Merge branch 'master' into host-async-control

This commit is contained in:
hathach
2020-10-11 16:22:12 +07:00
113 changed files with 6383 additions and 725 deletions

View File

@@ -2,6 +2,7 @@
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
* Copyright (c) 2020 Reinhard Panhuber
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@@ -35,28 +36,44 @@
#include "common/tusb_common.h"
#ifdef __cplusplus
extern "C" {
extern "C" {
#endif
/// Audio Interface Subclass Codes
/// Audio Device Class Codes
/// A.2 - Audio Function Subclass Codes
typedef enum
{
AUDIO_SUBCLASS_CONTROL = 0x01 , ///< Audio Control
AUDIO_FUNCTION_SUBCLASS_UNDEFINED = 0x00,
} audio_function_subclass_type_t;
/// A.3 - Audio Function Protocol Codes
typedef enum
{
AUDIO_FUNC_PROTOCOL_CODE_UNDEF = 0x00,
AUDIO_FUNC_PROTOCOL_CODE_V2 = 0x20, ///< Version 2.0
} audio_function_protocol_code_t;
/// A.5 - Audio Interface Subclass Codes
typedef enum
{
AUDIO_SUBCLASS_UNDEFINED = 0x00,
AUDIO_SUBCLASS_CONTROL , ///< Audio Control
AUDIO_SUBCLASS_STREAMING , ///< Audio Streaming
AUDIO_SUBCLASS_MIDI_STREAMING , ///< MIDI Streaming
} audio_subclass_type_t;
/// Audio Protocol Codes
/// A.6 - Audio Interface Protocol Codes
typedef enum
{
AUDIO_PROTOCOL_V1 = 0x00, ///< Version 1.0
AUDIO_PROTOCOL_V2 = 0x20, ///< Version 2.0
AUDIO_PROTOCOL_V3 = 0x30, ///< Version 3.0
} audio_protocol_type_t;
AUDIO_INT_PROTOCOL_CODE_UNDEF = 0x00,
AUDIO_INT_PROTOCOL_CODE_V2 = 0x20, ///< Version 2.0
} audio_interface_protocol_code_t;
/// Audio Function Category Codes
/// A.7 - Audio Function Category Codes
typedef enum
{
AUDIO_FUNC_UNDEF = 0x00,
AUDIO_FUNC_DESKTOP_SPEAKER = 0x01,
AUDIO_FUNC_HOME_THEATER = 0x02,
AUDIO_FUNC_MICROPHONE = 0x03,
@@ -68,33 +85,850 @@ typedef enum
AUDIO_FUNC_MUSICAL_INSTRUMENT = 0x09,
AUDIO_FUNC_PRO_AUDIO = 0x0A,
AUDIO_FUNC_AUDIO_VIDEO = 0x0B,
AUDIO_FUNC_CONTROL_PANEL = 0x0C
} audio_function_t;
AUDIO_FUNC_CONTROL_PANEL = 0x0C,
AUDIO_FUNC_OTHER = 0xFF,
} audio_function_code_t;
/// Audio Class-Specific AC Interface Descriptor Subtypes
/// A.9 - Audio Class-Specific AC Interface Descriptor Subtypes UAC2
typedef enum
{
AUDIO_CS_INTERFACE_HEADER = 0x01,
AUDIO_CS_INTERFACE_INPUT_TERMINAL = 0x02,
AUDIO_CS_INTERFACE_OUTPUT_TERMINAL = 0x03,
AUDIO_CS_INTERFACE_MIXER_UNIT = 0x04,
AUDIO_CS_INTERFACE_SELECTOR_UNIT = 0x05,
AUDIO_CS_INTERFACE_FEATURE_UNIT = 0x06,
AUDIO_CS_INTERFACE_EFFECT_UNIT = 0x07,
AUDIO_CS_INTERFACE_PROCESSING_UNIT = 0x08,
AUDIO_CS_INTERFACE_EXTENSION_UNIT = 0x09,
AUDIO_CS_INTERFACE_CLOCK_SOURCE = 0x0A,
AUDIO_CS_INTERFACE_CLOCK_SELECTOR = 0x0B,
AUDIO_CS_INTERFACE_CLOCK_MULTIPLIER = 0x0C,
AUDIO_CS_INTERFACE_SAMPLE_RATE_CONVERTER = 0x0D,
} audio_cs_interface_subtype_t;
AUDIO_CS_AC_INTERFACE_AC_DESCRIPTOR_UNDEF = 0x00,
AUDIO_CS_AC_INTERFACE_HEADER = 0x01,
AUDIO_CS_AC_INTERFACE_INPUT_TERMINAL = 0x02,
AUDIO_CS_AC_INTERFACE_OUTPUT_TERMINAL = 0x03,
AUDIO_CS_AC_INTERFACE_MIXER_UNIT = 0x04,
AUDIO_CS_AC_INTERFACE_SELECTOR_UNIT = 0x05,
AUDIO_CS_AC_INTERFACE_FEATURE_UNIT = 0x06,
AUDIO_CS_AC_INTERFACE_EFFECT_UNIT = 0x07,
AUDIO_CS_AC_INTERFACE_PROCESSING_UNIT = 0x08,
AUDIO_CS_AC_INTERFACE_EXTENSION_UNIT = 0x09,
AUDIO_CS_AC_INTERFACE_CLOCK_SOURCE = 0x0A,
AUDIO_CS_AC_INTERFACE_CLOCK_SELECTOR = 0x0B,
AUDIO_CS_AC_INTERFACE_CLOCK_MULTIPLIER = 0x0C,
AUDIO_CS_AC_INTERFACE_SAMPLE_RATE_CONVERTER = 0x0D,
} audio_cs_ac_interface_subtype_t;
/** @} */
/// A.10 - Audio Class-Specific AS Interface Descriptor Subtypes UAC2
typedef enum
{
AUDIO_CS_AS_INTERFACE_AS_DESCRIPTOR_UNDEF = 0x00,
AUDIO_CS_AS_INTERFACE_AS_GENERAL = 0x01,
AUDIO_CS_AS_INTERFACE_FORMAT_TYPE = 0x02,
AUDIO_CS_AS_INTERFACE_ENCODER = 0x03,
AUDIO_CS_AS_INTERFACE_DECODER = 0x04,
} audio_cs_as_interface_subtype_t;
/// A.11 - Effect Unit Effect Types
typedef enum
{
AUDIO_EFFECT_TYPE_UNDEF = 0x00,
AUDIO_EFFECT_TYPE_PARAM_EQ_SECTION = 0x01,
AUDIO_EFFECT_TYPE_REVERBERATION = 0x02,
AUDIO_EFFECT_TYPE_MOD_DELAY = 0x03,
AUDIO_EFFECT_TYPE_DYN_RANGE_COMP = 0x04,
} audio_effect_unit_effect_type_t;
/// A.12 - Processing Unit Process Types
typedef enum
{
AUDIO_PROCESS_TYPE_UNDEF = 0x00,
AUDIO_PROCESS_TYPE_UP_DOWN_MIX = 0x01,
AUDIO_PROCESS_TYPE_DOLBY_PROLOGIC = 0x02,
AUDIO_PROCESS_TYPE_STEREO_EXTENDER = 0x03,
} audio_processing_unit_process_type_t;
/// A.13 - Audio Class-Specific EP Descriptor Subtypes UAC2
typedef enum
{
AUDIO_CS_EP_SUBTYPE_UNDEF = 0x00,
AUDIO_CS_EP_SUBTYPE_GENERAL = 0x01,
} audio_cs_ep_subtype_t;
/// A.14 - Audio Class-Specific Request Codes
typedef enum
{
AUDIO_CS_REQ_UNDEF = 0x00,
AUDIO_CS_REQ_CUR = 0x01,
AUDIO_CS_REQ_RANGE = 0x02,
AUDIO_CS_REQ_MEM = 0x03,
} audio_cs_req_t;
/// A.17 - Control Selector Codes
/// A.17.1 - Clock Source Control Selectors
typedef enum
{
AUDIO_CS_CTRL_UNDEF = 0x00,
AUDIO_CS_CTRL_SAM_FREQ = 0x01,
AUDIO_CS_CTRL_CLK_VALID = 0x02,
} audio_clock_src_control_selector_t;
/// A.17.2 - Clock Selector Control Selectors
typedef enum
{
AUDIO_CX_CTRL_UNDEF = 0x00,
AUDIO_CX_CTRL_CONTROL = 0x01,
} audio_clock_sel_control_selector_t;
/// A.17.3 - Clock Multiplier Control Selectors
typedef enum
{
AUDIO_CM_CTRL_UNDEF = 0x00,
AUDIO_CM_CTRL_NUMERATOR_CONTROL = 0x01,
AUDIO_CM_CTRL_DENOMINATOR_CONTROL = 0x02,
} audio_clock_mul_control_selector_t;
/// A.17.4 - Terminal Control Selectors
typedef enum
{
AUDIO_TE_CTRL_UNDEF = 0x00,
AUDIO_TE_CTRL_COPY_PROTECT = 0x01,
AUDIO_TE_CTRL_CONNECTOR = 0x02,
AUDIO_TE_CTRL_OVERLOAD = 0x03,
AUDIO_TE_CTRL_CLUSTER = 0x04,
AUDIO_TE_CTRL_UNDERFLOW = 0x05,
AUDIO_TE_CTRL_OVERFLOW = 0x06,
AUDIO_TE_CTRL_LATENCY = 0x07,
} audio_terminal_control_selector_t;
/// A.17.5 - Mixer Control Selectors
typedef enum
{
AUDIO_MU_CTRL_UNDEF = 0x00,
AUDIO_MU_CTRL_MIXER = 0x01,
AUDIO_MU_CTRL_CLUSTER = 0x02,
AUDIO_MU_CTRL_UNDERFLOW = 0x03,
AUDIO_MU_CTRL_OVERFLOW = 0x04,
AUDIO_MU_CTRL_LATENCY = 0x05,
} audio_mixer_control_selector_t;
/// A.17.6 - Selector Control Selectors
typedef enum
{
AUDIO_SU_CTRL_UNDEF = 0x00,
AUDIO_SU_CTRL_SELECTOR = 0x01,
AUDIO_SU_CTRL_LATENCY = 0x02,
} audio_sel_control_selector_t;
/// A.17.7 - Feature Unit Control Selectors
typedef enum
{
AUDIO_FU_CTRL_UNDEF = 0x00,
AUDIO_FU_CTRL_MUTE = 0x01,
AUDIO_FU_CTRL_VOLUME = 0x02,
AUDIO_FU_CTRL_BASS = 0x03,
AUDIO_FU_CTRL_MID = 0x04,
AUDIO_FU_CTRL_TREBLE = 0x05,
AUDIO_FU_CTRL_GRAPHIC_EQUALIZER = 0x06,
AUDIO_FU_CTRL_AGC = 0x07,
AUDIO_FU_CTRL_DELAY = 0x08,
AUDIO_FU_CTRL_BASS_BOOST = 0x09,
AUDIO_FU_CTRL_LOUDNESS = 0x0A,
AUDIO_FU_CTRL_INPUT_GAIN = 0x0B,
AUDIO_FU_CTRL_GAIN_PAD = 0x0C,
AUDIO_FU_CTRL_INVERTER = 0x0D,
AUDIO_FU_CTRL_UNDERFLOW = 0x0E,
AUDIO_FU_CTRL_OVERVLOW = 0x0F,
AUDIO_FU_CTRL_LATENCY = 0x10,
} audio_feature_unit_control_selector_t;
/// A.17.8 Effect Unit Control Selectors
/// A.17.8.1 Parametric Equalizer Section Effect Unit Control Selectors
typedef enum
{
AUDIO_PE_CTRL_UNDEF = 0x00,
AUDIO_PE_CTRL_ENABLE = 0x01,
AUDIO_PE_CTRL_CENTERFREQ = 0x02,
AUDIO_PE_CTRL_QFACTOR = 0x03,
AUDIO_PE_CTRL_GAIN = 0x04,
AUDIO_PE_CTRL_UNDERFLOW = 0x05,
AUDIO_PE_CTRL_OVERFLOW = 0x06,
AUDIO_PE_CTRL_LATENCY = 0x07,
} audio_parametric_equalizer_control_selector_t;
/// A.17.8.2 Reverberation Effect Unit Control Selectors
typedef enum
{
AUDIO_RV_CTRL_UNDEF = 0x00,
AUDIO_RV_CTRL_ENABLE = 0x01,
AUDIO_RV_CTRL_TYPE = 0x02,
AUDIO_RV_CTRL_LEVEL = 0x03,
AUDIO_RV_CTRL_TIME = 0x04,
AUDIO_RV_CTRL_FEEDBACK = 0x05,
AUDIO_RV_CTRL_PREDELAY = 0x06,
AUDIO_RV_CTRL_DENSITY = 0x07,
AUDIO_RV_CTRL_HIFREQ_ROLLOFF = 0x08,
AUDIO_RV_CTRL_UNDERFLOW = 0x09,
AUDIO_RV_CTRL_OVERFLOW = 0x0A,
AUDIO_RV_CTRL_LATENCY = 0x0B,
} audio_reverberation_effect_control_selector_t;
/// A.17.8.3 Modulation Delay Effect Unit Control Selectors
typedef enum
{
AUDIO_MD_CTRL_UNDEF = 0x00,
AUDIO_MD_CTRL_ENABLE = 0x01,
AUDIO_MD_CTRL_BALANCE = 0x02,
AUDIO_MD_CTRL_RATE = 0x03,
AUDIO_MD_CTRL_DEPTH = 0x04,
AUDIO_MD_CTRL_TIME = 0x05,
AUDIO_MD_CTRL_FEEDBACK = 0x06,
AUDIO_MD_CTRL_UNDERFLOW = 0x07,
AUDIO_MD_CTRL_OVERFLOW = 0x08,
AUDIO_MD_CTRL_LATENCY = 0x09,
} audio_modulation_delay_control_selector_t;
/// A.17.8.4 Dynamic Range Compressor Effect Unit Control Selectors
typedef enum
{
AUDIO_DR_CTRL_UNDEF = 0x00,
AUDIO_DR_CTRL_ENABLE = 0x01,
AUDIO_DR_CTRL_COMPRESSION_RATE = 0x02,
AUDIO_DR_CTRL_MAXAMPL = 0x03,
AUDIO_DR_CTRL_THRESHOLD = 0x04,
AUDIO_DR_CTRL_ATTACK_TIME = 0x05,
AUDIO_DR_CTRL_RELEASE_TIME = 0x06,
AUDIO_DR_CTRL_UNDERFLOW = 0x07,
AUDIO_DR_CTRL_OVERFLOW = 0x08,
AUDIO_DR_CTRL_LATENCY = 0x09,
} audio_dynamic_range_compression_control_selector_t;
/// A.17.9 Processing Unit Control Selectors
/// A.17.9.1 Up/Down-mix Processing Unit Control Selectors
typedef enum
{
AUDIO_UD_CTRL_UNDEF = 0x00,
AUDIO_UD_CTRL_ENABLE = 0x01,
AUDIO_UD_CTRL_MODE_SELECT = 0x02,
AUDIO_UD_CTRL_CLUSTER = 0x03,
AUDIO_UD_CTRL_UNDERFLOW = 0x04,
AUDIO_UD_CTRL_OVERFLOW = 0x05,
AUDIO_UD_CTRL_LATENCY = 0x06,
} audio_up_down_mix_control_selector_t;
/// A.17.9.2 Dolby Prologic ™ Processing Unit Control Selectors
typedef enum
{
AUDIO_DP_CTRL_UNDEF = 0x00,
AUDIO_DP_CTRL_ENABLE = 0x01,
AUDIO_DP_CTRL_MODE_SELECT = 0x02,
AUDIO_DP_CTRL_CLUSTER = 0x03,
AUDIO_DP_CTRL_UNDERFLOW = 0x04,
AUDIO_DP_CTRL_OVERFLOW = 0x05,
AUDIO_DP_CTRL_LATENCY = 0x06,
} audio_dolby_prologic_control_selector_t;
/// A.17.9.3 Stereo Extender Processing Unit Control Selectors
typedef enum
{
AUDIO_ST_EXT_CTRL_UNDEF = 0x00,
AUDIO_ST_EXT_CTRL_ENABLE = 0x01,
AUDIO_ST_EXT_CTRL_WIDTH = 0x02,
AUDIO_ST_EXT_CTRL_UNDERFLOW = 0x03,
AUDIO_ST_EXT_CTRL_OVERFLOW = 0x04,
AUDIO_ST_EXT_CTRL_LATENCY = 0x05,
} audio_stereo_extender_control_selector_t;
/// A.17.10 Extension Unit Control Selectors
typedef enum
{
AUDIO_XU_CTRL_UNDEF = 0x00,
AUDIO_XU_CTRL_ENABLE = 0x01,
AUDIO_XU_CTRL_CLUSTER = 0x02,
AUDIO_XU_CTRL_UNDERFLOW = 0x03,
AUDIO_XU_CTRL_OVERFLOW = 0x04,
AUDIO_XU_CTRL_LATENCY = 0x05,
} audio_extension_unit_control_selector_t;
/// A.17.11 AudioStreaming Interface Control Selectors
typedef enum
{
AUDIO_AS_CTRL_UNDEF = 0x00,
AUDIO_AS_CTRL_ACT_ALT_SETTING = 0x01,
AUDIO_AS_CTRL_VAL_ALT_SETTINGS = 0x02,
AUDIO_AS_CTRL_AUDIO_DATA_FORMAT = 0x03,
} audio_audiostreaming_interface_control_selector_t;
/// A.17.12 Encoder Control Selectors
typedef enum
{
AUDIO_EN_CTRL_UNDEF = 0x00,
AUDIO_EN_CTRL_BIT_RATE = 0x01,
AUDIO_EN_CTRL_QUALITY = 0x02,
AUDIO_EN_CTRL_VBR = 0x03,
AUDIO_EN_CTRL_TYPE = 0x04,
AUDIO_EN_CTRL_UNDERFLOW = 0x05,
AUDIO_EN_CTRL_OVERFLOW = 0x06,
AUDIO_EN_CTRL_ENCODER_ERROR = 0x07,
AUDIO_EN_CTRL_PARAM1 = 0x08,
AUDIO_EN_CTRL_PARAM2 = 0x09,
AUDIO_EN_CTRL_PARAM3 = 0x0A,
AUDIO_EN_CTRL_PARAM4 = 0x0B,
AUDIO_EN_CTRL_PARAM5 = 0x0C,
AUDIO_EN_CTRL_PARAM6 = 0x0D,
AUDIO_EN_CTRL_PARAM7 = 0x0E,
AUDIO_EN_CTRL_PARAM8 = 0x0F,
} audio_encoder_control_selector_t;
/// A.17.13 Decoder Control Selectors
/// A.17.13.1 MPEG Decoder Control Selectors
typedef enum
{
AUDIO_MPD_CTRL_UNDEF = 0x00,
AUDIO_MPD_CTRL_DUAL_CHANNEL = 0x01,
AUDIO_MPD_CTRL_SECOND_STEREO = 0x02,
AUDIO_MPD_CTRL_MULTILINGUAL = 0x03,
AUDIO_MPD_CTRL_DYN_RANGE = 0x04,
AUDIO_MPD_CTRL_SCALING = 0x05,
AUDIO_MPD_CTRL_HILO_SCALING = 0x06,
AUDIO_MPD_CTRL_UNDERFLOW = 0x07,
AUDIO_MPD_CTRL_OVERFLOW = 0x08,
AUDIO_MPD_CTRL_DECODER_ERROR = 0x09,
} audio_MPEG_decoder_control_selector_t;
/// A.17.13.2 AC-3 Decoder Control Selectors
typedef enum
{
AUDIO_AD_CTRL_UNDEF = 0x00,
AUDIO_AD_CTRL_MODE = 0x01,
AUDIO_AD_CTRL_DYN_RANGE = 0x02,
AUDIO_AD_CTRL_SCALING = 0x03,
AUDIO_AD_CTRL_HILO_SCALING = 0x04,
AUDIO_AD_CTRL_UNDERFLOW = 0x05,
AUDIO_AD_CTRL_OVERFLOW = 0x06,
AUDIO_AD_CTRL_DECODER_ERROR = 0x07,
} audio_AC3_decoder_control_selector_t;
/// A.17.13.3 WMA Decoder Control Selectors
typedef enum
{
AUDIO_WD_CTRL_UNDEF = 0x00,
AUDIO_WD_CTRL_UNDERFLOW = 0x01,
AUDIO_WD_CTRL_OVERFLOW = 0x02,
AUDIO_WD_CTRL_DECODER_ERROR = 0x03,
} audio_WMA_decoder_control_selector_t;
/// A.17.13.4 DTS Decoder Control Selectors
typedef enum
{
AUDIO_DD_CTRL_UNDEF = 0x00,
AUDIO_DD_CTRL_UNDERFLOW = 0x01,
AUDIO_DD_CTRL_OVERFLOW = 0x02,
AUDIO_DD_CTRL_DECODER_ERROR = 0x03,
} audio_DTS_decoder_control_selector_t;
/// A.17.14 Endpoint Control Selectors
typedef enum
{
AUDIO_EP_CTRL_UNDEF = 0x00,
AUDIO_EP_CTRL_PITCH = 0x01,
AUDIO_EP_CTRL_DATA_OVERRUN = 0x02,
AUDIO_EP_CTRL_DATA_UNDERRUN = 0x03,
} audio_EP_control_selector_t;
/// Terminal Types
/// 2.1 - Audio Class-Terminal Types UAC2
typedef enum
{
AUDIO_TERM_TYPE_USB_UNDEFINED = 0x0100,
AUDIO_TERM_TYPE_USB_STREAMING = 0x0101,
AUDIO_TERM_TYPE_USB_VENDOR_SPEC = 0x01FF,
} audio_terminal_type_t;
/// 2.2 - Audio Class-Input Terminal Types UAC2
typedef enum
{
AUDIO_TERM_TYPE_IN_UNDEFINED = 0x0200,
AUDIO_TERM_TYPE_IN_GENERIC_MIC = 0x0201,
AUDIO_TERM_TYPE_IN_DESKTOP_MIC = 0x0202,
AUDIO_TERM_TYPE_IN_PERSONAL_MIC = 0x0203,
AUDIO_TERM_TYPE_IN_OMNI_MIC = 0x0204,
AUDIO_TERM_TYPE_IN_ARRAY_MIC = 0x0205,
AUDIO_TERM_TYPE_IN_PROC_ARRAY_MIC = 0x0206,
} audio_terminal_input_type_t;
/// 2.3 - Audio Class-Output Terminal Types UAC2
typedef enum
{
AUDIO_TERM_TYPE_OUT_UNDEFINED = 0x0300,
AUDIO_TERM_TYPE_OUT_GENERIC_SPEAKER = 0x0301,
AUDIO_TERM_TYPE_OUT_HEADPHONES = 0x0302,
AUDIO_TERM_TYPE_OUT_HEAD_MNT_DISP_AUIDO = 0x0303,
AUDIO_TERM_TYPE_OUT_DESKTOP_SPEAKER = 0x0304,
AUDIO_TERM_TYPE_OUT_ROOM_SPEAKER = 0x0305,
AUDIO_TERM_TYPE_OUT_COMMUNICATION_SPEAKER = 0x0306,
AUDIO_TERM_TYPE_OUT_LOW_FRQ_EFFECTS_SPEAKER = 0x0307,
} audio_terminal_output_type_t;
/// Rest is yet to be implemented
/// Additional Audio Device Class Codes - Source: Audio Data Formats
/// A.1 - Audio Class-Format Type Codes UAC2
//typedef enum
//{
// AUDIO_FORMAT_TYPE_UNDEFINED = 0x00,
// AUDIO_FORMAT_TYPE_I = 0x01,
// AUDIO_FORMAT_TYPE_II = 0x02,
// AUDIO_FORMAT_TYPE_III = 0x03,
// AUDIO_FORMAT_TYPE_IV = 0x04,
// AUDIO_EXT_FORMAT_TYPE_I = 0x81,
// AUDIO_EXT_FORMAT_TYPE_II = 0x82,
// AUDIO_EXT_FORMAT_TYPE_III = 0x83,
//} audio_format_type_t;
#define AUDIO_FORMAT_TYPE_UNDEFINED 0x00
#define AUDIO_FORMAT_TYPE_I 0x01
#define AUDIO_FORMAT_TYPE_II 0x02
#define AUDIO_FORMAT_TYPE_III 0x03
#define AUDIO_FORMAT_TYPE_IV 0x04
#define AUDIO_EXT_FORMAT_TYPE_I 0x81
#define AUDIO_EXT_FORMAT_TYPE_II 0x82
#define AUDIO_EXT_FORMAT_TYPE_III 0x83
/// A.2.1 - Audio Class-Audio Data Format Type I UAC2
//typedef enum
//{
// AUDIO_DATA_FORMAT_TYPE_I_PCM = (uint32_t) (1 << 0),
// AUDIO_DATA_FORMAT_TYPE_I_PCM8 = (uint32_t) (1 << 1),
// AUDIO_DATA_FORMAT_TYPE_I_IEEE_FLOAT = (uint32_t) (1 << 2),
// AUDIO_DATA_FORMAT_TYPE_I_ALAW = (uint32_t) (1 << 3),
// AUDIO_DATA_FORMAT_TYPE_I_MULAW = (uint32_t) (1 << 4),
// AUDIO_DATA_FORMAT_TYPE_I_RAW_DATA = 0x100000000,
//} audio_data_format_type_I_t;
#define AUDIO_DATA_FORMAT_TYPE_I_PCM ((uint32_t) (1 << 0))
#define AUDIO_DATA_FORMAT_TYPE_I_PCM8 ((uint32_t) (1 << 1))
#define AUDIO_DATA_FORMAT_TYPE_I_IEEE_FLOAT ((uint32_t) (1 << 2))
#define AUDIO_DATA_FORMAT_TYPE_I_ALAW ((uint32_t) (1 << 3))
#define AUDIO_DATA_FORMAT_TYPE_I_MULAW ((uint32_t) (1 << 4))
#define AUDIO_DATA_FORMAT_TYPE_I_RAW_DATA 0x100000000
/// All remaining definitions are taken from the descriptor descriptions in the UAC2 main specification
/// Isochronous End Point Attributes
typedef enum
{
TUSB_ISO_EP_ATT_NO_SYNC = 0x00,
TUSB_ISO_EP_ATT_ASYNCHRONOUS = 0x04,
TUSB_ISO_EP_ATT_ADAPTIVE = 0x08,
TUSB_ISO_EP_ATT_SYNCHRONOUS = 0x0C,
TUSB_ISO_EP_ATT_DATA = 0x00, ///< Data End Point
TUSB_ISO_EP_ATT_EXPLICIT_FB = 0x10, ///< Feedback End Point
TUSB_ISO_EP_ATT_IMPLICIT_FB = 0x20, ///< Data endpoint that also serves as an implicit feedback
} tusb_iso_ep_attribute_t;
/// Audio Class-Control Values UAC2
typedef enum
{
AUDIO_CTRL_NONE = 0x00, ///< No Host access
AUDIO_CTRL_R = 0x01, ///< Host read access only
AUDIO_CTRL_RW = 0x03, ///< Host read write access
} audio_control_t;
/// Audio Class-Specific AC Interface Descriptor Controls UAC2
typedef enum
{
AUDIO_CS_AS_INTERFACE_CTRL_LATENCY_POS = 0,
} audio_cs_ac_interface_control_pos_t;
/// Audio Class-Specific AS Interface Descriptor Controls UAC2
typedef enum
{
AUDIO_CS_AS_INTERFACE_CTRL_ACTIVE_ALT_SET_POS = 0,
AUDIO_CS_AS_INTERFACE_CTRL_VALID_ALT_SET_POS = 2,
} audio_cs_as_interface_control_pos_t;
/// Audio Class-Specific AS Isochronous Data EP Attributes UAC2
typedef enum
{
AUDIO_CS_AS_ISO_DATA_EP_ATT_MAX_PACKETS_ONLY = 0x80,
AUDIO_CS_AS_ISO_DATA_EP_ATT_NON_MAX_PACKETS_OK = 0x00,
} audio_cs_as_iso_data_ep_attribute_t;
/// Audio Class-Specific AS Isochronous Data EP Controls UAC2
typedef enum
{
AUDIO_CS_AS_ISO_DATA_EP_CTRL_PITCH_POS = 0,
AUDIO_CS_AS_ISO_DATA_EP_CTRL_DATA_OVERRUN_POS = 2,
AUDIO_CS_AS_ISO_DATA_EP_CTRL_DATA_UNDERRUN_POS = 4,
} audio_cs_as_iso_data_ep_control_pos_t;
/// Audio Class-Specific AS Isochronous Data EP Lock Delay Units UAC2
typedef enum
{
AUDIO_CS_AS_ISO_DATA_EP_LOCK_DELAY_UNIT_UNDEFINED = 0x00,
AUDIO_CS_AS_ISO_DATA_EP_LOCK_DELAY_UNIT_MILLISEC = 0x01,
AUDIO_CS_AS_ISO_DATA_EP_LOCK_DELAY_UNIT_PCM_SAMPLES = 0x02,
