t _ft90x_edpt_xfer_in(uint8_t ep_number, uint8_t *buffer, uint16_t xfer_bytes)
static uint16_t _ft9xx_edpt_xfer_in(uint8_t ep_number, uint8_t *buffer, uint16_t xfer_bytes)
{
//Note: this may be called from the interrupt handler or from normal code.
uint8_t end = 0;
@@ -154,17 +155,24 @@ static uint16_t _ft90x_edpt_xfer_in(uint8_t ep_number, uint8_t *buffer, uint16_t
}
else
{
uint8_t sr_reg;
// If there is data to transmit then wait until the IN buffer
// for the endpoint is empty.
do
// This does not apply to interrupt endpoints.
if (ep_xfer[ep_number].type != TUSB_XFER_INTERRUPT)
{
sr_reg = USBD_EP_SR_REG(ep_number);
} while (sr_reg & MASK_USBD_EPxSR_INPRDY);
uint8_t sr_reg;
do
{
sr_reg = USBD_EP_SR_REG(ep_number);
} while (sr_reg & MASK_USBD_EPxSR_INPRDY);
}
}
xfer_bytes = _ft90x_dusb_in(ep_number, (uint8_t *)buffer, xfer_bytes);
// Do not send a ZLP for interrupt endpoints.
if ((ep_xfer[ep_number].type != TUSB_XFER_INTERRUPT) || (xfer_bytes > 0))
{
xfer_bytes = _ft9xx_dusb_in(ep_number, (uint8_t *)buffer, xfer_bytes);
}
if (ep_number == USBD_EP_0)
{
@@ -190,13 +198,13 @@ static uint16_t _ft90x_edpt_xfer_in(uint8_t ep_number, uint8_t *buffer, uint16_t
// Reset all non-control endpoints to a default state.
// Control endpoint is always enabled and ready. All others disabled.
static void _ft90x_reset_edpts(void)
static void _ft9xx_reset_edpts(void)
{
// Disable all endpoints and remove configuration values.
for (int i = 1; i < USBD_MAX_ENDPOINT_COUNT; i++)
{
// Clear settings.
tu_memclr(&ep_xfer[i], sizeof(struct ft90x_xfer_state));
tu_memclr(&ep_xfer[i], sizeof(struct ft9xx_xfer_state));
// Disable hardware.
USBD_EP_CR_REG(i) = 0;
}
@@ -206,7 +214,7 @@ static void _ft90x_reset_edpts(void)
}
// Enable or disable the USB PHY.
static inline void _ft90x_phy_enable(bool en)
static inline void _ft9xx_phy_enable(bool en)
{
if (en)
SYS->PMCFG_L |= MASK_SYS_PMCFG_DEV_PHY_EN;
@@ -215,7 +223,7 @@ static inline void _ft90x_phy_enable(bool en)
}
// Safely connect to the USB.
static void _dcd_ft90x_attach(void)
static void _dcd_ft9xx_attach(void)
{
uint8_t reg;
@@ -271,7 +279,7 @@ static void _dcd_ft90x_attach(void)
}
// Gracefully disconnect from the USB.
static void _dcd_ft90x_detach(void)
static void _dcd_ft9xx_detach(void)
{
// Disable device connect/disconnect/host reset detection.
SYS->PMCFG_L = SYS->PMCFG_L & (~MASK_SYS_PMCFG_DEV_DETECT_EN);
@@ -313,7 +321,7 @@ static void _dcd_ft90x_detach(void)
// Determine the speed of the USB to which we are connected.
// Set the speed of the PHY accordingly.
// High speed can be disabled through CFG_TUSB_RHPORT0_MODE or CFG_TUD_MAX_SPEED settings.
static void _ft90x_usb_speed(void)
static void _ft9xx_usb_speed(void)
{
uint8_t fctrl_val;
@@ -376,7 +384,7 @@ static void _ft90x_usb_speed(void)
// If streaming is disabled then it will send each byte of the buffer in turn
// to the FIFO. The is no reason to not stream.