} audio_cs_as_iso_data_ep_lock_delay_unit_t;
/// Audio Class-Clock Source Attributes UAC2
typedef enum
{
AUDIO_CLOCK_SOURCE_ATT_EXT_CLK = 0x00,
AUDIO_CLOCK_SOURCE_ATT_INT_FIX_CLK = 0x01,
AUDIO_CLOCK_SOURCE_ATT_INT_VAR_CLK = 0x02,
AUDIO_CLOCK_SOURCE_ATT_INT_PRO_CLK = 0x03,
AUDIO_CLOCK_SOURCE_ATT_CLK_SYC_SOF = 0x04,
} audio_clock_source_attribute_t;
/// Audio Class-Clock Source Controls UAC2
typedef enum
{
AUDIO_CLOCK_SOURCE_CTRL_CLK_FRQ_POS = 0,
AUDIO_CLOCK_SOURCE_CTRL_CLK_VAL_POS = 2,
} audio_clock_source_control_pos_t;
/// Audio Class-Clock Selector Controls UAC2
typedef enum
{
AUDIO_CLOCK_SELECTOR_CTRL_POS = 0,
} audio_clock_selector_control_pos_t;
/// Audio Class-Clock Multiplier Controls UAC2
typedef enum
{
AUDIO_CLOCK_MULTIPLIER_CTRL_NUMERATOR_POS = 0,
AUDIO_CLOCK_MULTIPLIER_CTRL_DENOMINATOR_POS = 2,
} audio_clock_multiplier_control_pos_t;
/// Audio Class-Input Terminal Controls UAC2
typedef enum
{
AUDIO_IN_TERM_CTRL_CPY_PROT_POS = 0,
AUDIO_IN_TERM_CTRL_CONNECTOR_POS = 2,
AUDIO_IN_TERM_CTRL_OVERLOAD_POS = 4,
AUDIO_IN_TERM_CTRL_CLUSTER_POS = 6,
AUDIO_IN_TERM_CTRL_UNDERFLOW_POS = 8,
AUDIO_IN_TERM_CTRL_OVERFLOW_POS = 10,
} audio_terminal_input_control_pos_t;
/// Audio Class-Output Terminal Controls UAC2
typedef enum
{
AUDIO_OUT_TERM_CTRL_CPY_PROT_POS = 0,
AUDIO_OUT_TERM_CTRL_CONNECTOR_POS = 2,
AUDIO_OUT_TERM_CTRL_OVERLOAD_POS = 4,
AUDIO_OUT_TERM_CTRL_UNDERFLOW_POS = 6,
AUDIO_OUT_TERM_CTRL_OVERFLOW_POS = 8,
} audio_terminal_output_control_pos_t;
/// Audio Class-Feature Unit Controls UAC2
typedef enum
{
AUDIO_FEATURE_UNIT_CTRL_MUTE_POS = 0,
AUDIO_FEATURE_UNIT_CTRL_VOLUME_POS = 2,
AUDIO_FEATURE_UNIT_CTRL_BASS_POS = 4,
AUDIO_FEATURE_UNIT_CTRL_MID_POS = 6,
AUDIO_FEATURE_UNIT_CTRL_TREBLE_POS = 8,
AUDIO_FEATURE_UNIT_CTRL_GRAPHIC_EQU_POS = 10,
AUDIO_FEATURE_UNIT_CTRL_AGC_POS = 12,
AUDIO_FEATURE_UNIT_CTRL_DELAY_POS = 14,
AUDIO_FEATURE_UNIT_CTRL_BASS_BOOST_POS = 16,
AUDIO_FEATURE_UNIT_CTRL_LOUDNESS_POS = 18,
AUDIO_FEATURE_UNIT_CTRL_INPUT_GAIN_POS = 20,
AUDIO_FEATURE_UNIT_CTRL_INPUT_GAIN_PAD_POS = 22,
AUDIO_FEATURE_UNIT_CTRL_PHASE_INV_POS = 24,
AUDIO_FEATURE_UNIT_CTRL_UNDERFLOW_POS = 26,
AUDIO_FEATURE_UNIT_CTRL_OVERFLOW_POS = 28,
} audio_feature_unit_control_pos_t;
/// Audio Class-Audio Channel Configuration UAC2
typedef enum
{
AUDIO_CHANNEL_CONFIG_NON_PREDEFINED = 0x00000000,
AUDIO_CHANNEL_CONFIG_FRONT_LEFT = 0x00000001,
AUDIO_CHANNEL_CONFIG_FRONT_RIGHT = 0x00000002,
AUDIO_CHANNEL_CONFIG_FRONT_CENTER = 0x00000004,
AUDIO_CHANNEL_CONFIG_LOW_FRQ_EFFECTS = 0x00000008,
AUDIO_CHANNEL_CONFIG_BACK_LEFT = 0x00000010,
AUDIO_CHANNEL_CONFIG_BACK_RIGHT = 0x00000020,
AUDIO_CHANNEL_CONFIG_FRONT_LEFT_OF_CENTER = 0x00000040,
AUDIO_CHANNEL_CONFIG_FRONT_RIGHT_OF_CENTER = 0x00000080,
AUDIO_CHANNEL_CONFIG_BACK_CENTER = 0x00000100,
AUDIO_CHANNEL_CONFIG_SIDE_LEFT = 0x00000200,
AUDIO_CHANNEL_CONFIG_SIDE_RIGHT = 0x00000400,
AUDIO_CHANNEL_CONFIG_TOP_CENTER = 0x00000800,
AUDIO_CHANNEL_CONFIG_TOP_FRONT_LEFT = 0x00001000,
AUDIO_CHANNEL_CONFIG_TOP_FRONT_CENTER = 0x00002000,
AUDIO_CHANNEL_CONFIG_TOP_FRONT_RIGHT = 0x00004000,
AUDIO_CHANNEL_CONFIG_TOP_BACK_LEFT = 0x00008000,
AUDIO_CHANNEL_CONFIG_TOP_BACK_CENTER = 0x00010000,
AUDIO_CHANNEL_CONFIG_TOP_BACK_RIGHT = 0x00020000,
AUDIO_CHANNEL_CONFIG_TOP_FRONT_LEFT_OF_CENTER = 0x00040000,
AUDIO_CHANNEL_CONFIG_TOP_FRONT_RIGHT_OF_CENTER = 0x00080000,
AUDIO_CHANNEL_CONFIG_LEFT_LOW_FRQ_EFFECTS = 0x00100000,
AUDIO_CHANNEL_CONFIG_RIGHT_LOW_FRQ_EFFECTS = 0x00200000,
AUDIO_CHANNEL_CONFIG_TOP_SIDE_LEFT = 0x00400000,
AUDIO_CHANNEL_CONFIG_TOP_SIDE_RIGHT = 0x00800000,
AUDIO_CHANNEL_CONFIG_BOTTOM_CENTER = 0x01000000,
AUDIO_CHANNEL_CONFIG_BACK_LEFT_OF_CENTER = 0x02000000,
AUDIO_CHANNEL_CONFIG_BACK_RIGHT_OF_CENTER = 0x04000000,
AUDIO_CHANNEL_CONFIG_RAW_DATA = 0x80000000,
} audio_channel_config_t;
/// AUDIO Channel Cluster Descriptor (4.1)
typedef struct TU_ATTR_PACKED {
uint8_t bNrChannels; ///< Number of channels currently connected.
audio_channel_config_t bmChannelConfig; ///< Bitmap according to 'audio_channel_config_t' with a 1 set if channel is connected and 0 else. In case channels are non-predefined ignore them here (see UAC2 specification 4.1 Audio Channel Cluster Descriptor.
uint8_t iChannelNames; ///< Index of a string descriptor, describing the name of the first inserted channel with a non-predefined spatial location.
} audio_desc_channel_cluster_t;
/// AUDIO Class-Specific AC Interface Header Descriptor (4.7.2)
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor in bytes: 9.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_HEADER.
uint16_t bcdADC ; ///< Audio Device Class Specification Release Number in Binary-Coded Decimal. Value: U16_TO_U8S_LE(0x0200).
uint8_t bCategory ; ///< Constant, indicating the primary use of this audio function, as intended by the manufacturer. See: audio_function_t.
uint16_t wTotalLength ; ///< Total number of bytes returned for the class-specific AudioControl interface descriptor. Includes the combined length of this descriptor header and all Clock Source, Unit and Terminal descriptors.
uint8_t bmControls ; ///< See: audio_cs_ac_interface_control_pos_t.
} audio_desc_cs_ac_interface_t;
/// AUDIO Clock Source Descriptor (4.7.2.1)
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor in bytes: 8.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_CLOCK_SOURCE.
uint8_t bClockID ; ///< Constant uniquely identifying the Clock Source Entity within the audio function. This value is used in all requests to address this Entity.
uint8_t bmAttributes ; ///< See: audio_clock_source_attribute_t.
uint8_t bmControls ; ///< See: audio_clock_source_control_pos_t.
uint8_t bAssocTerminal ; ///< Terminal ID of the Terminal that is associated with this Clock Source.
uint8_t iClockSource ; ///< Index of a string descriptor, describing the Clock Source Entity.
} audio_desc_clock_source_t;
/// AUDIO Clock Selector Descriptor (4.7.2.2) for ONE pin
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor, in bytes: 7+p.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_CLOCK_SELECTOR.
uint8_t bClockID ; ///< Constant uniquely identifying the Clock Selector Entity within the audio function. This value is used in all requests to address this Entity.
uint8_t bNrInPins ; ///< Number of Input Pins of this Unit: p = 1 thus bNrInPins = 1.
uint8_t baCSourceID ; ///< ID of the Clock Entity to which the first Clock Input Pin of this Clock Selector Entity is connected..
uint8_t bmControls ; ///< See: audio_clock_selector_control_pos_t.
uint8_t iClockSource ; ///< Index of a string descriptor, describing the Clock Selector Entity.
} audio_desc_clock_selector_t;
/// AUDIO Clock Selector Descriptor (4.7.2.2) for multiple pins
#define audio_desc_clock_selector_n_t(source_num) \
struct TU_ATTR_PACKED { \
uint8_t bLength ; \
uint8_t bDescriptorType ; \
uint8_t bDescriptorSubType ; \
uint8_t bClockID ; \
uint8_t bNrInPins ; \
struct TU_ATTR_PACKED { \
uint8_t baSourceID ; \
} sourceID[source_num] ; \
uint8_t bmControls ; \
uint8_t iClockSource ; \
}
/// AUDIO Clock Multiplier Descriptor (4.7.2.3)
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor, in bytes: 7.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_CLOCK_MULTIPLIER.
uint8_t bClockID ; ///< Constant uniquely identifying the Clock Multiplier Entity within the audio function. This value is used in all requests to address this Entity.
uint8_t bCSourceID ; ///< ID of the Clock Entity to which the last Clock Input Pin of this Clock Selector Entity is connected.
uint8_t bmControls ; ///< See: audio_clock_multiplier_control_pos_t.
uint8_t iClockSource ; ///< Index of a string descriptor, describing the Clock Multiplier Entity.
} audio_desc_clock_multiplier_t;
/// AUDIO Input Terminal Descriptor(4.7.2.4)
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor, in bytes: 17.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_INPUT_TERMINAL.
uint16_t wTerminalType ; ///< Constant characterizing the type of Terminal. See: audio_terminal_type_t for USB streaming and audio_terminal_input_type_t for other input types.
uint8_t bAssocTerminal ; ///< ID of the Output Terminal to which this Input Terminal is associated.
uint8_t bCSourceID ; ///< ID of the Clock Entity to which this Input Terminal is connected.
uint8_t bNrChannels ; ///< Number of logical output channels in the Terminals output audio channel cluster.
uint32_t bmChannelConfig ; ///< Describes the spatial location of the logical channels. See:audio_channel_config_t.
uint16_t bmControls ; ///< See: audio_terminal_input_control_pos_t.
uint8_t iTerminal ; ///< Index of a string descriptor, describing the Input Terminal.
} audio_desc_input_terminal_t;
/// AUDIO Output Terminal Descriptor(4.7.2.5)
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor, in bytes: 12.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_OUTPUT_TERMINAL.
uint8_t bTerminalID ; ///< Constant uniquely identifying the Terminal within the audio function. This value is used in all requests to address this Terminal.
uint16_t wTerminalType ; ///< Constant characterizing the type of Terminal. See: audio_terminal_type_t for USB streaming and audio_terminal_output_type_t for other output types.
uint8_t bAssocTerminal ; ///< Constant, identifying the Input Terminal to which this Output Terminal is associated.
uint8_t bSourceID ; ///< ID of the Unit or Terminal to which this Terminal is connected.
uint8_t bCSourceID ; ///< ID of the Clock Entity to which this Output Terminal is connected.
uint16_t bmControls ; ///< See: audio_terminal_output_type_t.
uint8_t iTerminal ; ///< Index of a string descriptor, describing the Output Terminal.
} audio_desc_output_terminal_t;
/// AUDIO Feature Unit Descriptor(4.7.2.8) for ONE channel
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor, in bytes: 14.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AC_INTERFACE_FEATURE_UNIT.
uint8_t bUnitID ; ///< Constant uniquely identifying the Unit within the audio function. This value is used in all requests to address this Unit.
uint8_t bSourceID ; ///< ID of the Unit or Terminal to which this Feature Unit is connected.
struct TU_ATTR_PACKED {
uint32_t bmaControls ; ///< See: audio_feature_unit_control_pos_t. Controls0 is master channel 0 (always present) and Controls1 is logical channel 1.
} controls[2] ;
uint8_t iTerminal ; ///< Index of a string descriptor, describing this Feature Unit.
} audio_desc_feature_unit_t;
/// AUDIO Feature Unit Descriptor(4.7.2.8) for multiple channels
#define audio_desc_feature_unit_n_t(ch_num)\
struct TU_ATTR_PACKED { \
uint8_t bLength ; /* 6+(ch_num+1)*4 */\
uint8_t bDescriptorType ; \
uint8_t bDescriptorSubType ; \
uint8_t bUnitID ; \
uint8_t bSourceID ; \
struct TU_ATTR_PACKED { \
uint32_t bmaControls ; \
} controls[ch_num+1] ; \
uint8_t iTerminal ; \
}
/// AUDIO Class-Specific AS Interface Descriptor(4.9.2)
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor, in bytes: 16.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AS_INTERFACE_AS_GENERAL.
uint8_t bTerminalLink ; ///< The Terminal ID of the Terminal to which this interface is connected.
uint8_t bmControls ; ///< See: audio_cs_as_interface_control_pos_t.
uint8_t bFormatType ; ///< Constant identifying the Format Type the AudioStreaming interface is using. See: audio_format_type_t.
uint32_t bmFormats ; ///< The Audio Data Format(s) that can be used to communicate with this interface.See: audio_data_format_type_I_t.
uint8_t bNrChannels ; ///< Number of physical channels in the AS Interface audio channel cluster.
uint32_t bmChannelConfig ; ///< Describes the spatial location of the physical channels. See: audio_channel_config_t.
uint8_t iChannelNames ; ///< Index of a string descriptor, describing the name of the first physical channel.
} audio_desc_cs_as_interface_t;
/// AUDIO Type I Format Type Descriptor(2.3.1.6 - Audio Formats)
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor, in bytes: 6.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_INTERFACE.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_AS_INTERFACE_FORMAT_TYPE.
uint8_t bFormatType ; ///< Constant identifying the Format Type the AudioStreaming interface is using. Value: AUDIO_FORMAT_TYPE_I.
uint8_t bSubslotSize ; ///< The number of bytes occupied by one audio subslot. Can be 1, 2, 3 or 4.
uint8_t bBitResolution ; ///< The number of effectively used bits from the available bits in an audio subslot.
} audio_desc_type_I_format_t;
/// AUDIO Class-Specific AS Isochronous Audio Data Endpoint Descriptor(4.10.1.2)
typedef struct TU_ATTR_PACKED
{
uint8_t bLength ; ///< Size of this descriptor, in bytes: 8.
uint8_t bDescriptorType ; ///< Descriptor Type. Value: TUSB_DESC_CS_ENDPOINT.
uint8_t bDescriptorSubType ; ///< Descriptor SubType. Value: AUDIO_CS_EP_SUBTYPE_GENERAL.
uint8_t bmAttributes ; ///< See: audio_cs_as_iso_data_ep_attribute_t.
uint8_t bmControls ; ///< See: audio_cs_as_iso_data_ep_control_pos_t.
uint8_t bLockDelayUnits ; ///< Indicates the units used for the wLockDelay field. See: audio_cs_as_iso_data_ep_lock_delay_unit_t.
uint16_t wLockDelay ; ///< Indicates the time it takes this endpoint to reliably lock its internal clock recovery circuitry. Units used depend on the value of the bLockDelayUnits field.
} audio_desc_cs_as_iso_data_ep_t;
//// 5.2.3 Control Request Parameter Block Layout
// 5.2.3.1 1-byte Control CUR Parameter Block
typedef struct TU_ATTR_PACKED
{
int8_t bCur ; ///< The setting for the CUR attribute of the addressed Control
} audio_control_cur_1_t;
// 5.2.3.2 2-byte Control CUR Parameter Block
typedef struct TU_ATTR_PACKED
{
int16_t bCur ; ///< The setting for the CUR attribute of the addressed Control
} audio_control_cur_2_t;
// 5.2.3.3 4-byte Control CUR Parameter Block
typedef struct TU_ATTR_PACKED
{
int32_t bCur ; ///< The setting for the CUR attribute of the addressed Control
} audio_control_cur_4_t;
// Use the following ONLY for RECEIVED data - compiler does not know how many subranges are defined! Use the one below for predefined lengths - or if you know what you are doing do what you like
// 5.2.3.1 1-byte Control RANGE Parameter Block
typedef struct TU_ATTR_PACKED {
uint16_t wNumSubRanges;
struct TU_ATTR_PACKED {
int8_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/
int8_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/
uint8_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/
} subrange[] ;
} audio_control_range_1_t;
// 5.2.3.2 2-byte Control RANGE Parameter Block
typedef struct TU_ATTR_PACKED {
uint16_t wNumSubRanges;
struct TU_ATTR_PACKED {
int16_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/
int16_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/
uint16_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/
} subrange[] ;
} audio_control_range_2_t;
// 5.2.3.3 4-byte Control RANGE Parameter Block
typedef struct TU_ATTR_PACKED {
uint16_t wNumSubRanges;
struct TU_ATTR_PACKED {
int32_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/
int32_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/
uint32_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/
} subrange[] ;
} audio_control_range_4_t;
// 5.2.3.1 1-byte Control RANGE Parameter Block
#define audio_control_range_1_n_t(numSubRanges) \
struct TU_ATTR_PACKED { \
uint16_t wNumSubRanges; \
struct TU_ATTR_PACKED { \
int8_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/\
int8_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/\
uint8_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/\
} subrange[numSubRanges] ; \
}
/// 5.2.3.2 2-byte Control RANGE Parameter Block
#define audio_control_range_2_n_t(numSubRanges) \
struct TU_ATTR_PACKED { \
uint16_t wNumSubRanges; \
struct TU_ATTR_PACKED { \
int16_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/\
int16_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/\
uint16_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/\
} subrange[numSubRanges]; \
}
// 5.2.3.3 4-byte Control RANGE Parameter Block
#define audio_control_range_4_n_t(numSubRanges) \
struct TU_ATTR_PACKED { \
uint16_t wNumSubRanges; \
struct TU_ATTR_PACKED { \
int32_t bMin ; /*The setting for the MIN attribute of the nth subrange of the addressed Control*/\
int32_t bMax ; /*The setting for the MAX attribute of the nth subrange of the addressed Control*/\
uint32_t bRes ; /*The setting for the RES attribute of the nth subrange of the addressed Control*/\
} subrange[numSubRanges]; \
}
/** @} */
#ifdef __cplusplus
}
}
#endif
#endif
/** @} */
/** @} */

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,401 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Ha Thach (tinyusb.org)
* Copyright (c) 2020 Reinhard Panhuber
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#ifndef _TUSB_AUDIO_DEVICE_H_
#define _TUSB_AUDIO_DEVICE_H_
#include "assert.h"
#include "common/tusb_common.h"
#include "device/usbd.h"
#include "audio.h"
//--------------------------------------------------------------------+
// Class Driver Configuration
//--------------------------------------------------------------------+
// Number of Standard AS Interface Descriptors (4.9.1) defined per audio function - this is required to be able to remember the current alternate settings of these interfaces - We restrict us here to have a constant number for all audio functions (which means this has to be the maximum number of AS interfaces an audio function has and a second audio function with less AS interfaces just waste a few bytes)
#ifndef CFG_TUD_AUDIO_N_AS_INT
#define CFG_TUD_AUDIO_N_AS_INT 0
#endif
// Size of control buffer used to receive and send control messages via EP0 - has to be big enough to hold your biggest request structure e.g. range requests with multiple intervals defined or cluster descriptors
#ifndef CFG_TUD_AUDIO_CTRL_BUF_SIZE
#error You must define an audio class control request buffer size!
#endif
// Use of TX/RX FIFOs - If sizes are not zero, audio.c implements FIFOs for RX and TX (whatever defined).
// For RX: the input stream gets decoded into its corresponding channels, where for each channel a FIFO is setup to hold its data -> see: audio_rx_done_cb().
// For TX: the output stream is composed from CFG_TUD_AUDIO_N_CHANNELS_TX channels, where for each channel a FIFO is defined.
// Further, it implements encoding and decoding of the individual channels (parameterized by the defines below).
// If you don't use the FIFOs you need to handle encoding and decoding on your own in audio_rx_done_cb() and audio_tx_done_cb(). This, however, allows for optimizations.
#ifndef CFG_TUD_AUDIO_TX_FIFO_SIZE
#define CFG_TUD_AUDIO_TX_FIFO_SIZE 0 // Buffer size per channel
#endif
#ifndef CFG_TUD_AUDIO_RX_FIFO_SIZE
#define CFG_TUD_AUDIO_RX_FIFO_SIZE 0 // Buffer size per channel
#endif
// End point sizes - Limits: Full Speed <= 1023, High Speed <= 1024
#ifndef CFG_TUD_AUDIO_EPSIZE_IN
#define CFG_TUD_AUDIO_EPSIZE_IN 0 // TX
#endif
#ifndef CFG_TUD_AUDIO_EPSIZE_OUT
#define CFG_TUD_AUDIO_EPSIZE_OUT 0 // RX
#endif
#ifndef CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP
#define CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP 0 // Feedback
#endif
#ifndef CFG_TUD_AUDIO_INT_CTR_EPSIZE_IN
#define CFG_TUD_AUDIO_INT_CTR_EPSIZE_IN 0 // Audio interrupt control
#endif
#if CFG_TUD_AUDIO_INT_CTR_EPSIZE_IN
#ifndef CFG_TUD_AUDIO_INT_CTR_BUFSIZE
#define CFG_TUD_AUDIO_INT_CTR_BUFSIZE 6 // Buffer size of audio control interrupt EP - 6 Bytes according to UAC 2 specification (p. 74)
#endif
#endif
#ifndef CFG_TUD_AUDIO_N_CHANNELS_TX
#define CFG_TUD_AUDIO_N_CHANNELS_TX 1
#endif
#ifndef CFG_TUD_AUDIO_N_CHANNELS_RX
#define CFG_TUD_AUDIO_N_CHANNELS_RX 1
#endif
// Audio data format types
#ifndef CFG_TUD_AUDIO_FORMAT_TYPE_TX
#define CFG_TUD_AUDIO_FORMAT_TYPE_TX AUDIO_FORMAT_TYPE_UNDEFINED // If this option is used, an encoding function has to be implemented in audio_device.c
#endif
#ifndef CFG_TUD_AUDIO_FORMAT_TYPE_RX
#define CFG_TUD_AUDIO_FORMAT_TYPE_RX AUDIO_FORMAT_TYPE_UNDEFINED // If this option is used, a decoding function has to be implemented in audio_device.c
#endif
// Audio data format type I specifications
#if CFG_TUD_AUDIO_FORMAT_TYPE_TX == AUDIO_FORMAT_TYPE_I
// Type definitions - for possible formats see: audio_data_format_type_I_t and further in UAC2 specifications.
#ifndef CFG_TUD_AUDIO_FORMAT_TYPE_I_TX
#define CFG_TUD_AUDIO_FORMAT_TYPE_I_TX AUDIO_DATA_FORMAT_TYPE_I_PCM
#endif
#ifndef CFG_TUD_AUDIO_N_BYTES_PER_SAMPLE_TX // bSubslotSize
#define CFG_TUD_AUDIO_N_BYTES_PER_SAMPLE_TX 1
#endif
#ifndef CFG_TUD_AUDIO_TX_ITEMSIZE
#if CFG_TUD_AUDIO_N_BYTES_PER_SAMPLE_TX == 1
#define CFG_TUD_AUDIO_TX_ITEMSIZE 1
#elif CFG_TUD_AUDIO_N_BYTES_PER_SAMPLE_TX == 2
#define CFG_TUD_AUDIO_TX_ITEMSIZE 2
#else
#define CFG_TUD_AUDIO_TX_ITEMSIZE 4
#endif
#endif
#if CFG_TUD_AUDIO_TX_ITEMSIZE < CFG_TUD_AUDIO_N_BYTES_PER_SAMPLE_TX
#error FIFO element size (ITEMSIZE) must not be smaller then sample size
#endif
#endif
#if CFG_TUD_AUDIO_FORMAT_TYPE_RX == AUDIO_FORMAT_TYPE_I
#ifndef CFG_TUD_AUDIO_FORMAT_TYPE_I_RX
#define CFG_TUD_AUDIO_FORMAT_TYPE_I_RX AUDIO_DATA_FORMAT_TYPE_I_PCM
#endif
#ifndef CFG_TUD_AUDIO_N_BYTES_PER_SAMPLE_RX // bSubslotSize
#define CFG_TUD_AUDIO_N_BYTES_PER_SAMPLE_RX 1
#endif
#if CFG_TUD_AUDIO_N_BYTES_PER_SAMPLE_RX == 1
#define CFG_TUD_AUDIO_RX_ITEMSIZE 1
#elif CFG_TUD_AUDIO_N_BYTES_PER_SAMPLE_RX == 2
#define CFG_TUD_AUDIO_RX_ITEMSIZE 2
#else
#define CFG_TUD_AUDIO_RX_ITEMSIZE 4
#endif
#endif
//static_assert(sizeof(tud_audio_desc_lengths) != CFG_TUD_AUDIO, "Supply audio function descriptor pack length!");
// Supported types of this driver:
// AUDIO_DATA_FORMAT_TYPE_I_PCM - Required definitions: CFG_TUD_AUDIO_N_CHANNELS and CFG_TUD_AUDIO_BYTES_PER_CHANNEL
#ifdef __cplusplus
extern "C" {
#endif
/** \addtogroup AUDIO_Serial Serial
* @{
* \defgroup AUDIO_Serial_Device Device
* @{ */
//--------------------------------------------------------------------+
// Application API (Multiple Interfaces)
// CFG_TUD_AUDIO > 1
//--------------------------------------------------------------------+
bool tud_audio_n_mounted (uint8_t itf);
#if CFG_TUD_AUDIO_EPSIZE_OUT && CFG_TUD_AUDIO_RX_FIFO_SIZE
#if CFG_TUD_AUDIO_RX_FIFO_COUNT > 1
uint16_t tud_audio_n_available (uint8_t itf, uint8_t channelId);
uint16_t tud_audio_n_read (uint8_t itf, uint8_t channelId, void* buffer, uint16_t bufsize);
void tud_audio_n_read_flush (uint8_t itf, uint8_t channelId);
#else
uint16_t tud_audio_n_available (uint8_t itf);
uint16_t tud_audio_n_read (uint8_t itf, void* buffer, uint16_t bufsize);
void tud_audio_n_read_flush (uint8_t itf);
#endif
#endif
/* This function is intended for later use once EP buffers (at least for ISO EPs) are implemented as ring buffers
#if CFG_TUD_AUDIO_EPSIZE_IN && !CFG_TUD_AUDIO_TX_FIFO_SIZE
uint16_t tud_audio_n_write_ep_in_buffer(uint8_t itf, const void * data, uint16_t len)
#endif
*/
#ifndef CFG_TUD_AUDIO_TX_FIFO_COUNT
#define CFG_TUD_AUDIO_TX_FIFO_COUNT 1
#endif
#if CFG_TUD_AUDIO_EPSIZE_IN && CFG_TUD_AUDIO_TX_FIFO_SIZE
#if CFG_TUD_AUDIO_TX_FIFO_COUNT > 1
uint16_t tud_audio_n_write (uint8_t itf, uint8_t channelId, const void * data, uint16_t len);
#else
uint16_t tud_audio_n_write (uint8_t itf, const void * data, uint16_t len);
#endif
uint16_t tud_audio_n_write_flush(uint8_t itf);
#endif
#if CFG_TUD_AUDIO_INT_CTR_EPSIZE_IN > 0
uint16_t tud_audio_int_ctr_n_available (uint8_t itf);
uint16_t tud_audio_int_ctr_n_read (uint8_t itf, void* buffer, uint16_t bufsize);
void tud_audio_int_ctr_n_read_flush (uint8_t itf);
uint16_t tud_audio_int_ctr_n_write (uint8_t itf, uint8_t const* buffer, uint16_t bufsize);
#endif
//--------------------------------------------------------------------+
// Application API (Interface0)
//--------------------------------------------------------------------+
static inline bool tud_audio_mounted (void);
#if CFG_TUD_AUDIO_EPSIZE_OUT && CFG_TUD_AUDIO_RX_FIFO_SIZE
static inline uint16_t tud_audio_available (void);
static inline uint16_t tud_audio_read (void* buffer, uint16_t bufsize);
static inline void tud_audio_read_flush (void);
#endif
#if CFG_TUD_AUDIO_EPSIZE_IN && CFG_TUD_AUDIO_TX_FIFO_SIZE
#if CFG_TUD_AUDIO_TX_FIFO_COUNT > 1
static inline uint16_t tud_audio_write (uint8_t channelId, uint8_t const* buffer, uint16_t bufsize);
#else
static inline uint16_t tud_audio_write (uint8_t const* buffer, uint16_t bufsize);
#endif
#endif
#if CFG_TUD_AUDIO_INT_CTR_EPSIZE_IN > 0
static inline uint32_t tud_audio_int_ctr_available (void);
static inline uint32_t tud_audio_int_ctr_read (void* buffer, uint32_t bufsize);
static inline void tud_audio_int_ctr_read_flush (void);
static inline uint32_t tud_audio_int_ctr_write (uint8_t const* buffer, uint32_t bufsize);
#endif
// Buffer control EP data and schedule a transmit
// This function is intended to be used if you do not have a persistent buffer or memory location available (e.g. non-local variables) and need to answer onto a
// get request. This function buffers your answer request frame into the control buffer of the corresponding audio driver and schedules a transmit for sending it.
// Since transmission is triggered via interrupts, a persistent memory location is required onto which the buffer pointer in pointing. If you already have such
// available you may directly use 'tud_control_xfer(...)'. In this case data does not need to be copied into an additional buffer and you save some time.
// If the request's wLength is zero, a status packet is sent instead.
bool tud_audio_buffer_and_schedule_control_xfer(uint8_t rhport, tusb_control_request_t const * p_request, void* data, uint16_t len);
//--------------------------------------------------------------------+
// Application Callback API (weak is optional)
//--------------------------------------------------------------------+
#if CFG_TUD_AUDIO_EPSIZE_IN
TU_ATTR_WEAK bool tud_audio_tx_done_pre_load_cb(uint8_t rhport, uint8_t itf, uint8_t ep_in, uint8_t cur_alt_setting);
TU_ATTR_WEAK bool tud_audio_tx_done_post_load_cb(uint8_t rhport, uint16_t n_bytes_copied, uint8_t itf, uint8_t ep_in, uint8_t cur_alt_setting);
#endif
#if CFG_TUD_AUDIO_EPSIZE_OUT
TU_ATTR_WEAK bool tud_audio_rx_done_cb(uint8_t rhport, uint8_t * buffer, uint16_t bufsize);
#endif
#if CFG_TUD_AUDIO_EPSIZE_OUT > 0 && CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP
TU_ATTR_WEAK bool tud_audio_fb_done_cb(uint8_t rhport);
// User code should call this function with feedback value in 16.16 format for FS and HS.
// Value will be corrected for FS to 10.14 format automatically.
// (see Universal Serial Bus Specification Revision 2.0 5.12.4.2).
// Feedback value will be sent at FB endpoint interval till it's changed.
bool tud_audio_fb_set(uint8_t rhport, uint32_t feedback);
#endif
#if CFG_TUD_AUDIO_INT_CTR_EPSIZE_IN
TU_ATTR_WEAK bool tud_audio_int_ctr_done_cb(uint8_t rhport, uint16_t * n_bytes_copied);
#endif
// Invoked when audio set interface request received
TU_ATTR_WEAK bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request);
// Invoked when audio set interface request received which closes an EP
TU_ATTR_WEAK bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const * p_request);
// Invoked when audio class specific set request received for an EP
TU_ATTR_WEAK bool tud_audio_set_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff);
// Invoked when audio class specific set request received for an interface
TU_ATTR_WEAK bool tud_audio_set_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff);
// Invoked when audio class specific set request received for an entity
TU_ATTR_WEAK bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request, uint8_t *pBuff);
// Invoked when audio class specific get request received for an EP
TU_ATTR_WEAK bool tud_audio_get_req_ep_cb(uint8_t rhport, tusb_control_request_t const * p_request);
// Invoked when audio class specific get request received for an interface
TU_ATTR_WEAK bool tud_audio_get_req_itf_cb(uint8_t rhport, tusb_control_request_t const * p_request);
// Invoked when audio class specific get request received for an entity
TU_ATTR_WEAK bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const * p_request);
//--------------------------------------------------------------------+
// Inline Functions
//--------------------------------------------------------------------+
static inline bool tud_audio_mounted(void)
{
return tud_audio_n_mounted(0);
}
#if CFG_TUD_AUDIO_EPSIZE_IN
#if CFG_TUD_AUDIO_TX_FIFO_SIZE && CFG_TUD_AUDIO_TX_FIFO_COUNT > 1
static inline uint16_t tud_audio_write (uint8_t channelId, uint8_t const* buffer, uint16_t n_bytes) // Short version if only one audio function is used
{
return tud_audio_n_write(0, channelId, buffer, n_bytes);
}
#else
static inline uint16_t tud_audio_write (uint8_t const* buffer, uint16_t n_bytes) // Short version if only one audio function is used
{
return tud_audio_n_write(0, buffer, n_bytes);
}
#endif
static inline uint16_t tud_audio_write_flush (void) // Short version if only one audio function is used
{
#if CFG_TUD_AUDIO_TX_FIFO_SIZE
return tud_audio_n_write_flush(0);
#else
return 0;
#endif
}
#endif // CFG_TUD_AUDIO_EPSIZE_IN && CFG_TUD_AUDIO_TX_FIFO_SIZE
#if CFG_TUD_AUDIO_EPSIZE_OUT && CFG_TUD_AUDIO_RX_FIFO_SIZE
#if CFG_TUD_AUDIO_RX_FIFO_COUNT > 1
static inline uint16_t tud_audio_available(uint8_t channelId)
{
return tud_audio_n_available(0, channelId);
}
static inline uint16_t tud_audio_read(uint8_t channelId, void* buffer, uint16_t bufsize)
{
return tud_audio_n_read(0, channelId, buffer, bufsize);
}
static inline void tud_audio_read_flush(uint8_t channelId)
{
tud_audio_n_read_flush(0, channelId);
}
#else
static inline uint16_t tud_audio_available(void)
{
return tud_audio_n_available(0);
}
static inline uint16_t tud_audio_read(void *buffer, uint16_t bufsize)
{
return tud_audio_n_read(0, buffer, bufsize);
}
static inline void tud_audio_read_flush(void)
{
tud_audio_n_read_flush(0);
}
#endif
#endif
#if CFG_TUD_AUDIO_INT_CTR_EPSIZE_IN > 0
static inline uint16_t tud_audio_int_ctr_available(void)
{
return tud_audio_int_ctr_n_available(0);
}
static inline uint16_t tud_audio_int_ctr_read(void* buffer, uint16_t bufsize)
{
return tud_audio_int_ctr_n_read(0, buffer, bufsize);
}
static inline void tud_audio_int_ctr_read_flush(void)
{
return tud_audio_int_ctr_n_read_flush(0);
}
static inline uint16_t tud_audio_int_ctr_write(uint8_t const* buffer, uint16_t bufsize)
{
return tud_audio_int_ctr_n_write(0, buffer, bufsize);
}
#endif
//--------------------------------------------------------------------+
// Internal Class Driver API
//--------------------------------------------------------------------+
void audiod_init (void);
void audiod_reset (uint8_t rhport);
uint16_t audiod_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool audiod_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool audiod_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool audiod_xfer_cb (uint8_t rhport, uint8_t edpt_addr, xfer_result_t result, uint32_t xferred_bytes);
#ifdef __cplusplus
}
#endif
#endif /* _TUSB_AUDIO_DEVICE_H_ */
/** @} */
/** @} */