// The total number of bytes sent to the FIFO is returned.
static uint16_t _ft90x_dusb_in(uint8_t ep_number, const uint8_t *buffer, uint16_t length)
static uint16_t _ft9xx_dusb_in(uint8_t ep_number, const uint8_t *buffer, uint16_t length)
{
uint16_t bytes_read = 0;
uint16_t buff_size = length;
@@ -433,7 +441,7 @@ static uint16_t _ft90x_dusb_in(uint8_t ep_number, const uint8_t *buffer, uint16_
// If streaming is disabled then it will receive each byte from the FIFO in turn
// to the buffer. The is no reason to not stream.
// The total number of bytes received from the FIFO is returned.
static uint16_t _ft90x_dusb_out(uint8_t ep_number, uint8_t *buffer, uint16_t length)
static uint16_t _ft9xx_dusb_out(uint8_t ep_number, uint8_t *buffer, uint16_t length)
{
#ifdef USBD_USE_STREAMS
volatile uint8_t *data_reg;
@@ -511,11 +519,11 @@ static uint16_t _ft90x_dusb_out(uint8_t ep_number, uint8_t *buffer, uint16_t len
// Initialize controller to device mode
void dcd_init(uint8_t rhport)
{
TU_LOG2("FT90x initialisation\r\n");
TU_LOG2("FT9xx initialisation\r\n");
_dcd_ft90x_attach();
_dcd_ft9xx_attach();
interrupt_attach(interrupt_usb_device, (int8_t)interrupt_usb_device, _ft90x_usbd_ISR);
interrupt_attach(interrupt_usb_device, (int8_t)interrupt_usb_device, _ft9xx_usbd_ISR);
dcd_connect(rhport);
}
@@ -524,7 +532,7 @@ void dcd_init(uint8_t rhport)
void dcd_int_enable(uint8_t rhport)
{
(void)rhport;
TU_LOG3("FT90x int enable\r\n");
TU_LOG3("FT9xx int enable\r\n");
// Peripheral devices interrupt enable.
interrupt_enable_globally();
@@ -534,7 +542,7 @@ void dcd_int_enable(uint8_t rhport)
void dcd_int_disable(uint8_t rhport)
{
(void)rhport;
TU_LOG3("FT90x int disable\r\n");
TU_LOG3("FT9xx int disable\r\n");
// Peripheral devices interrupt disable.
interrupt_disable_globally();
@@ -600,18 +608,18 @@ void dcd_remote_wakeup(uint8_t rhport)
void dcd_connect(uint8_t rhport)
{
(void)rhport;
TU_LOG2("FT90x connect\r\n");
TU_LOG2("FT9xx connect\r\n");
CRITICAL_SECTION_BEGIN
// Is device connected?
if (board_ft90x_vbus())
if (board_ft9xx_vbus())
{
// Clear/disable address register.
USBD_REG(faddr) = 0;
_ft90x_phy_enable(true);
_ft9xx_phy_enable(true);
// Determine bus speed and signal speed to tusb.
_ft90x_usb_speed();
_ft9xx_usb_speed();
}
// Setup the control endpoint only.
@@ -636,17 +644,17 @@ void dcd_connect(uint8_t rhport)
USBD_REG(epie) = (MASK_USBD_EPIE_EP0IE);
// Restore default endpoint state.
_ft90x_reset_edpts();
_ft9xx_reset_edpts();
}
// Disconnect by disabling internal pull-up resistor on D+/D-
void dcd_disconnect(uint8_t rhport)
{
(void)rhport;
TU_LOG2("FT90x disconnect\r\n");
TU_LOG2("FT9xx disconnect\r\n");
// Disable the USB PHY.