View File

@@ -73,18 +73,29 @@ typedef struct
//--------------------------------------------------------------------+
CFG_TUSB_MEM_SECTION static cdcd_interface_t _cdcd_itf[CFG_TUD_CDC];
static void _prep_out_transaction (uint8_t itf)
static void _prep_out_transaction (cdcd_interface_t* p_cdc)
{
cdcd_interface_t* p_cdc = &_cdcd_itf[itf];
// skip if previous transfer not complete
if ( usbd_edpt_busy(TUD_OPT_RHPORT, p_cdc->ep_out) ) return;
uint8_t const rhport = TUD_OPT_RHPORT;
uint16_t available = tu_fifo_remaining(&p_cdc->rx_ff);
// Prepare for incoming data but only allow what we can store in the ring buffer.
uint16_t max_read = tu_fifo_remaining(&p_cdc->rx_ff);
if ( max_read >= sizeof(p_cdc->epout_buf) )
// TODO Actually we can still carry out the transfer, keeping count of received bytes
// and slowly move it to the FIFO when read().
// This pre-check reduces endpoint claiming
TU_VERIFY(available >= sizeof(p_cdc->epout_buf), );
// claim endpoint
TU_VERIFY(usbd_edpt_claim(rhport, p_cdc->ep_out), );
// fifo can be changed before endpoint is claimed
available = tu_fifo_remaining(&p_cdc->rx_ff);
if ( available >= sizeof(p_cdc->epout_buf) ) {
usbd_edpt_xfer(rhport, p_cdc->ep_out, p_cdc->epout_buf, sizeof(p_cdc->epout_buf));
}else
{
usbd_edpt_xfer(TUD_OPT_RHPORT, p_cdc->ep_out, p_cdc->epout_buf, sizeof(p_cdc->epout_buf));
// Release endpoint since we don't make any transfer
usbd_edpt_release(rhport, p_cdc->ep_out);
}
}
@@ -123,8 +134,9 @@ uint32_t tud_cdc_n_available(uint8_t itf)
uint32_t tud_cdc_n_read(uint8_t itf, void* buffer, uint32_t bufsize)
{
uint32_t num_read = tu_fifo_read_n(&_cdcd_itf[itf].rx_ff, buffer, bufsize);
_prep_out_transaction(itf);
cdcd_interface_t* p_cdc = &_cdcd_itf[itf];
uint32_t num_read = tu_fifo_read_n(&p_cdc->rx_ff, buffer, bufsize);
_prep_out_transaction(p_cdc);
return num_read;
}
@@ -135,8 +147,9 @@ bool tud_cdc_n_peek(uint8_t itf, int pos, uint8_t* chr)
void tud_cdc_n_read_flush (uint8_t itf)
{
tu_fifo_clear(&_cdcd_itf[itf].rx_ff);
_prep_out_transaction(itf);
cdcd_interface_t* p_cdc = &_cdcd_itf[itf];
tu_fifo_clear(&p_cdc->rx_ff);
_prep_out_transaction(p_cdc);
}
//--------------------------------------------------------------------+
@@ -144,11 +157,12 @@ void tud_cdc_n_read_flush (uint8_t itf)
//--------------------------------------------------------------------+
uint32_t tud_cdc_n_write(uint8_t itf, void const* buffer, uint32_t bufsize)
{
uint16_t ret = tu_fifo_write_n(&_cdcd_itf[itf].tx_ff, buffer, bufsize);
cdcd_interface_t* p_cdc = &_cdcd_itf[itf];
uint16_t ret = tu_fifo_write_n(&p_cdc->tx_ff, buffer, bufsize);
#if 0 // TODO issue with circuitpython's REPL
// flush if queue more than endpoint size
if ( tu_fifo_count(&_cdcd_itf[itf].tx_ff) >= CFG_TUD_CDC_EP_BUFSIZE )
if ( tu_fifo_count(&p_cdc->tx_ff) >= CFG_TUD_CDC_EP_BUFSIZE )
{
tud_cdc_n_write_flush(itf);
}
@@ -161,17 +175,28 @@ uint32_t tud_cdc_n_write_flush (uint8_t itf)
{
cdcd_interface_t* p_cdc = &_cdcd_itf[itf];
// skip if previous transfer not complete yet
TU_VERIFY( !usbd_edpt_busy(TUD_OPT_RHPORT, p_cdc->ep_in), 0 );
// No data to send
if ( !tu_fifo_count(&p_cdc->tx_ff) ) return 0;
uint16_t count = tu_fifo_read_n(&p_cdc->tx_ff, p_cdc->epin_buf, sizeof(p_cdc->epin_buf));
if ( count )
uint8_t const rhport = TUD_OPT_RHPORT;
// Claim the endpoint
TU_VERIFY( usbd_edpt_claim(rhport, p_cdc->ep_in), 0 );
// Pull data from FIFO
uint16_t const count = tu_fifo_read_n(&p_cdc->tx_ff, p_cdc->epin_buf, sizeof(p_cdc->epin_buf));
if ( count && tud_cdc_n_connected(itf) )
{
TU_VERIFY( tud_cdc_n_connected(itf), 0 ); // fifo is empty if not connected
TU_ASSERT( usbd_edpt_xfer(TUD_OPT_RHPORT, p_cdc->ep_in, p_cdc->epin_buf, count), 0 );
TU_ASSERT( usbd_edpt_xfer(rhport, p_cdc->ep_in, p_cdc->epin_buf, count), 0 );
return count;
}else
{
// Release endpoint since we don't make any transfer
// Note: data is dropped if terminal is not connected
usbd_edpt_release(rhport, p_cdc->ep_in);
return 0;
}
return count;
}
uint32_t tud_cdc_n_write_available (uint8_t itf)
@@ -194,7 +219,7 @@ void cdcd_init(void)
p_cdc->wanted_char = -1;
// default line coding is : stop bit = 1, parity = none, data bits = 8
p_cdc->line_coding.bit_rate = 115200;
p_cdc->line_coding.bit_rate = 115200;
p_cdc->line_coding.stop_bits = 0;
p_cdc->line_coding.parity = 0;
p_cdc->line_coding.data_bits = 8;
@@ -233,8 +258,7 @@ uint16_t cdcd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint1
// Find available interface
cdcd_interface_t * p_cdc = NULL;
uint8_t cdc_id;
for(cdc_id=0; cdc_id<CFG_TUD_CDC; cdc_id++)
for(uint8_t cdc_id=0; cdc_id<CFG_TUD_CDC; cdc_id++)
{
if ( _cdcd_itf[cdc_id].ep_in == 0 )
{
@@ -283,7 +307,7 @@ uint16_t cdcd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint1
}
// Prepare for incoming data
_prep_out_transaction(cdc_id);
_prep_out_transaction(p_cdc);
return drv_len;
}
@@ -408,7 +432,7 @@ bool cdcd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_
if (tud_cdc_rx_cb && tu_fifo_count(&p_cdc->rx_ff) ) tud_cdc_rx_cb(itf);
// prepare for OUT transaction
_prep_out_transaction(itf);
_prep_out_transaction(p_cdc);
}
// Data sent to host, we continue to fetch from tx fifo to send.
@@ -421,12 +445,15 @@ bool cdcd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_
if ( 0 == tud_cdc_n_write_flush(itf) )
{
// There is no data left, a ZLP should be sent if
// If there is no data left, a ZLP should be sent if
// xferred_bytes is multiple of EP size and not zero
// FIXME CFG_TUD_CDC_EP_BUFSIZE is not Endpoint packet size
if ( xferred_bytes && (0 == (xferred_bytes % CFG_TUD_CDC_EP_BUFSIZE)) )
if ( !tu_fifo_count(&p_cdc->tx_ff) && xferred_bytes && (0 == (xferred_bytes % CFG_TUD_CDC_EP_BUFSIZE)) )
{
usbd_edpt_xfer(rhport, p_cdc->ep_in, NULL, 0);
if ( usbd_edpt_claim(rhport, p_cdc->ep_in) )
{
usbd_edpt_xfer(rhport, p_cdc->ep_in, NULL, 0);
}
}
}
}

View File

@@ -92,7 +92,7 @@ uint32_t tud_cdc_n_write (uint8_t itf, void const* buffer, uint32_t bu
static inline
uint32_t tud_cdc_n_write_char (uint8_t itf, char ch);
// Write a nul-terminated string
// Write a null-terminated string
static inline
uint32_t tud_cdc_n_write_str (uint8_t itf, char const* str);

View File

@@ -1,4 +1,4 @@
/*
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
@@ -57,33 +57,34 @@ typedef struct
CFG_TUSB_MEM_SECTION static hidd_interface_t _hidd_itf[CFG_TUD_HID];
/*------------- Helpers -------------*/
static inline hidd_interface_t* get_interface_by_itfnum(uint8_t itf_num)
static inline uint8_t get_index_by_itfnum(uint8_t itf_num)
{
for (uint8_t i=0; i < CFG_TUD_HID; i++ )
{
if ( itf_num == _hidd_itf[i].itf_num ) return &_hidd_itf[i];
}
for (uint8_t i=0; i < CFG_TUD_HID; i++ )
{
if ( itf_num == _hidd_itf[i].itf_num ) return i;
}
return NULL;
return 0xFF;
}
//--------------------------------------------------------------------+
// APPLICATION API
//--------------------------------------------------------------------+
bool tud_hid_ready(void)
bool tud_hid_n_ready(uint8_t itf)
{
uint8_t itf = 0;
uint8_t const ep_in = _hidd_itf[itf].ep_in;
return tud_ready() && (ep_in != 0) && usbd_edpt_ready(TUD_OPT_RHPORT, ep_in);
return tud_ready() && (ep_in != 0) && !usbd_edpt_busy(TUD_OPT_RHPORT, ep_in);
}
bool tud_hid_report(uint8_t report_id, void const* report, uint8_t len)
bool tud_hid_n_report(uint8_t itf, uint8_t report_id, void const* report, uint8_t len)
{
TU_VERIFY( tud_hid_ready() );
uint8_t itf = 0;
uint8_t const rhport = 0;
hidd_interface_t * p_hid = &_hidd_itf[itf];
// claim endpoint
TU_VERIFY( usbd_edpt_claim(rhport, p_hid->ep_in) );
// prepare data
if (report_id)
{
len = tu_min8(len, CFG_TUD_HID_EP_BUFSIZE-1);
@@ -101,16 +102,15 @@ bool tud_hid_report(uint8_t report_id, void const* report, uint8_t len)
return usbd_edpt_xfer(TUD_OPT_RHPORT, p_hid->ep_in, p_hid->epin_buf, len);
}
bool tud_hid_boot_mode(void)
bool tud_hid_n_boot_mode(uint8_t itf)
{
uint8_t itf = 0;
return _hidd_itf[itf].boot_mode;
}
//--------------------------------------------------------------------+
// KEYBOARD API
//--------------------------------------------------------------------+
bool tud_hid_keyboard_report(uint8_t report_id, uint8_t modifier, uint8_t keycode[6])
bool tud_hid_n_keyboard_report(uint8_t itf, uint8_t report_id, uint8_t modifier, uint8_t keycode[6])
{
hid_keyboard_report_t report;
@@ -124,13 +124,13 @@ bool tud_hid_keyboard_report(uint8_t report_id, uint8_t modifier, uint8_t keycod
tu_memclr(report.keycode, 6);
}
return tud_hid_report(report_id, &report, sizeof(report));
return tud_hid_n_report(itf, report_id, &report, sizeof(report));
}
//--------------------------------------------------------------------+
// MOUSE APPLICATION API
//--------------------------------------------------------------------+
bool tud_hid_mouse_report(uint8_t report_id, uint8_t buttons, int8_t x, int8_t y, int8_t vertical, int8_t horizontal)
bool tud_hid_n_mouse_report(uint8_t itf, uint8_t report_id, uint8_t buttons, int8_t x, int8_t y, int8_t vertical, int8_t horizontal)
{
hid_mouse_report_t report =
{
@@ -141,7 +141,7 @@ bool tud_hid_mouse_report(uint8_t report_id, uint8_t buttons, int8_t x, int8_t y
.pan = horizontal
};
return tud_hid_report(report_id, &report, sizeof(report));
return tud_hid_n_report(itf, report_id, &report, sizeof(report));
}
//--------------------------------------------------------------------+
@@ -194,7 +194,7 @@ uint16_t hidd_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint1
p_hid->boot_mode = false; // default mode is REPORT
p_hid->itf_num = desc_itf->bInterfaceNumber;
// Use offsetof to avoid pointer to the odd/misaligned address
memcpy(&p_hid->report_desc_len, (uint8_t*) p_hid->hid_descriptor + offsetof(tusb_hid_descriptor_hid_t, wReportLength), 2);
@@ -217,8 +217,10 @@ bool hidd_control_request(uint8_t rhport, tusb_control_request_t const * request
{
TU_VERIFY(request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_INTERFACE);
hidd_interface_t* p_hid = get_interface_by_itfnum( (uint8_t) request->wIndex );
TU_ASSERT(p_hid);
uint8_t const hid_itf = get_index_by_itfnum((uint8_t) request->wIndex);
TU_VERIFY(hid_itf < CFG_TUD_HID);
hidd_interface_t* p_hid = &_hidd_itf[hid_itf];
if (request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD)
{
@@ -234,7 +236,11 @@ bool hidd_control_request(uint8_t rhport, tusb_control_request_t const * request
}
else if (request->bRequest == TUSB_REQ_GET_DESCRIPTOR && desc_type == HID_DESC_TYPE_REPORT)
{
uint8_t const * desc_report = tud_hid_descriptor_report_cb();
uint8_t const * desc_report = tud_hid_descriptor_report_cb(
#if CFG_TUD_HID > 1
hid_itf // TODO for backward compatible callback, remove later when appropriate
#endif
);
tud_control_xfer(rhport, request, (void*) desc_report, p_hid->report_desc_len);
}
else
@@ -253,7 +259,12 @@ bool hidd_control_request(uint8_t rhport, tusb_control_request_t const * request
uint8_t const report_type = tu_u16_high(request->wValue);
uint8_t const report_id = tu_u16_low(request->wValue);
uint16_t xferlen = tud_hid_get_report_cb(report_id, (hid_report_type_t) report_type, p_hid->epin_buf, request->wLength);
uint16_t xferlen = tud_hid_get_report_cb(
#if CFG_TUD_HID > 1
hid_itf, // TODO for backward compatible callback, remove later when appropriate
#endif
report_id, (hid_report_type_t) report_type, p_hid->epin_buf, request->wLength
);
TU_ASSERT( xferlen > 0 );
tud_control_xfer(rhport, request, p_hid->epin_buf, xferlen);
@@ -270,7 +281,12 @@ bool hidd_control_request(uint8_t rhport, tusb_control_request_t const * request
if ( tud_hid_set_idle_cb )
{
// stall request if callback return false
if ( !tud_hid_set_idle_cb(p_hid->idle_rate) ) return false;
TU_VERIFY( tud_hid_set_idle_cb(
#if CFG_TUD_HID > 1
hid_itf, // TODO for backward compatible callback, remove later when appropriate
#endif
p_hid->idle_rate)
);
}
tud_control_status(rhport, request);
@@ -291,7 +307,15 @@ bool hidd_control_request(uint8_t rhport, tusb_control_request_t const * request
case HID_REQ_CONTROL_SET_PROTOCOL:
p_hid->boot_mode = 1 - request->wValue; // 0 is Boot, 1 is Report protocol
if (tud_hid_boot_mode_cb) tud_hid_boot_mode_cb(p_hid->boot_mode);
if (tud_hid_boot_mode_cb)
{
tud_hid_boot_mode_cb(
#if CFG_TUD_HID > 1
hid_itf, // TODO for backward compatible callback, remove later when appropriate
#endif
p_hid->boot_mode
);
}
tud_control_status(rhport, request);
break;
@@ -311,8 +335,11 @@ bool hidd_control_request(uint8_t rhport, tusb_control_request_t const * request
bool hidd_control_complete(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void) rhport;
hidd_interface_t* p_hid = get_interface_by_itfnum( (uint8_t) p_request->wIndex );
TU_ASSERT(p_hid);
uint8_t const hid_itf = get_index_by_itfnum((uint8_t) p_request->wIndex);
TU_VERIFY(hid_itf < CFG_TUD_HID);
hidd_interface_t* p_hid = &_hidd_itf[hid_itf];
if (p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS &&
p_request->bRequest == HID_REQ_CONTROL_SET_REPORT)
@@ -321,7 +348,12 @@ bool hidd_control_complete(uint8_t rhport, tusb_control_request_t const * p_requ
uint8_t const report_type = tu_u16_high(p_request->wValue);
uint8_t const report_id = tu_u16_low(p_request->wValue);
tud_hid_set_report_cb(report_id, (hid_report_type_t) report_type, p_hid->epout_buf, p_request->wLength);
tud_hid_set_report_cb(
#if CFG_TUD_HID > 1
hid_itf, // TODO for backward compatible callback, remove later when appropriate
#endif
report_id, (hid_report_type_t) report_type, p_hid->epout_buf, p_request->wLength
);
}
return true;
@@ -343,7 +375,12 @@ bool hidd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_
if (ep_addr == p_hid->ep_out)
{
tud_hid_set_report_cb(0, HID_REPORT_TYPE_INVALID, p_hid->epout_buf, xferred_bytes);
tud_hid_set_report_cb(
#if CFG_TUD_HID > 1
itf, // TODO for backward compatible callback, remove later when appropriate
#endif
0, HID_REPORT_TYPE_INVALID, p_hid->epout_buf, xferred_bytes
);
TU_ASSERT(usbd_edpt_xfer(rhport, p_hid->ep_out, p_hid->epout_buf, sizeof(p_hid->epout_buf)));
}

View File

@@ -1,4 +1,4 @@
/*
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
@@ -50,51 +50,104 @@
#endif
//--------------------------------------------------------------------+
// Application API
// Application API (Multiple Ports)
// CFG_TUD_HID > 1
//--------------------------------------------------------------------+
// Check if the interface is ready to use
bool tud_hid_ready(void);
bool tud_hid_n_ready(uint8_t itf);
// Check if current mode is Boot (true) or Report (false)
bool tud_hid_boot_mode(void);
bool tud_hid_n_boot_mode(uint8_t itf);
// Send report to host
bool tud_hid_report(uint8_t report_id, void const* report, uint8_t len);
bool tud_hid_n_report(uint8_t itf, uint8_t report_id, void const* report, uint8_t len);
// KEYBOARD: convenient helper to send keyboard report if application
// use template layout report as defined by hid_keyboard_report_t
bool tud_hid_keyboard_report(uint8_t report_id, uint8_t modifier, uint8_t keycode[6]);
bool tud_hid_n_keyboard_report(uint8_t itf, uint8_t report_id, uint8_t modifier, uint8_t keycode[6]);
// MOUSE: convenient helper to send mouse report if application
// use template layout report as defined by hid_mouse_report_t
bool tud_hid_mouse_report(uint8_t report_id, uint8_t buttons, int8_t x, int8_t y, int8_t vertical, int8_t horizontal);
bool tud_hid_n_mouse_report(uint8_t itf, uint8_t report_id, uint8_t buttons, int8_t x, int8_t y, int8_t vertical, int8_t horizontal);
//--------------------------------------------------------------------+
// Application API (Single Port)
//--------------------------------------------------------------------+
static inline bool tud_hid_ready(void);
static inline bool tud_hid_boot_mode(void);
static inline bool tud_hid_report(uint8_t report_id, void const* report, uint8_t len);
static inline bool tud_hid_keyboard_report(uint8_t report_id, uint8_t modifier, uint8_t keycode[6]);
static inline bool tud_hid_mouse_report(uint8_t report_id, uint8_t buttons, int8_t x, int8_t y, int8_t vertical, int8_t horizontal);
//--------------------------------------------------------------------+
// Callbacks (Weak is optional)
//--------------------------------------------------------------------+
#if CFG_TUD_HID > 1
// Invoked when received GET HID REPORT DESCRIPTOR request
// Application return pointer to descriptor, whose contents must exist long enough for transfer to complete
uint8_t const * tud_hid_descriptor_report_cb(void);
uint8_t const * tud_hid_descriptor_report_cb(uint8_t itf);
// Invoked when received GET_REPORT control request
// Application must fill buffer report's content and return its length.
// Return zero will cause the stack to STALL request
uint16_t tud_hid_get_report_cb(uint8_t report_id, hid_report_type_t report_type, uint8_t* buffer, uint16_t reqlen);
uint16_t tud_hid_get_report_cb(uint8_t itf, uint8_t report_id, hid_report_type_t report_type, uint8_t* buffer, uint16_t reqlen);
// Invoked when received SET_REPORT control request or
// received data on OUT endpoint ( Report ID = 0, Type = 0 )
void tud_hid_set_report_cb(uint8_t report_id, hid_report_type_t report_type, uint8_t const* buffer, uint16_t bufsize);
void tud_hid_set_report_cb(uint8_t itf, uint8_t report_id, hid_report_type_t report_type, uint8_t const* buffer, uint16_t bufsize);
// Invoked when received SET_PROTOCOL request ( mode switch Boot <-> Report )
TU_ATTR_WEAK void tud_hid_boot_mode_cb(uint8_t boot_mode);
TU_ATTR_WEAK void tud_hid_boot_mode_cb(uint8_t itf, uint8_t boot_mode);
// Invoked when received SET_IDLE request. return false will stall the request
// - Idle Rate = 0 : only send report if there is changes, i.e skip duplication
// - Idle Rate > 0 : skip duplication, but send at least 1 report every idle rate (in unit of 4 ms).
TU_ATTR_WEAK bool tud_hid_set_idle_cb(uint8_t itf, uint8_t idle_rate);
#else
// TODO for backward compatible callback, remove later when appropriate
uint8_t const * tud_hid_descriptor_report_cb(void);
uint16_t tud_hid_get_report_cb(uint8_t report_id, hid_report_type_t report_type, uint8_t* buffer, uint16_t reqlen);
void tud_hid_set_report_cb(uint8_t report_id, hid_report_type_t report_type, uint8_t const* buffer, uint16_t bufsize);
TU_ATTR_WEAK void tud_hid_boot_mode_cb(uint8_t boot_mode);
TU_ATTR_WEAK bool tud_hid_set_idle_cb(uint8_t idle_rate);
#endif
//--------------------------------------------------------------------+
// Inline Functions
//--------------------------------------------------------------------+
static inline bool tud_hid_ready(void)
{
return tud_hid_n_ready(0);
}
static inline bool tud_hid_boot_mode(void)
{
return tud_hid_n_boot_mode(0);
}
static inline bool tud_hid_report(uint8_t report_id, void const* report, uint8_t len)
{
return tud_hid_n_report(0, report_id, report, len);
}
static inline bool tud_hid_keyboard_report(uint8_t report_id, uint8_t modifier, uint8_t keycode[6])
{
return tud_hid_n_keyboard_report(0, report_id, modifier, keycode);
}
static inline bool tud_hid_mouse_report(uint8_t report_id, uint8_t buttons, int8_t x, int8_t y, int8_t vertical, int8_t horizontal)
{
return tud_hid_n_mouse_report(0, report_id, buttons, x, y, vertical, horizontal);
}
/* --------------------------------------------------------------------+
* HID Report Descriptor Template
*
@@ -264,7 +317,7 @@ TU_ATTR_WEAK bool tud_hid_set_idle_cb(uint8_t idle_rate);
HID_LOGICAL_MAX ( 1 ) ,\
HID_REPORT_COUNT ( 16 ) ,\
HID_REPORT_SIZE ( 1 ) ,\
HID_INPUT ( HID_DATA | HID_ARRAY | HID_ABSOLUTE ) ,\
HID_INPUT ( HID_DATA | HID_VARIABLE | HID_ABSOLUTE ) ,\
/* X, Y, Z, Rz (min -127, max 127 ) */ \
HID_USAGE_PAGE ( HID_USAGE_PAGE_DESKTOP ) ,\
HID_LOGICAL_MIN ( 0x81 ) ,\
@@ -318,4 +371,3 @@ bool hidd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t e
#endif
#endif /* _TUSB_HID_DEVICE_H_ */

View File

@@ -153,15 +153,25 @@ void midi_rx_done_cb(midid_interface_t* midi, uint8_t const* buffer, uint32_t bu
static uint32_t write_flush(midid_interface_t* midi)
{
// No data to send
if ( !tu_fifo_count(&midi->tx_ff) ) return 0;
uint8_t const rhport = TUD_OPT_RHPORT;
// skip if previous transfer not complete
TU_VERIFY( !usbd_edpt_busy(TUD_OPT_RHPORT, midi->ep_in) );
TU_VERIFY( usbd_edpt_claim(rhport, midi->ep_in), 0 );
uint16_t count = tu_fifo_read_n(&midi->tx_ff, midi->epin_buf, CFG_TUD_MIDI_EP_BUFSIZE);
if (count > 0)
{
TU_ASSERT( usbd_edpt_xfer(TUD_OPT_RHPORT, midi->ep_in, midi->epin_buf, count) );
TU_ASSERT( usbd_edpt_xfer(rhport, midi->ep_in, midi->epin_buf, count), 0 );
return count;
}else
{
// Release endpoint since we don't make any transfer
usbd_edpt_release(rhport, midi->ep_in);
return 0;
}
return count;
}
uint32_t tud_midi_n_write(uint8_t itf, uint8_t jack_id, uint8_t const* buffer, uint32_t bufsize)
@@ -183,7 +193,7 @@ uint32_t tud_midi_n_write(uint8_t itf, uint8_t jack_id, uint8_t const* buffer, u
if (data == 0xf7) {
midi->write_buffer[0] = 0x5;
} else {
midi->write_buffer_length = 4;
midi->write_target_length = 4;
}
} else if ((msg >= 0x8 && msg <= 0xB) || msg == 0xE) {
midi->write_buffer[0] = jack_id << 4 | msg;
@@ -290,9 +300,9 @@ void midid_reset(uint8_t rhport)
uint16_t midid_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t max_len)
{
// 1st Interface is Audio Control v1
TU_VERIFY(TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass &&
AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass &&
AUDIO_PROTOCOL_V1 == desc_itf->bInterfaceProtocol, 0);
TU_VERIFY(TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass &&
AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass &&
AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_itf->bInterfaceProtocol, 0);
uint16_t drv_len = tu_desc_len(desc_itf);
uint8_t const * p_desc = tu_desc_next(desc_itf);
@@ -308,9 +318,9 @@ uint16_t midid_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint
TU_VERIFY(TUSB_DESC_INTERFACE == tu_desc_type(p_desc), 0);
tusb_desc_interface_t const * desc_midi = (tusb_desc_interface_t const *) p_desc;
TU_VERIFY(TUSB_CLASS_AUDIO == desc_midi->bInterfaceClass &&
AUDIO_SUBCLASS_MIDI_STREAMING == desc_midi->bInterfaceSubClass &&
AUDIO_PROTOCOL_V1 == desc_midi->bInterfaceProtocol, 0);
TU_VERIFY(TUSB_CLASS_AUDIO == desc_midi->bInterfaceClass &&
AUDIO_SUBCLASS_MIDI_STREAMING == desc_midi->bInterfaceSubClass &&
AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_midi->bInterfaceProtocol, 0);
// Find available interface
midid_interface_t * p_midi = NULL;
@@ -405,17 +415,22 @@ bool midid_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32
if (tud_midi_rx_cb) tud_midi_rx_cb(itf);
// prepare for next
// TODO for now ep_out is not used by public API therefore there is no race condition,
// and does not need to claim like ep_in
TU_ASSERT(usbd_edpt_xfer(rhport, p_midi->ep_out, p_midi->epout_buf, CFG_TUD_MIDI_EP_BUFSIZE), false);
}
else if ( ep_addr == p_midi->ep_in )
{
if (0 == write_flush(p_midi))
{
// There is no data left, a ZLP should be sent if
// If there is no data left, a ZLP should be sent if
// xferred_bytes is multiple of EP size and not zero
if ( xferred_bytes && (0 == (xferred_bytes % CFG_TUD_MIDI_EP_BUFSIZE)) )
if ( !tu_fifo_count(&p_midi->tx_ff) && xferred_bytes && (0 == (xferred_bytes % CFG_TUD_MIDI_EP_BUFSIZE)) )
{
usbd_edpt_xfer(rhport, p_midi->ep_in, NULL, 0);
if ( usbd_edpt_claim(rhport, p_midi->ep_in) )
{
usbd_edpt_xfer(rhport, p_midi->ep_in, NULL, 0);
}
}
}
}