_ft90x_phy_enable(false);
_ft9xx_phy_enable(false);
}
void dcd_sof_enable(uint8_t rhport, bool en)
@@ -674,12 +682,12 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *ep_desc)
uint8_t ep_reg_data = 0;
int16_t total_ram;
TU_LOG2("FT90x endpoint open %d %c\r\n", ep_number, ep_dir?'I':'O');
TU_LOG2("FT9xx endpoint open %d %c\r\n", ep_number, ep_dir?'I':'O');
// Check that the requested endpoint number is allowable.
if (ep_number >= USBD_MAX_ENDPOINT_COUNT)
{
TU_LOG1("FT90x endpoint not valid: requested %d max %d\r\n", ep_number, USBD_MAX_ENDPOINT_COUNT);
TU_LOG1("FT9xx endpoint not valid: requested %d max %d\r\n", ep_number, USBD_MAX_ENDPOINT_COUNT);
return false;
}
@@ -691,7 +699,7 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *ep_desc)
}
if (ep_reg_size > USBD_EP_MAX_SIZE_1024)
{
TU_LOG1("FT90x endpoint size not valid: requested %d max 1024\r\n", ep_size);
TU_LOG1("FT9xx endpoint size not valid: requested %d max 1024\r\n", ep_size);
return false;
}
// Calculate actual amount of buffer RAM used by this endpoint. This may be more than the
@@ -706,9 +714,9 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *ep_desc)
if (ep_xfer[ep_number].type != USBD_EP_TYPE_DISABLED)
{
// This could be because an endpoint has been assigned with the same number.
// On FT90x, IN and OUT endpoints may not have the same number. e.g. There
// On FT9xx, IN and OUT endpoints may not have the same number. e.g. There
// cannot been an 0x81 and 0x01 endpoint.
TU_LOG1("FT90x endpoint %d already assigned\r\n", ep_number);
TU_LOG1("FT9xx endpoint %d already assigned\r\n", ep_number);
return false;
}
@@ -732,23 +740,28 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *ep_desc)
}
}
}
// The control endpoint is taken into account as well.
total_ram -= ep_xfer[0].buff_size;
if (sys_check_ft900_revB())
{
// The control endpoint is taken into account as well on RevB silicon.
total_ram -= ep_xfer[0].buff_size;
}
// Make sure we have enough space. The corner case is having zero bytes
// free which means that total_ram must be signed as zero bytes free is
// allowable.
if (total_ram < ep_buff_size)
{
TU_LOG1("FT90x insufficient buffer RAM for endpoint %d\r\n", ep_number);
TU_LOG1("FT9xx insufficient buffer RAM for endpoint %d\r\n", ep_number);
return false;
}
// Set the type of this endpoint in the control register.
if (ep_type == USBD_EP_BULK)
if (ep_type == TUSB_XFER_BULK)
ep_reg_data |= (USBD_EP_DIS_BULK << BIT_USBD_EP_CONTROL_DIS);
else if (ep_type == USBD_EP_INT)
else if (ep_type == TUSB_XFER_INTERRUPT)
ep_reg_data |= (USBD_EP_DIS_INT << BIT_USBD_EP_CONTROL_DIS);
else if (ep_type == USBD_EP_ISOC)
else if (ep_type == TUSB_XFER_ISOCHRONOUS)
ep_reg_data |= (USBD_EP_DIS_ISO << BIT_USBD_EP_CONTROL_DIS);
// Set the direction of this endpoint in the control register.
if (ep_dir == USBD_DIR_IN)
@@ -756,9 +769,9 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *ep_desc)
// Do not perform double buffering.
//if (<double buffering flag> != USBD_DB_OFF)
//ep_reg_data |= MASK_USBD_EPxCR_DB;
// Set the control endpoint for this endpoint.
// Set the control register for this endpoint.
USBD_EP_CR_REG(ep_number) = ep_reg_data;
TU_LOG2("FT90x endpoint setting %x\r\n", ep_reg_data);
TU_LOG2("FT9xx endpoint setting %x\r\n", ep_reg_data);
}
else
{
@@ -766,14 +779,15 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *ep_desc)
USBD_EP_CR_REG(USBD_EP_0) = (ep_reg_size << BIT_USBD_EP0_MAX_SIZE);
}
CRITICAL_SECTION_BEGIN
// Store the endpoint characteristics for later reference.
ep_xfer[ep_number].dir = ep_dir;
ep_xfer[ep_number].type = ep_type;
ep_xfer[ep_number].size = ep_size;
ep_xfer[ep_number].buff_size = ep_buff_size;
CRITICAL_SECTION_BEGIN
// Clear register transaction continuation and signalling state.
ep_xfer[ep_number].ready = 0;
ep_xfer[ep_number].valid = 0;
ep_xfer[ep_number].buff_ptr = NULL;
ep_xfer[ep_number].total_size = 0;
@@ -788,7 +802,7 @@ void dcd_edpt_close_all(uint8_t rhport)
{
(void)rhport;
// Reset the endpoint configurations.