View File

@@ -47,10 +47,10 @@
#define U16_TO_U8S_BE(u16) TU_U16_HIGH(u16), TU_U16_LOW(u16)
#define U16_TO_U8S_LE(u16) TU_U16_LOW(u16), TU_U16_HIGH(u16)
#define U32_B1_U8(u32) ((uint8_t) (((u32) >> 24) & 0x000000ff)) // MSB
#define U32_B2_U8(u32) ((uint8_t) (((u32) >> 16) & 0x000000ff))
#define U32_B3_U8(u32) ((uint8_t) (((u32) >> 8) & 0x000000ff))
#define U32_B4_U8(u32) ((uint8_t) ((u32) & 0x000000ff)) // LSB
#define U32_B1_U8(u32) ((uint8_t) ((((uint32_t) u32) >> 24) & 0x000000ff)) // MSB
#define U32_B2_U8(u32) ((uint8_t) ((((uint32_t) u32) >> 16) & 0x000000ff))
#define U32_B3_U8(u32) ((uint8_t) ((((uint32_t) u32) >> 8) & 0x000000ff))
#define U32_B4_U8(u32) ((uint8_t) (((uint32_t) u32) & 0x000000ff)) // LSB
#define U32_TO_U8S_BE(u32) U32_B1_U8(u32), U32_B2_U8(u32), U32_B3_U8(u32), U32_B4_U8(u32)
#define U32_TO_U8S_LE(u32) U32_B4_U8(u32), U32_B3_U8(u32), U32_B2_U8(u32), U32_B1_U8(u32)

View File

@@ -44,8 +44,10 @@
#endif
// Compile-time Assert
#if __STDC_VERSION__ >= 201112L
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 201112L
#define TU_VERIFY_STATIC _Static_assert
#elif defined (__cplusplus) && __cplusplus >= 201103L
#define TU_VERIFY_STATIC static_assert
#else
#define TU_VERIFY_STATIC(const_expr, _mess) enum { TU_XSTRCAT(_verify_static_, _TU_COUNTER_) = 1/(!!(const_expr)) }
#endif

View File

@@ -2,6 +2,7 @@
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
* Copyright (c) 2020 Reinhard Panhuber - rework to unmasked pointers
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@@ -57,6 +58,8 @@ static void tu_fifo_unlock(tu_fifo_t *f)
bool tu_fifo_config(tu_fifo_t *f, void* buffer, uint16_t depth, uint16_t item_size, bool overwritable)
{
if (depth > 0x8000) return false; // Maximum depth is 2^15 items
tu_fifo_lock(f);
f->buffer = (uint8_t*) buffer;
@@ -64,55 +67,328 @@ bool tu_fifo_config(tu_fifo_t *f, void* buffer, uint16_t depth, uint16_t item_si
f->item_size = item_size;
f->overwritable = overwritable;
f->rd_idx = f->wr_idx = f->count = 0;
f->max_pointer_idx = 2*depth - 1; // Limit index space to 2*depth - this allows for a fast "modulo" calculation but limits the maximum depth to 2^16/2 = 2^15 and buffer overflows are detectable only if overflow happens once (important for unsupervised DMA applications)
f->non_used_index_space = 0xFFFF - f->max_pointer_idx;
f->rd_idx = f->wr_idx = 0;
tu_fifo_unlock(f);
return true;
}
// Static functions are intended to work on local variables
static inline uint16_t _ff_mod(uint16_t idx, uint16_t depth)
{
return (idx < depth) ? idx : (idx-depth);
while ( idx >= depth) idx -= depth;
return idx;
}
// retrieve data from fifo
static inline void _ff_pull(tu_fifo_t* f, void * buffer, uint16_t n)
// send one item to FIFO WITHOUT updating write pointer
static inline void _ff_push(tu_fifo_t* f, void const * data, uint16_t wRel)
{
memcpy(buffer,
f->buffer + (f->rd_idx * f->item_size),
f->item_size*n);
f->rd_idx = _ff_mod(f->rd_idx + n, f->depth);
f->count -= n;
memcpy(f->buffer + (wRel * f->item_size), data, f->item_size);
}
// send data to fifo
static inline void _ff_push(tu_fifo_t* f, void const * data, uint16_t n)
// send n items to FIFO WITHOUT updating write pointer
static void _ff_push_n(tu_fifo_t* f, void const * data, uint16_t n, uint16_t wRel)
{
memcpy(f->buffer + (f->wr_idx * f->item_size),
data,
f->item_size*n);
f->wr_idx = _ff_mod(f->wr_idx + n, f->depth);
if (tu_fifo_full(f))
if(wRel + n <= f->depth) // Linear mode only
{
f->rd_idx = f->wr_idx; // keep the full state (rd == wr && count = depth)
memcpy(f->buffer + (wRel * f->item_size), data, n*f->item_size);
}
else // Wrap around
{
uint16_t nLin = f->depth - wRel;
// Write data to linear part of buffer
memcpy(f->buffer + (wRel * f->item_size), data, nLin*f->item_size);
// Write data wrapped around
memcpy(f->buffer, data + nLin*f->item_size, (n - nLin) * f->item_size);
}
}
// get one item from FIFO WITHOUT updating read pointer
static inline void _ff_pull(tu_fifo_t* f, void * p_buffer, uint16_t rRel)
{
memcpy(p_buffer, f->buffer + (rRel * f->item_size), f->item_size);
}
// get n items from FIFO WITHOUT updating read pointer
static void _ff_pull_n(tu_fifo_t* f, void * p_buffer, uint16_t n, uint16_t rRel)
{
if(rRel + n <= f->depth) // Linear mode only
{
memcpy(p_buffer, f->buffer + (rRel * f->item_size), n*f->item_size);
}
else // Wrap around
{
uint16_t nLin = f->depth - rRel;
// Read data from linear part of buffer
memcpy(p_buffer, f->buffer + (rRel * f->item_size), nLin*f->item_size);
// Read data wrapped part
memcpy(p_buffer + nLin*f->item_size, f->buffer, (n - nLin) * f->item_size);
}
}
// Advance an absolute pointer
static uint16_t advance_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset)
{
// We limit the index space of p such that a correct wrap around happens
// Check for a wrap around or if we are in unused index space - This has to be checked first!! We are exploiting the wrap around to the correct index
if ((p > p + offset) || (p + offset > f->max_pointer_idx))
{
p = (p + offset) + f->non_used_index_space;
}
else
{
f->count += n;
p += offset;
}
return p;
}
// Backward an absolute pointer
static uint16_t backward_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset)
{
// We limit the index space of p such that a correct wrap around happens
// Check for a wrap around or if we are in unused index space - This has to be checked first!! We are exploiting the wrap around to the correct index
if ((p < p - offset) || (p - offset > f->max_pointer_idx))
{
p = (p - offset) - f->non_used_index_space;
}
else
{
p -= offset;
}
return p;
}
// get relative from absolute pointer
static uint16_t get_relative_pointer(tu_fifo_t* f, uint16_t p, uint16_t offset)
{
return _ff_mod(advance_pointer(f, p, offset), f->depth);
}
// Works on local copies of w and r
static inline uint16_t _tu_fifo_count(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
{
uint16_t cnt = wAbs-rAbs;
// In case we have non-power of two depth we need a further modification
if (rAbs > wAbs) cnt -= f->non_used_index_space;
return cnt;
}
// Works on local copies of w and r
static inline bool _tu_fifo_empty(uint16_t wAbs, uint16_t rAbs)
{
return wAbs == rAbs;
}
// Works on local copies of w and r
static inline bool _tu_fifo_full(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
{
return (_tu_fifo_count(f, wAbs, rAbs) == f->depth);
}
// Works on local copies of w and r
// BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS"
// Only one overflow is allowed for this function to work e.g. if depth = 100, you must not
// write more than 2*depth-1 items in one rush without updating write pointer. Otherwise
// write pointer wraps and you pointer states are messed up. This can only happen if you
// use DMAs, write functions do not allow such an error.
static inline bool _tu_fifo_overflowed(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
{
return (_tu_fifo_count(f, wAbs, rAbs) > f->depth);
}
// Works on local copies of w
// For more details see _tu_fifo_overflow()!
static inline void _tu_fifo_correct_read_pointer(tu_fifo_t* f, uint16_t wAbs)
{
f->rd_idx = backward_pointer(f, wAbs, f->depth);
}
// Works on local copies of w and r
// Must be protected by mutexes since in case of an overflow read pointer gets modified
static bool _tu_fifo_peek_at(tu_fifo_t* f, uint16_t offset, void * p_buffer, uint16_t wAbs, uint16_t rAbs)
{
uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs);
// Check overflow and correct if required
if (cnt > f->depth)
{
_tu_fifo_correct_read_pointer(f, wAbs);
cnt = f->depth;
}
// Skip beginning of buffer
if (cnt == 0 || offset >= cnt) return false;
uint16_t rRel = get_relative_pointer(f, rAbs, offset);
// Peek data
_ff_pull(f, p_buffer, rRel);
return true;
}
// Works on local copies of w and r
// Must be protected by mutexes since in case of an overflow read pointer gets modified
static uint16_t _tu_fifo_peek_at_n(tu_fifo_t* f, uint16_t offset, void * p_buffer, uint16_t n, uint16_t wAbs, uint16_t rAbs)
{
uint16_t cnt = _tu_fifo_count(f, wAbs, rAbs);
// Check overflow and correct if required
if (cnt > f->depth)
{
_tu_fifo_correct_read_pointer(f, wAbs);
rAbs = f->rd_idx;
cnt = f->depth;
}
// Skip beginning of buffer
if (cnt == 0 || offset >= cnt) return 0;
// Check if we can read something at and after offset - if too less is available we read what remains
cnt -= offset;
if (cnt < n) {
if (cnt == 0) return 0;
n = cnt;
}
uint16_t rRel = get_relative_pointer(f, rAbs, offset);
// Peek data
_ff_pull_n(f, p_buffer, n, rRel);
return n;
}
// Works on local copies of w and r
static inline uint16_t _tu_fifo_remaining(tu_fifo_t* f, uint16_t wAbs, uint16_t rAbs)
{
return f->depth - _tu_fifo_count(f, wAbs, rAbs);
}
/******************************************************************************/
/*!
@brief Read one element out of the RX buffer.
@brief Get number of items in FIFO.
As this function only reads the read and write pointers once, this function is
reentrant and thus thread and ISR save without any mutexes.
@param[in] f
Pointer to the FIFO buffer to manipulate
@returns Number of items in FIFO
*/
/******************************************************************************/
uint16_t tu_fifo_count(tu_fifo_t* f)
{
return _tu_fifo_count(f, f->wr_idx, f->rd_idx);
}
/******************************************************************************/
/*!
@brief Check if FIFO is empty.
As this function only reads the read and write pointers once, this function is
reentrant and thus thread and ISR save without any mutexes.
@param[in] f
Pointer to the FIFO buffer to manipulate
@returns Number of items in FIFO
*/
/******************************************************************************/
bool tu_fifo_empty(tu_fifo_t* f)
{
return _tu_fifo_empty(f->wr_idx, f->rd_idx);
}
/******************************************************************************/
/*!
@brief Check if FIFO is full.
As this function only reads the read and write pointers once, this function is
reentrant and thus thread and ISR save without any mutexes.
@param[in] f
Pointer to the FIFO buffer to manipulate
@returns Number of items in FIFO
*/
/******************************************************************************/
bool tu_fifo_full(tu_fifo_t* f)
{
return _tu_fifo_full(f, f->wr_idx, f->rd_idx);
}
/******************************************************************************/
/*!
@brief Get remaining space in FIFO.
As this function only reads the read and write pointers once, this function is
reentrant and thus thread and ISR save without any mutexes.
@param[in] f
Pointer to the FIFO buffer to manipulate
@returns Number of items in FIFO
*/
/******************************************************************************/
uint16_t tu_fifo_remaining(tu_fifo_t* f)
{
return _tu_fifo_remaining(f, f->wr_idx, f->rd_idx);
}
/******************************************************************************/
/*!
@brief Check if overflow happened.
BE AWARE - THIS FUNCTION MIGHT NOT GIVE A CORRECT ANSWERE IN CASE WRITE POINTER "OVERFLOWS"
Only one overflow is allowed for this function to work e.g. if depth = 100, you must not
write more than 2*depth-1 items in one rush without updating write pointer. Otherwise
write pointer wraps and you pointer states are messed up. This can only happen if you
use DMAs, write functions do not allow such an error. Avoid such nasty things!
All reading functions (read, peek) check for overflows and correct read pointer on their own such
that latest items are read.
If required (e.g. for DMA use) you can also correct the read pointer by
tu_fifo_correct_read_pointer().
@param[in] f
Pointer to the FIFO buffer to manipulate
@returns True if overflow happened
*/
/******************************************************************************/
bool tu_fifo_overflowed(tu_fifo_t* f)
{
return _tu_fifo_overflowed(f, f->wr_idx, f->rd_idx);
}
// Only use in case tu_fifo_overflow() returned true!
void tu_fifo_correct_read_pointer(tu_fifo_t* f)
{
tu_fifo_lock(f);
_tu_fifo_correct_read_pointer(f, f->wr_idx);
tu_fifo_unlock(f);
}
/******************************************************************************/
/*!
@brief Read one element out of the buffer.
This function will return the element located at the array index of the
read pointer, and then increment the read pointer index. If the read
pointer exceeds the maximum buffer size, it will roll over to zero.
read pointer, and then increment the read pointer index.
This function checks for an overflow and corrects read pointer if required.
@param[in] f
Pointer to the FIFO buffer to manipulate
@@ -120,26 +396,27 @@ static inline void _ff_push(tu_fifo_t* f, void const * data, uint16_t n)
Pointer to the place holder for data read from the buffer
@returns TRUE if the queue is not empty
*/
*/
/******************************************************************************/
bool tu_fifo_read(tu_fifo_t* f, void * buffer)
{
if( tu_fifo_empty(f) ) return false;
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
tu_fifo_lock(f);
// Peek the data
bool ret = _tu_fifo_peek_at(f, 0, buffer, f->wr_idx, f->rd_idx); // f->rd_idx might get modified in case of an overflow so we can not use a local variable
_ff_pull(f, buffer, 1);
// Advance pointer
f->rd_idx = advance_pointer(f, f->rd_idx, ret);
tu_fifo_unlock(f);
return true;
return ret;
}
/******************************************************************************/
/*!
@brief This function will read n elements from the array index specified by
the read pointer and increment the read index. If the read index
exceeds the max buffer size, then it will roll over to zero.
the read pointer and increment the read index.
This function checks for an overflow and corrects read pointer if required.
@param[in] f
Pointer to the FIFO buffer to manipulate
@@ -149,76 +426,76 @@ bool tu_fifo_read(tu_fifo_t* f, void * buffer)
Number of element that buffer can afford
@returns number of items read from the FIFO
*/
*/
/******************************************************************************/
uint16_t tu_fifo_read_n (tu_fifo_t* f, void * buffer, uint16_t count)
uint16_t tu_fifo_read_n(tu_fifo_t* f, void * buffer, uint16_t count)
{
if(tu_fifo_empty(f)) return 0;
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
tu_fifo_lock(f);
// Peek the data
count = _tu_fifo_peek_at_n(f, 0, buffer, count, f->wr_idx, f->rd_idx); // f->rd_idx might get modified in case of an overflow so we can not use a local variable
// Limit up to fifo's count
if(count > f->count) count = f->count;
if(count + f->rd_idx <= f->depth)
{
_ff_pull(f, buffer, count);
}
else
{
uint16_t const part1 = f->depth - f->rd_idx;
// Part 1: from rd_idx to end
_ff_pull(f, buffer, part1);
buffer = ((uint8_t*) buffer) + part1*f->item_size;
// Part 2: start to remaining
_ff_pull(f, buffer, count-part1);
}
// Advance read pointer
f->rd_idx = advance_pointer(f, f->rd_idx, count);
tu_fifo_unlock(f);
return count;
}
/******************************************************************************/
/*!
@brief Read one item without removing it from the FIFO
@brief Read one item without removing it from the FIFO.
This function checks for an overflow and corrects read pointer if required.
@param[in] f
Pointer to the FIFO buffer to manipulate
@param[in] pos
Position to read from in the FIFO buffer
@param[in] offset
Position to read from in the FIFO buffer with respect to read pointer
@param[in] p_buffer
Pointer to the place holder for data read from the buffer
@returns TRUE if the queue is not empty
*/
*/
/******************************************************************************/
bool tu_fifo_peek_at(tu_fifo_t* f, uint16_t pos, void * p_buffer)
bool tu_fifo_peek_at(tu_fifo_t* f, uint16_t offset, void * p_buffer)
{
if ( pos >= f->count ) return false;
tu_fifo_lock(f);
// rd_idx is pos=0
uint16_t index = _ff_mod(f->rd_idx + pos, f->depth);
memcpy(p_buffer,
f->buffer + (index * f->item_size),
f->item_size);
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
bool ret = _tu_fifo_peek_at(f, offset, p_buffer, f->wr_idx, f->rd_idx);
tu_fifo_unlock(f);
return true;
return ret;
}
/******************************************************************************/
/*!
@brief Write one element into the RX buffer.
@brief Read n items without removing it from the FIFO
This function checks for an overflow and corrects read pointer if required.
@param[in] f
Pointer to the FIFO buffer to manipulate
@param[in] offset
Position to read from in the FIFO buffer with respect to read pointer
@param[in] p_buffer
Pointer to the place holder for data read from the buffer
@param[in] n
Number of items to peek
@returns Number of bytes written to p_buffer
*/
/******************************************************************************/
uint16_t tu_fifo_peek_at_n(tu_fifo_t* f, uint16_t offset, void * p_buffer, uint16_t n)
{
tu_fifo_lock(f); // TODO: Here we may distinguish for read and write pointer mutexes!
bool ret = _tu_fifo_peek_at_n(f, offset, p_buffer, n, f->wr_idx, f->rd_idx);
tu_fifo_unlock(f);
return ret;
}
/******************************************************************************/
/*!
@brief Write one element into the buffer.
This function will write one element into the array index specified by
the write pointer and increment the write index. If the write index
exceeds the max buffer size, then it will roll over to zero.
the write pointer and increment the write index.
@param[in] f
Pointer to the FIFO buffer to manipulate
@@ -227,15 +504,23 @@ bool tu_fifo_peek_at(tu_fifo_t* f, uint16_t pos, void * p_buffer)
@returns TRUE if the data was written to the FIFO (overwrittable
FIFO will always return TRUE)
*/
*/
/******************************************************************************/
bool tu_fifo_write (tu_fifo_t* f, const void * data)
bool tu_fifo_write(tu_fifo_t* f, const void * data)
{
if ( tu_fifo_full(f) && !f->overwritable ) return false;
tu_fifo_lock(f);
_ff_push(f, data, 1);
uint16_t w = f->wr_idx;
if ( _tu_fifo_full(f, w, f->rd_idx) && !f->overwritable ) return false;
uint16_t wRel = get_relative_pointer(f, w, 0);
// Write data
_ff_push(f, data, wRel);
// Advance pointer
f->wr_idx = advance_pointer(f, w, 1);
tu_fifo_unlock(f);
@@ -245,8 +530,7 @@ bool tu_fifo_write (tu_fifo_t* f, const void * data)
/******************************************************************************/
/*!
@brief This function will write n elements into the array index specified by
the write pointer and increment the write index. If the write index
exceeds the max buffer size, then it will roll over to zero.
the write pointer and increment the write index.
@param[in] f
Pointer to the FIFO buffer to manipulate
@@ -255,47 +539,42 @@ bool tu_fifo_write (tu_fifo_t* f, const void * data)
@param[in] count
Number of element
@return Number of written elements
*/
*/
/******************************************************************************/
uint16_t tu_fifo_write_n (tu_fifo_t* f, const void * data, uint16_t count)
uint16_t tu_fifo_write_n(tu_fifo_t* f, const void * data, uint16_t count)
{
if ( count == 0 ) return 0;
tu_fifo_lock(f);
uint16_t w = f->wr_idx, r = f->rd_idx;
uint8_t const* buf8 = (uint8_t const*) data;
if (!f->overwritable)
{
// Not overwritable limit up to full
count = tu_min16(count, tu_fifo_remaining(f));
count = tu_min16(count, _tu_fifo_remaining(f, w, r));
}
else if (count > f->depth)
{
// Only copy last part
buf8 = buf8 + (count - f->depth) * f->item_size;
count = f->depth;
f->wr_idx = 0;
f->rd_idx = 0;
f->count = 0;
// We start writing at the read pointer's position since we fill the complete
// buffer and we do not want to modify the read pointer within a write function!
// This would end up in a race condition with read functions!
f->wr_idx = r;
}
if (count + f->wr_idx <= f->depth )
{
_ff_push(f, buf8, count);
}
else
{
uint16_t const part1 = f->depth - f->wr_idx;
uint16_t wRel = get_relative_pointer(f, w, 0);
// Part 1: from wr_idx to end
_ff_push(f, buf8, part1);
buf8 += part1*f->item_size;
// Write data
_ff_push_n(f, buf8, count, wRel);
// Advance pointer
f->wr_idx = advance_pointer(f, w, count);
// Part 2: start to remaining
_ff_push(f, buf8, count-part1);
}
tu_fifo_unlock(f);
return count;
@@ -303,19 +582,59 @@ uint16_t tu_fifo_write_n (tu_fifo_t* f, const void * data, uint16_t count)
/******************************************************************************/
/*!
@brief Clear the fifo read and write pointers and set length to zero
@brief Clear the fifo read and write pointers
@param[in] f
Pointer to the FIFO buffer to manipulate
*/
*/
/******************************************************************************/
bool tu_fifo_clear(tu_fifo_t *f)
{
tu_fifo_lock(f);
f->rd_idx = f->wr_idx = f->count = 0;
f->rd_idx = f->wr_idx = 0;
tu_fifo_unlock(f);
return true;
}
/******************************************************************************/
/*!
@brief Advance write pointer - intended to be used in combination with DMA.
It is possible to fill the FIFO by use of a DMA in circular mode. Within
DMA ISRs you may update the write pointer to be able to read from the FIFO.
As long as the DMA is the only process writing into the FIFO this is safe
to use.
USE WITH CARE - WE DO NOT CONDUCT SAFTY CHECKS HERE!
@param[in] f
Pointer to the FIFO buffer to manipulate
@param[in] n
Number of items the write pointer moves forward
*/
/******************************************************************************/
void tu_fifo_advance_write_pointer(tu_fifo_t *f, uint16_t n)
{
f->wr_idx = advance_pointer(f, f->wr_idx, n);
}
/******************************************************************************/
/*!
@brief Advance read pointer - intended to be used in combination with DMA.
It is possible to read from the FIFO by use of a DMA in linear mode. Within
DMA ISRs you may update the read pointer to be able to again write into the
FIFO. As long as the DMA is the only process reading from the FIFO this is
safe to use.
USE WITH CARE - WE DO NOT CONDUCT SAFTY CHECKS HERE!
@param[in] f
Pointer to the FIFO buffer to manipulate
@param[in] n
Number of items the read pointer moves forward
*/
/******************************************************************************/
void tu_fifo_advance_read_pointer(tu_fifo_t *f, uint16_t n)
{
f->rd_idx = advance_pointer(f, f->rd_idx, n);
}

View File

@@ -31,6 +31,15 @@
#ifndef _TUSB_FIFO_H_
#define _TUSB_FIFO_H_
// Due to the use of unmasked pointers, this FIFO does not suffer from loosing
// one item slice. Furthermore, write and read operations are completely
// decoupled as write and read functions do not modify a common state. Henceforth,
// writing or reading from the FIFO within an ISR is safe as long as no other
// process (thread or ISR) interferes.
// Also, this FIFO is ready to be used in combination with a DMA as the write and
// read pointers can be updated from within a DMA ISR. Overflows are detectable
// within a certain number (see tu_fifo_overflow()).
// mutex is only needed for RTOS
// for OS None, we don't get preempted
#define CFG_FIFO_MUTEX (CFG_TUSB_OS != OPT_OS_NONE)
@@ -39,7 +48,7 @@
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
extern "C" {
#endif
#if CFG_FIFO_MUTEX
@@ -52,14 +61,16 @@
*/
typedef struct
{
uint8_t* buffer ; ///< buffer pointer
uint16_t depth ; ///< max items
uint16_t item_size ; ///< size of each item
bool overwritable ;
uint8_t* buffer ; ///< buffer pointer
uint16_t depth ; ///< max items
uint16_t item_size ; ///< size of each item
bool overwritable ;
volatile uint16_t count ; ///< number of items in queue
volatile uint16_t wr_idx ; ///< write pointer
volatile uint16_t rd_idx ; ///< read pointer
uint16_t non_used_index_space ; ///< required for non-power-of-two buffer length
uint16_t max_pointer_idx ; ///< maximum absolute pointer index
volatile uint16_t wr_idx ; ///< write pointer
volatile uint16_t rd_idx ; ///< read pointer
#if CFG_FIFO_MUTEX
tu_fifo_mutex_t mutex;
@@ -67,14 +78,16 @@ typedef struct
} tu_fifo_t;
#define TU_FIFO_DEF(_name, _depth, _type, _overwritable) \
uint8_t _name##_buf[_depth*sizeof(_type)]; \
tu_fifo_t _name = { \
.buffer = _name##_buf, \
.depth = _depth, \
.item_size = sizeof(_type), \
.overwritable = _overwritable, \
}
#define TU_FIFO_DEF(_name, _depth, _type, _overwritable) \
uint8_t _name##_buf[_depth*sizeof(_type)]; \
tu_fifo_t _name = { \
.buffer = _name##_buf, \
.depth = _depth, \
.item_size = sizeof(_type), \
.overwritable = _overwritable, \
.max_pointer_idx = 2*_depth-1, \
.non_used_index_space = 0xFFFF - 2*_depth-1, \
}
bool tu_fifo_clear(tu_fifo_t *f);
bool tu_fifo_config(tu_fifo_t *f, void* buffer, uint16_t depth, uint16_t item_size, bool overwritable);
@@ -86,46 +99,39 @@ static inline void tu_fifo_config_mutex(tu_fifo_t *f, tu_fifo_mutex_t mutex_hdl)
}
#endif
bool tu_fifo_write (tu_fifo_t* f, void const * p_data);
uint16_t tu_fifo_write_n (tu_fifo_t* f, void const * p_data, uint16_t count);
bool tu_fifo_write (tu_fifo_t* f, void const * p_data);
uint16_t tu_fifo_write_n (tu_fifo_t* f, void const * p_data, uint16_t count);
bool tu_fifo_read (tu_fifo_t* f, void * p_buffer);
uint16_t tu_fifo_read_n (tu_fifo_t* f, void * p_buffer, uint16_t count);
bool tu_fifo_read (tu_fifo_t* f, void * p_buffer);
uint16_t tu_fifo_read_n (tu_fifo_t* f, void * p_buffer, uint16_t count);
bool tu_fifo_peek_at (tu_fifo_t* f, uint16_t pos, void * p_buffer);
bool tu_fifo_peek_at (tu_fifo_t* f, uint16_t pos, void * p_buffer);
uint16_t tu_fifo_peek_at_n (tu_fifo_t* f, uint16_t pos, void * p_buffer, uint16_t n);
uint16_t tu_fifo_count (tu_fifo_t* f);
bool tu_fifo_empty (tu_fifo_t* f);
bool tu_fifo_full (tu_fifo_t* f);
uint16_t tu_fifo_remaining (tu_fifo_t* f);
bool tu_fifo_overflowed (tu_fifo_t* f);
void tu_fifo_correct_read_pointer (tu_fifo_t* f);
// Pointer modifications intended to be used in combinations with DMAs.
// USE WITH CARE - NO SAFTY CHECKS CONDUCTED HERE! NOT MUTEX PROTECTED!
void tu_fifo_advance_write_pointer (tu_fifo_t *f, uint16_t n);
void tu_fifo_advance_read_pointer (tu_fifo_t *f, uint16_t n);
static inline bool tu_fifo_peek(tu_fifo_t* f, void * p_buffer)
{
return tu_fifo_peek_at(f, 0, p_buffer);
}
static inline bool tu_fifo_empty(tu_fifo_t* f)
{
return (f->count == 0);
}
static inline bool tu_fifo_full(tu_fifo_t* f)
{
return (f->count == f->depth);
}
static inline uint16_t tu_fifo_count(tu_fifo_t* f)
{
return f->count;
}
static inline uint16_t tu_fifo_remaining(tu_fifo_t* f)
{
return f->depth - f->count;
}
static inline uint16_t tu_fifo_depth(tu_fifo_t* f)
{
return f->depth;
}
#ifdef __cplusplus
}
}
#endif
#endif /* _TUSB_FIFO_H_ */

View File

@@ -76,8 +76,8 @@
#if CFG_TUSB_DEBUG
#include <stdio.h>
#define _MESS_ERR(_err) printf("%s %d: failed, error = %s\r\n", __func__, __LINE__, tusb_strerr[_err])
#define _MESS_FAILED() printf("%s %d: assert failed\r\n", __func__, __LINE__)
#define _MESS_ERR(_err) tu_printf("%s %d: failed, error = %s\r\n", __func__, __LINE__, tusb_strerr[_err])
#define _MESS_FAILED() tu_printf("%s %d: assert failed\r\n", __func__, __LINE__)
#else
#define _MESS_ERR(_err) do {} while (0)
#define _MESS_FAILED() do {} while (0)
@@ -142,7 +142,9 @@
#define ASSERT_1ARGS(_cond) TU_VERIFY_DEFINE(_cond, _MESS_FAILED(); TU_BREAKPOINT(), false)
#define ASSERT_2ARGS(_cond, _ret) TU_VERIFY_DEFINE(_cond, _MESS_FAILED(); TU_BREAKPOINT(), _ret)
#ifndef TU_ASSERT
#define TU_ASSERT(...) GET_3RD_ARG(__VA_ARGS__, ASSERT_2ARGS, ASSERT_1ARGS,UNUSED)(__VA_ARGS__)
#endif
// TODO remove TU_ASSERT_ERR() later
@@ -163,10 +165,12 @@
/* ASSERT Error
* basically TU_VERIFY Error with TU_BREAKPOINT() as handler
*------------------------------------------------------------------*/
#define ASERT_ERR_1ARGS(_error) TU_VERIFY_ERR_DEF2(_error, TU_BREAKPOINT())
#define ASERT_ERR_2ARGS(_error, _ret) TU_VERIFY_ERR_DEF3(_error, TU_BREAKPOINT(), _ret)
#define ASSERT_ERR_1ARGS(_error) TU_VERIFY_ERR_DEF2(_error, TU_BREAKPOINT())
#define ASSERT_ERR_2ARGS(_error, _ret) TU_VERIFY_ERR_DEF3(_error, TU_BREAKPOINT(), _ret)
#define TU_ASSERT_ERR(...) GET_3RD_ARG(__VA_ARGS__, ASERT_ERR_2ARGS, ASERT_ERR_1ARGS,UNUSED)(__VA_ARGS__)
#ifndef TU_ASSERT_ERR
#define TU_ASSERT_ERR(...) GET_3RD_ARG(__VA_ARGS__, ASSERT_ERR_2ARGS, ASSERT_ERR_1ARGS,UNUSED)(__VA_ARGS__)
#endif
/*------------------------------------------------------------------*/
/* ASSERT HDLR

View File

@@ -37,6 +37,10 @@
#define CFG_TUD_TASK_QUEUE_SZ 16
#endif
#ifndef CFG_TUD_EP_MAX
#define CFG_TUD_EP_MAX 9
#endif
//--------------------------------------------------------------------+
// Device Data
//--------------------------------------------------------------------+
@@ -46,7 +50,6 @@ typedef struct
{
volatile uint8_t connected : 1;
volatile uint8_t addressed : 1;
volatile uint8_t configured : 1;
volatile uint8_t suspended : 1;
uint8_t remote_wakeup_en : 1; // enable/disable by host
@@ -54,18 +57,21 @@ typedef struct
uint8_t self_powered : 1; // configuration descriptor's attribute
};
volatile uint8_t cfg_num; // current active configuration (0x00 is not configured)
uint8_t speed;
uint8_t itf2drv[16]; // map interface number to driver (0xff is invalid)
uint8_t ep2drv[8][2]; // map endpoint to driver ( 0xff is invalid )
uint8_t ep2drv[CFG_TUD_EP_MAX][2]; // map endpoint to driver ( 0xff is invalid )
struct TU_ATTR_PACKED
{
volatile bool busy : 1;
volatile bool stalled : 1;
volatile bool claimed : 1;
// TODO merge ep2drv here, 4-bit should be sufficient
}ep_status[8][2];
}ep_status[CFG_TUD_EP_MAX][2];
}usbd_device_t;
static usbd_device_t _usbd_dev;
@@ -124,6 +130,19 @@ static usbd_class_driver_t const _usbd_driver[] =
},
#endif
#if CFG_TUD_AUDIO
{
DRIVER_NAME("AUDIO")
.init = audiod_init,
.reset = audiod_reset,
.open = audiod_open,
.control_request = audiod_control_request,
.control_complete = audiod_control_complete,
.xfer_cb = audiod_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_MIDI
{
DRIVER_NAME("MIDI")
@@ -237,10 +256,17 @@ static inline usbd_class_driver_t const * get_driver(uint8_t drvid)
OSAL_QUEUE_DEF(OPT_MODE_DEVICE, _usbd_qdef, CFG_TUD_TASK_QUEUE_SZ, dcd_event_t);
static osal_queue_t _usbd_q;
// Mutex for claiming endpoint, only needed when using with preempted RTOS
#if CFG_TUSB_OS != OPT_OS_NONE
static osal_mutex_def_t _ubsd_mutexdef;
static osal_mutex_t _usbd_mutex;
#endif
//--------------------------------------------------------------------+
// Prototypes
//--------------------------------------------------------------------+
static void mark_interface_endpoint(uint8_t ep2drv[8][2], uint8_t const* p_desc, uint16_t desc_len, uint8_t driver_id);
static void mark_interface_endpoint(uint8_t ep2drv[][2], uint8_t const* p_desc, uint16_t desc_len, uint8_t driver_id);
static bool process_control_request(uint8_t rhport, tusb_control_request_t const * p_request);
static bool process_set_config(uint8_t rhport, uint8_t cfg_num);
static bool process_get_descriptor(uint8_t rhport, tusb_control_request_t const * p_request);
@@ -312,7 +338,7 @@ tusb_speed_t tud_speed_get(void)
bool tud_mounted(void)
{
return _usbd_dev.configured;
return _usbd_dev.cfg_num ? 1 : 0;
}
bool tud_suspended(void)
@@ -351,9 +377,15 @@ bool tud_init (void)
tu_varclr(&_usbd_dev);
#if CFG_TUSB_OS != OPT_OS_NONE
// Init device mutex
_usbd_mutex = osal_mutex_create(&_ubsd_mutexdef);
TU_ASSERT(_usbd_mutex);
#endif
// Init device queue & task
_usbd_q = osal_queue_create(&_usbd_qdef);
TU_ASSERT(_usbd_q != NULL);
TU_ASSERT(_usbd_q);
// Get application driver if available
if ( usbd_app_driver_get_cb )
@@ -478,6 +510,7 @@ void tud_task (void)
TU_LOG2("on EP %02X with %u bytes\r\n", ep_addr, (unsigned int) event.xfer_complete.len);
_usbd_dev.ep_status[epnum][ep_dir].busy = false;
_usbd_dev.ep_status[epnum][ep_dir].claimed = 0;
if ( 0 == epnum )
{
@@ -598,8 +631,8 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
case TUSB_REQ_GET_CONFIGURATION:
{
uint8_t cfgnum = _usbd_dev.configured ? 1 : 0;
tud_control_xfer(rhport, p_request, &cfgnum, 1);
uint8_t cfg_num = _usbd_dev.cfg_num;
tud_control_xfer(rhport, p_request, &cfg_num, 1);
}
break;
@@ -607,8 +640,8 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
{
uint8_t const cfg_num = (uint8_t) p_request->wValue;
if ( !_usbd_dev.configured && cfg_num ) TU_ASSERT( process_set_config(rhport, cfg_num) );
_usbd_dev.configured = cfg_num ? 1 : 0;
if ( !_usbd_dev.cfg_num && cfg_num ) TU_ASSERT( process_set_config(rhport, cfg_num) );
_usbd_dev.cfg_num = cfg_num;
tud_control_status(rhport, p_request);
}
@@ -826,7 +859,7 @@ static bool process_set_config(uint8_t rhport, uint8_t cfg_num)
}
// Helper marking endpoint of interface belongs to class driver
static void mark_interface_endpoint(uint8_t ep2drv[8][2], uint8_t const* p_desc, uint16_t desc_len, uint8_t driver_id)
static void mark_interface_endpoint(uint8_t ep2drv[][2], uint8_t const* p_desc, uint16_t desc_len, uint8_t driver_id)
{
uint16_t len = 0;
@@ -955,7 +988,7 @@ void dcd_event_handler(dcd_event_t const * event, bool in_isr)
case DCD_EVENT_UNPLUGGED:
_usbd_dev.connected = 0;
_usbd_dev.addressed = 0;
_usbd_dev.configured = 0;
_usbd_dev.cfg_num = 0;
_usbd_dev.suspended = 0;
osal_queue_send(_usbd_q, event, in_isr);
break;
@@ -1076,6 +1109,59 @@ bool usbd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * desc_ep)
return dcd_edpt_open(rhport, desc_ep);
}
bool usbd_edpt_claim(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
#if CFG_TUSB_OS != OPT_OS_NONE
// pre-check to help reducing mutex lock
TU_VERIFY((_usbd_dev.ep_status[epnum][dir].busy == 0) && (_usbd_dev.ep_status[epnum][dir].claimed == 0));
osal_mutex_lock(_usbd_mutex, OSAL_TIMEOUT_WAIT_FOREVER);
#endif
// can only claim the endpoint if it is not busy and not claimed yet.
bool const ret = (_usbd_dev.ep_status[epnum][dir].busy == 0) && (_usbd_dev.ep_status[epnum][dir].claimed == 0);
if (ret)
{
_usbd_dev.ep_status[epnum][dir].claimed = 1;
}
#if CFG_TUSB_OS != OPT_OS_NONE
osal_mutex_unlock(_usbd_mutex);
#endif
return ret;
}
bool usbd_edpt_release(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
#if CFG_TUSB_OS != OPT_OS_NONE
osal_mutex_lock(_usbd_mutex, OSAL_TIMEOUT_WAIT_FOREVER);
#endif
// can only release the endpoint if it is claimed and not busy
bool const ret = (_usbd_dev.ep_status[epnum][dir].busy == 0) && (_usbd_dev.ep_status[epnum][dir].claimed == 1);
if (ret)
{
_usbd_dev.ep_status[epnum][dir].claimed = 0;
}
#if CFG_TUSB_OS != OPT_OS_NONE
osal_mutex_unlock(_usbd_mutex);
#endif
return ret;
}
bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
@@ -1083,6 +1169,9 @@ bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
TU_LOG2(" Queue EP %02X with %u bytes ... ", ep_addr, total_bytes);
// Attempt to transfer on a busy endpoint, sound like an race condition !
TU_ASSERT(_usbd_dev.ep_status[epnum][dir].busy == 0);
// Set busy first since the actual transfer can be complete before dcd_edpt_xfer() could return
// and usbd task can preempt and clear the busy
_usbd_dev.ep_status[epnum][dir].busy = true;
@@ -1093,7 +1182,9 @@ bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
return true;
}else
{
// DCD error, mark endpoint as ready to allow next transfer
_usbd_dev.ep_status[epnum][dir].busy = false;
_usbd_dev.ep_status[epnum][dir].claimed = 0;
TU_LOG2("failed\r\n");
TU_BREAKPOINT();
return false;