_ft90x_reset_edpts();
_ft9xx_reset_edpts();
}
// Submit a transfer, When complete dcd_event_xfer_complete() is invoked to notify the stack
@@ -796,7 +810,7 @@ bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t to
{
(void)rhport;
uint8_t ep_number = tu_edpt_number(ep_addr);
uint8_t dir = tu_edpt_dir(ep_addr);
uint8_t ep_dir = tu_edpt_dir(ep_addr);
uint16_t xfer_bytes;
bool status = false;
@@ -806,19 +820,17 @@ bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t to
// ep_xfer is used to tell the interrupt handler what to do.
// ep_xfer can be used at interrupt level to continue transfers.
CRITICAL_SECTION_BEGIN
// Transfer currently in progress.
if (ep_xfer[ep_number].valid == 0)
{
status = true;
ep_xfer[ep_number].total_size = total_bytes;
ep_xfer[ep_number].remain_size = total_bytes;
ep_xfer[ep_number].buff_ptr = buffer;
ep_xfer[ep_number].valid = 1;
if (ep_number == USBD_EP_0)
{
ep_xfer[USBD_EP_0].dir = dir;
ep_xfer[USBD_EP_0].dir = ep_dir;
}
else
{
@@ -827,18 +839,53 @@ bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t to
USBD_REG(epie) = USBD_REG(epie) | (1 << ep_number);
}
if (dir == TUSB_DIR_IN)
if (ep_dir == TUSB_DIR_IN)
{
// For IN transfers send the first packet as a starter. Interrupt handler to complete
// this if it is larger than one packet.
xfer_bytes = _ft90x_edpt_xfer_in(ep_number, buffer, total_bytes);
xfer_bytes = _ft9xx_edpt_xfer_in(ep_number, buffer, total_bytes);
ep_xfer[ep_number].buff_ptr += xfer_bytes;
ep_xfer[ep_number].remain_size -= xfer_bytes;
// Tell the interrupt handler to signal dcd_event_xfer_complete on completion.
ep_xfer[ep_number].valid = 1;
}
else // (dir == TUSB_DIR_OUT)
{
// For OUT transfers on the control endpoint.
// The host may already have performed the first data transfer after the SETUP packet
// before the transfer is setup for it.
if (ep_xfer[ep_number].ready)
{
// We have received a data packet on the endpoint without a transfer
// being initialised. This can be because the host has sent this packet before
// a new transfer has been initiated on the endpoint.
// We will now stream the data from the FIFO.
ep_xfer[ep_number].ready = 0;
// Transfer incoming data from an OUT packet to the buffer.
xfer_bytes = _ft9xx_edpt_xfer_out(ep_number, buffer, total_bytes);
// Report completion of the transfer.
dcd_event_xfer_complete(BOARD_TUD_RHPORT, ep_number /*| TUSB_DIR_OUT_MASK */, xfer_bytes, XFER_RESULT_SUCCESS, false);
}
else
{
// Tell the interrupt handler to wait for the packet to be received and
// then report the transfer complete with dcd_event_xfer_complete.
ep_xfer[ep_number].valid = 1;
}
}
status = true;
}
else
{
// Note: should not arrive here.
}
CRITICAL_SECTION_END
return status;
}
@@ -889,6 +936,7 @@ void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
USBD_EP_SR_REG(ep_number) = MASK_USBD_EPxSR_CLR_TOGGLE;
// Allow transfers to restart.
ep_xfer[ep_number].ready = 0;
ep_xfer[ep_number].valid = 0;
ep_xfer[ep_number].remain_size = 0;
CRITICAL_SECTION_END
@@ -897,9 +945,9 @@ void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
// Interrupt handling.
void _ft90x_usbd_ISR(void)
void _ft9xx_usbd_ISR(void)
{
tud_int_handler(BOARD_TUD_RHPORT); // Resolves to dcd_int_handler().
dcd_int_handler(BOARD_TUD_RHPORT);
}
void dcd_int_handler(uint8_t rhport)
@@ -936,7 +984,7 @@ void dcd_int_handler(uint8_t rhport)
if (cmif & MASK_USBD_CMIF_RSTIRQ) //Handle Reset interrupt
{
// Reset endpoints to default state.
_ft90x_reset_edpts();
_ft9xx_reset_edpts();
dcd_event_bus_reset(BOARD_TUD_RHPORT, _speed, true);
}
if (cmif & MASK_USBD_CMIF_SUSIRQ) //Handle Suspend interrupt
@@ -962,7 +1010,6 @@ void dcd_int_handler(uint8_t rhport)
{
// Clear interrupt register.
USBD_REG(epif) = MASK_USBD_EPIF_EP0IRQ;
// Test for an incoming SETUP request on the control endpoint.
if (USBD_EP_SR_REG(USBD_EP_0) & MASK_USBD_EP0SR_SETUP)
{
@@ -976,16 +1023,19 @@ void dcd_int_handler(uint8_t rhport)
USBD_EP_SR_REG(USBD_EP_0) = MASK_USBD_EP0SR_STALL;
}
// Host has sent a SETUP packet. Receive this into the setup packet store.
_ft90x_dusb_out(USBD_EP_0, (uint8_t *)_ft90x_setup_packet, sizeof(USB_device_request));
// Host has sent a SETUP packet. Receive this into the SETUP packet store.
_ft9xx_dusb_out(USBD_EP_0, (uint8_t *)_ft9xx_setup_packet, sizeof(USB_device_request));
// Send the packet to tinyusb.
dcd_event_setup_received(BOARD_TUD_RHPORT, _ft90x_setup_packet, true);
dcd_event_setup_received(BOARD_TUD_RHPORT, _ft9xx_setup_packet, true);
// Clear the interrupt that signals a SETUP packet is received.
USBD_EP_SR_REG(USBD_EP_0) = (MASK_USBD_EP0SR_SETUP);
// Allow new transfers on the control endpoint.
// Any SETUP packet will clear the incoming FIFO.
ep_xfer[USBD_EP_0].ready = 0;
// Allow new DATA and ACK transfers on the control endpoint.
ep_xfer[USBD_EP_0].valid = 0;
return;
}
@@ -998,15 +1048,29 @@ void dcd_int_handler(uint8_t rhport)
// Transfer incoming data from an OUT packet to the buffer supplied.
if (ep_xfer[USBD_EP_0].dir == TUSB_DIR_OUT)
{
xfer_bytes = _ft90x_edpt_xfer_out(USBD_EP_0, (uint8_t *)ep_xfer[USBD_EP_0].buff_ptr, xfer_bytes);
{
xfer_bytes = _ft9xx_edpt_xfer_out(USBD_EP_0, ep_xfer[USBD_EP_0].buff_ptr, xfer_bytes);
}
// Now signal completion of data packet.
dcd_event_xfer_complete(BOARD_TUD_RHPORT, (ep_xfer[USBD_EP_0].dir ? TUSB_DIR_IN_MASK : 0), xfer_bytes, XFER_RESULT_SUCCESS, true);
dcd_event_xfer_complete(BOARD_TUD_RHPORT, USBD_EP_0 | (ep_xfer[USBD_EP_0].dir ? TUSB_DIR_IN_MASK : 0),
xfer_bytes, XFER_RESULT_SUCCESS, true);
// Incoming FIFO has been cleared.
ep_xfer[USBD_EP_0].ready = 0;
// Allow new transfers on the control endpoint.
ep_xfer[USBD_EP_0].valid = 0;
}
// No transfer is in flight for EP0.
else
{
// We have received a data packet on the control endpoint without a transfer
// being initialised. This can be because the host has sent this packet before
// a new transfer has been initiated on the control endpoint.
// We will record that there is data in the FIFO for dcd_edpt_xfer to obtain
// once the transfer is initiated.
ep_xfer[USBD_EP_0].ready = 1;
}
}
}
else // !(epif & MASK_USBD_EPIF_EP0IRQ)
@@ -1026,7 +1090,6 @@ void dcd_int_handler(uint8_t rhport)
if (ep_xfer[ep_number].valid)
{
xfer_bytes = 0;
uint8_t ep_dirmask = (ep_xfer[ep_number].dir ? TUSB_DIR_IN_MASK : 0);
// Clear interrupt register for this endpoint.
USBD_REG(epif) = MASK_USBD_EPIF_IRQ(ep_number);
@@ -1034,10 +1097,15 @@ void dcd_int_handler(uint8_t rhport)
// Start or continue an OUT transfer.
if (ep_xfer[ep_number].dir == TUSB_DIR_OUT)
{
xfer_bytes = _ft90x_edpt_xfer_out(ep_number,
(uint8_t *)ep_xfer[ep_number].buff_ptr,
xfer_bytes = _ft9xx_edpt_xfer_out(ep_number,
ep_xfer[ep_number].buff_ptr,
(uint16_t)ep_xfer[ep_number].remain_size);
// Report each OUT packet received to the stack.
dcd_event_xfer_complete(BOARD_TUD_RHPORT,
ep_number /* | TUSB_DIR_OUT_MASK */,
xfer_bytes, XFER_RESULT_SUCCESS, true);
ep_xfer[ep_number].buff_ptr += xfer_bytes;
ep_xfer[ep_number].remain_size -= xfer_bytes;
}
@@ -1046,27 +1114,45 @@ void dcd_int_handler(uint8_t rhport)
{
if (ep_xfer[ep_number].remain_size > 0)
{
xfer_bytes = _ft90x_edpt_xfer_in(ep_number,
(uint8_t *)ep_xfer[ep_number].buff_ptr,
xfer_bytes = _ft9xx_edpt_xfer_in(ep_number,
ep_xfer[ep_number].buff_ptr,
(uint16_t)ep_xfer[ep_number].remain_size);
ep_xfer[ep_number].buff_ptr += xfer_bytes;
ep_xfer[ep_number].remain_size -= xfer_bytes;
}
if (ep_xfer[ep_number].remain_size == 0)
{
dcd_event_xfer_complete(BOARD_TUD_RHPORT,
ep_number | TUSB_DIR_IN_MASK,
ep_xfer[ep_number].total_size, XFER_RESULT_SUCCESS, true);
}
}
// When the transfer is complete...
if (ep_xfer[ep_number].remain_size == 0)
{
// Signal tinyUSB.
dcd_event_xfer_complete(BOARD_TUD_RHPORT, ep_number | ep_dirmask, ep_xfer[ep_number].total_size, XFER_RESULT_SUCCESS, true);
// Allow new transfers on this endpoint.
// Finish this transfer and allow new transfers on this endpoint.
ep_xfer[ep_number].valid = 0;
// Disable the interrupt for this endpoint now it is complete.
USBD_REG(epie) = USBD_REG(epie) & (~(1 << ep_number));
}
ep_xfer[ep_number].ready = 0;
}
// No OUT transfer is in flight for this endpoint.
else
{
if (ep_xfer[ep_number].dir == TUSB_DIR_OUT)
{
// We will record that there is data in the FIFO for dcd_edpt_xfer to obtain
// once the transfer is initiated.
// Strictly this should not happen for a non-control endpoint. Interrupts
// are disabled when there are no transfers setup for an endpoint.
ep_xfer[ep_number].ready = 1;
}
}
}
}
@@ -1075,7 +1161,7 @@ void dcd_int_handler(uint8_t rhport)
// Power management interrupt handler.
// This handles USB device related power management interrupts only.
void ft90x_usbd_pm_ISR(void)
void ft9xx_usbd_pm_ISR(void)
{
uint16_t pmcfg = SYS->PMCFG_H;