View File

@@ -31,7 +31,7 @@
#define _TUSB_USBD_H_
#ifdef __cplusplus
extern "C" {
extern "C" {
#endif
#include "common/tusb_common.h"
@@ -166,7 +166,7 @@ TU_ATTR_WEAK bool tud_vendor_control_complete_cb(uint8_t rhport, tusb_control_re
TUD_BOS_PLATFORM_DESCRIPTOR(TUD_BOS_MS_OS_20_UUID, U32_TO_U8S_LE(0x06030000), U16_TO_U8S_LE(_desc_set_len), _vendor_code, 0)
#define TUD_BOS_MS_OS_20_UUID \
0xDF, 0x60, 0xDD, 0xD8, 0x89, 0x45, 0xC7, 0x4C, \
0xDF, 0x60, 0xDD, 0xD8, 0x89, 0x45, 0xC7, 0x4C, \
0x9C, 0xD2, 0x65, 0x9D, 0x9E, 0x64, 0x8A, 0x9F
//--------------------------------------------------------------------+
@@ -258,11 +258,11 @@ TU_ATTR_WEAK bool tud_vendor_control_complete_cb(uint8_t rhport, tusb_control_re
#define TUD_MIDI_DESC_HEAD_LEN (9 + 9 + 9 + 7)
#define TUD_MIDI_DESC_HEAD(_itfnum, _stridx, _numcables) \
/* Audio Control (AC) Interface */\
9, TUSB_DESC_INTERFACE, _itfnum, 0, 0, TUSB_CLASS_AUDIO, AUDIO_SUBCLASS_CONTROL, AUDIO_PROTOCOL_V1, _stridx,\
9, TUSB_DESC_INTERFACE, _itfnum, 0, 0, TUSB_CLASS_AUDIO, AUDIO_SUBCLASS_CONTROL, AUDIO_FUNC_PROTOCOL_CODE_UNDEF, _stridx,\
/* AC Header */\
9, TUSB_DESC_CS_INTERFACE, AUDIO_CS_INTERFACE_HEADER, U16_TO_U8S_LE(0x0100), U16_TO_U8S_LE(0x0009), 1, (uint8_t)((_itfnum) + 1),\
9, TUSB_DESC_CS_INTERFACE, AUDIO_CS_AC_INTERFACE_HEADER, U16_TO_U8S_LE(0x0100), U16_TO_U8S_LE(0x0009), 1, (uint8_t)((_itfnum) + 1),\
/* MIDI Streaming (MS) Interface */\
9, TUSB_DESC_INTERFACE, (uint8_t)((_itfnum) + 1), 0, 2, TUSB_CLASS_AUDIO, AUDIO_SUBCLASS_MIDI_STREAMING, AUDIO_PROTOCOL_V1, 0,\
9, TUSB_DESC_INTERFACE, (uint8_t)((_itfnum) + 1), 0, 2, TUSB_CLASS_AUDIO, AUDIO_SUBCLASS_MIDI_STREAMING, AUDIO_FUNC_PROTOCOL_CODE_UNDEF, 0,\
/* MS Header */\
7, TUSB_DESC_CS_INTERFACE, MIDI_CS_INTERFACE_HEADER, U16_TO_U8S_LE(0x0100), U16_TO_U8S_LE(7 + (_numcables) * TUD_MIDI_DESC_JACK_LEN)
@@ -310,6 +310,174 @@ TU_ATTR_WEAK bool tud_vendor_control_complete_cb(uint8_t rhport, tusb_control_re
TUD_MIDI_DESC_EP(_epin, _epsize, 1),\
TUD_MIDI_JACKID_OUT_EMB(1)
//------------- AUDIO -------------//
/* Standard Interface Association Descriptor (IAD) */
#define TUD_AUDIO_DESC_IAD_LEN 8
#define TUD_AUDIO_DESC_IAD(_firstitfs, _nitfs, _stridx) \
TUD_AUDIO_DESC_IAD_LEN, TUSB_DESC_INTERFACE_ASSOCIATION, _firstitfs, _nitfs, TUSB_CLASS_AUDIO, AUDIO_FUNCTION_SUBCLASS_UNDEFINED, AUDIO_FUNC_PROTOCOL_CODE_V2, _stridx
/* Standard AC Interface Descriptor(4.7.1) */
#define TUD_AUDIO_DESC_STD_AC_LEN 9
#define TUD_AUDIO_DESC_STD_AC(_itfnum, _nEPs, _stridx) /* _nEPs is 0 or 1 */\
TUD_AUDIO_DESC_STD_AC_LEN, TUSB_DESC_INTERFACE, _itfnum, /* fixed to zero */ 0x00, _nEPs, TUSB_CLASS_AUDIO, AUDIO_SUBCLASS_CONTROL, AUDIO_INT_PROTOCOL_CODE_V2, _stridx
/* Class-Specific AC Interface Header Descriptor(4.7.2) */
#define TUD_AUDIO_DESC_CS_AC_LEN 9
#define TUD_AUDIO_DESC_CS_AC(_bcdADC, _category, _totallen, _ctrl) /* _bcdADC : Audio Device Class Specification Release Number in Binary-Coded Decimal, _category : see audio_function_t, _totallen : Total number of bytes returned for the class-specific AudioControl interface i.e. Clock Source, Unit and Terminal descriptors - Do not include TUD_AUDIO_DESC_CS_AC_LEN, we already do this here*/ \
TUD_AUDIO_DESC_CS_AC_LEN, TUSB_DESC_CS_INTERFACE, AUDIO_CS_AC_INTERFACE_HEADER, U16_TO_U8S_LE(_bcdADC), _category, U16_TO_U8S_LE(_totallen + TUD_AUDIO_DESC_CS_AC_LEN), _ctrl
/* Clock Source Descriptor(4.7.2.1) */
#define TUD_AUDIO_DESC_CLK_SRC_LEN 8
#define TUD_AUDIO_DESC_CLK_SRC(_clkid, _attr, _ctrl, _assocTerm, _stridx) \
TUD_AUDIO_DESC_CLK_SRC_LEN, TUSB_DESC_CS_INTERFACE, AUDIO_CS_AC_INTERFACE_CLOCK_SOURCE, _clkid, _attr, _ctrl, _assocTerm, _stridx
/* Input Terminal Descriptor(4.7.2.4) */
#define TUD_AUDIO_DESC_INPUT_TERM_LEN 17
#define TUD_AUDIO_DESC_INPUT_TERM(_termid, _termtype, _assocTerm, _clkid, _nchannelslogical, _channelcfg, _idxchannelnames, _ctrl, _stridx) \
TUD_AUDIO_DESC_INPUT_TERM_LEN, TUSB_DESC_CS_INTERFACE, AUDIO_CS_AC_INTERFACE_INPUT_TERMINAL, _termid, U16_TO_U8S_LE(_termtype), _assocTerm, _clkid, _nchannelslogical, U32_TO_U8S_LE(_channelcfg), _idxchannelnames, U16_TO_U8S_LE(_ctrl), _stridx
/* Output Terminal Descriptor(4.7.2.5) */
#define TUD_AUDIO_DESC_OUTPUT_TERM_LEN 12
#define TUD_AUDIO_DESC_OUTPUT_TERM(_termid, _termtype, _assocTerm, _srcid, _clkid, _ctrl, _stridx) \
TUD_AUDIO_DESC_OUTPUT_TERM_LEN, TUSB_DESC_CS_INTERFACE, AUDIO_CS_AC_INTERFACE_OUTPUT_TERMINAL, _termid, U16_TO_U8S_LE(_termtype), _assocTerm, _srcid, _clkid, U16_TO_U8S_LE(_ctrl), _stridx
/* Feature Unit Descriptor(4.7.2.8) */
// 1 - Channel
#define TUD_AUDIO_DESC_FEATURE_UNIT_ONE_CHANNEL_LEN 6+(1+1)*4
#define TUD_AUDIO_DESC_FEATURE_UNIT_ONE_CHANNEL(_unitid, _srcid, _ctrlch0master, _ctrlch1, _stridx) \
TUD_AUDIO_DESC_FEATURE_UNIT_ONE_CHANNEL_LEN, TUSB_DESC_CS_INTERFACE, AUDIO_CS_AC_INTERFACE_FEATURE_UNIT, _unitid, _srcid, U32_TO_U8S_LE(_ctrlch0master), U32_TO_U8S_LE(_ctrlch1), _stridx
// For more channels, add definitions here
/* Standard AS Interface Descriptor(4.9.1) */
#define TUD_AUDIO_DESC_STD_AS_INT_LEN 9
#define TUD_AUDIO_DESC_STD_AS_INT(_itfnum, _altset, _nEPs, _stridx) \
TUD_AUDIO_DESC_STD_AS_INT_LEN, TUSB_DESC_INTERFACE, _itfnum, _altset, _nEPs, TUSB_CLASS_AUDIO, AUDIO_SUBCLASS_STREAMING, AUDIO_INT_PROTOCOL_CODE_V2, _stridx
/* Class-Specific AS Interface Descriptor(4.9.2) */
#define TUD_AUDIO_DESC_CS_AS_INT_LEN 16
#define TUD_AUDIO_DESC_CS_AS_INT(_termid, _ctrl, _formattype, _formats, _nchannelsphysical, _channelcfg, _stridx) \
TUD_AUDIO_DESC_CS_AS_INT_LEN, TUSB_DESC_CS_INTERFACE, AUDIO_CS_AS_INTERFACE_AS_GENERAL, _termid, _ctrl, _formattype, U32_TO_U8S_LE(_formats), _nchannelsphysical, U32_TO_U8S_LE(_channelcfg), _stridx
/* Type I Format Type Descriptor(2.3.1.6 - Audio Formats) */
#define TUD_AUDIO_DESC_TYPE_I_FORMAT_LEN 6
#define TUD_AUDIO_DESC_TYPE_I_FORMAT(_subslotsize, _bitresolution) /* _subslotsize is number of bytes per sample (i.e. subslot) and can be 1,2,3, or 4 */\
TUD_AUDIO_DESC_TYPE_I_FORMAT_LEN, TUSB_DESC_CS_INTERFACE, AUDIO_CS_AS_INTERFACE_FORMAT_TYPE, AUDIO_FORMAT_TYPE_I, _subslotsize, _bitresolution
/* Standard AS Isochronous Audio Data Endpoint Descriptor(4.10.1.1) */
#define TUD_AUDIO_DESC_STD_AS_ISO_EP_LEN 7
#define TUD_AUDIO_DESC_STD_AS_ISO_EP(_ep, _attr, _maxEPsize, _interval) \
TUD_AUDIO_DESC_STD_AS_ISO_EP_LEN, TUSB_DESC_ENDPOINT, _ep, _attr, U16_TO_U8S_LE(_maxEPsize), _interval
/* Class-Specific AS Isochronous Audio Data Endpoint Descriptor(4.10.1.2) */
#define TUD_AUDIO_DESC_CS_AS_ISO_EP_LEN 8
#define TUD_AUDIO_DESC_CS_AS_ISO_EP(_attr, _ctrl, _lockdelayunit, _lockdelay) \
TUD_AUDIO_DESC_CS_AS_ISO_EP_LEN, TUSB_DESC_CS_ENDPOINT, AUDIO_CS_EP_SUBTYPE_GENERAL, _attr, _ctrl, _lockdelayunit, U16_TO_U8S_LE(_lockdelay)
/* Standard AS Isochronous Feedback Endpoint Descriptor(4.10.2.1) */
#define TUD_AUDIO_DESC_STD_AS_ISO_FB_EP_LEN 7
#define TUD_AUDIO_DESC_STD_AS_ISO_FB_EP(_ep, _interval) \
TUD_AUDIO_DESC_STD_AS_ISO_FB_EP_LEN, TUSB_DESC_ENDPOINT, _ep, (TUSB_XFER_ISOCHRONOUS | TUSB_ISO_EP_ATT_NO_SYNC | TUSB_ISO_EP_ATT_EXPLICIT_FB), U16_TO_U8S_LE(4), _interval
// AUDIO simple descriptor (UAC2) for 1 microphone input
// - 1 Input Terminal, 1 Feature Unit (Mute and Volume Control), 1 Output Terminal, 1 Clock Source
#define TUD_AUDIO_MIC_DESC_LEN (TUD_AUDIO_DESC_IAD_LEN\
+ TUD_AUDIO_DESC_STD_AC_LEN\
+ TUD_AUDIO_DESC_CS_AC_LEN\
+ TUD_AUDIO_DESC_CLK_SRC_LEN\
+ TUD_AUDIO_DESC_INPUT_TERM_LEN\
+ TUD_AUDIO_DESC_OUTPUT_TERM_LEN\
+ TUD_AUDIO_DESC_FEATURE_UNIT_ONE_CHANNEL_LEN\
+ TUD_AUDIO_DESC_STD_AS_INT_LEN\
+ TUD_AUDIO_DESC_STD_AS_INT_LEN\
+ TUD_AUDIO_DESC_CS_AS_INT_LEN\
+ TUD_AUDIO_DESC_TYPE_I_FORMAT_LEN\
+ TUD_AUDIO_DESC_STD_AS_ISO_EP_LEN\
+ TUD_AUDIO_DESC_CS_AS_ISO_EP_LEN)
#define TUD_AUDIO_MIC_DESC_N_AS_INT 1 // Number of AS interfaces
#define TUD_AUDIO_MIC_DESCRIPTOR(_itfnum, _stridx, _nBytesPerSample, _nBitsUsedPerSample, _epin, _epsize) \
/* Standard Interface Association Descriptor (IAD) */\
TUD_AUDIO_DESC_IAD(/*_firstitfs*/ _itfnum, /*_nitfs*/ 0x02, /*_stridx*/ 0x00),\
/* Standard AC Interface Descriptor(4.7.1) */\
TUD_AUDIO_DESC_STD_AC(/*_itfnum*/ _itfnum, /*_nEPs*/ 0x00, /*_stridx*/ _stridx),\
/* Class-Specific AC Interface Header Descriptor(4.7.2) */\
TUD_AUDIO_DESC_CS_AC(/*_bcdADC*/ 0x0200, /*_category*/ AUDIO_FUNC_MICROPHONE, /*_totallen*/ TUD_AUDIO_DESC_CLK_SRC_LEN+TUD_AUDIO_DESC_INPUT_TERM_LEN+TUD_AUDIO_DESC_OUTPUT_TERM_LEN+TUD_AUDIO_DESC_FEATURE_UNIT_ONE_CHANNEL_LEN, /*_ctrl*/ AUDIO_CS_AS_INTERFACE_CTRL_LATENCY_POS),\
/* Clock Source Descriptor(4.7.2.1) */\
TUD_AUDIO_DESC_CLK_SRC(/*_clkid*/ 0x04, /*_attr*/ AUDIO_CLOCK_SOURCE_ATT_INT_FIX_CLK, /*_ctrl*/ (AUDIO_CTRL_R << AUDIO_CLOCK_SOURCE_CTRL_CLK_FRQ_POS), /*_assocTerm*/ 0x01, /*_stridx*/ 0x00),\
/* Input Terminal Descriptor(4.7.2.4) */\
TUD_AUDIO_DESC_INPUT_TERM(/*_termid*/ 0x01, /*_termtype*/ AUDIO_TERM_TYPE_IN_GENERIC_MIC, /*_assocTerm*/ 0x03, /*_clkid*/ 0x04, /*_nchannelslogical*/ 0x01, /*_channelcfg*/ AUDIO_CHANNEL_CONFIG_NON_PREDEFINED, /*_idxchannelnames*/ 0x00, /*_ctrl*/ AUDIO_CTRL_R << AUDIO_IN_TERM_CTRL_CONNECTOR_POS, /*_stridx*/ 0x00),\
/* Output Terminal Descriptor(4.7.2.5) */\
TUD_AUDIO_DESC_OUTPUT_TERM(/*_termid*/ 0x03, /*_termtype*/ AUDIO_TERM_TYPE_USB_STREAMING, /*_assocTerm*/ 0x01, /*_srcid*/ 0x02, /*_clkid*/ 0x04, /*_ctrl*/ 0x0000, /*_stridx*/ 0x00),\
/* Feature Unit Descriptor(4.7.2.8) */\
TUD_AUDIO_DESC_FEATURE_UNIT_ONE_CHANNEL(/*_unitid*/ 0x02, /*_srcid*/ 0x01, /*_ctrlch0master*/ AUDIO_CTRL_RW << AUDIO_FEATURE_UNIT_CTRL_MUTE_POS | AUDIO_CTRL_RW << AUDIO_FEATURE_UNIT_CTRL_VOLUME_POS, /*_ctrlch1*/ AUDIO_CTRL_RW << AUDIO_FEATURE_UNIT_CTRL_MUTE_POS | AUDIO_CTRL_RW << AUDIO_FEATURE_UNIT_CTRL_VOLUME_POS, /*_stridx*/ 0x00),\
/* Standard AS Interface Descriptor(4.9.1) */\
/* Interface 1, Alternate 0 - default alternate setting with 0 bandwidth */\
TUD_AUDIO_DESC_STD_AS_INT(/*_itfnum*/ (uint8_t)((_itfnum)+1), /*_altset*/ 0x00, /*_nEPs*/ 0x00, /*_stridx*/ 0x00),\
/* Standard AS Interface Descriptor(4.9.1) */\
/* Interface 1, Alternate 1 - alternate interface for data streaming */\
TUD_AUDIO_DESC_STD_AS_INT(/*_itfnum*/ (uint8_t)((_itfnum)+1), /*_altset*/ 0x01, /*_nEPs*/ 0x01, /*_stridx*/ 0x00),\
/* Class-Specific AS Interface Descriptor(4.9.2) */\
TUD_AUDIO_DESC_CS_AS_INT(/*_termid*/ 0x03, /*_ctrl*/ AUDIO_CTRL_NONE, /*_formattype*/ AUDIO_FORMAT_TYPE_I, /*_formats*/ AUDIO_DATA_FORMAT_TYPE_I_PCM, /*_nchannelsphysical*/ 0x01, /*_channelcfg*/ AUDIO_CHANNEL_CONFIG_NON_PREDEFINED, /*_stridx*/ 0x00),\
/* Type I Format Type Descriptor(2.3.1.6 - Audio Formats) */\
TUD_AUDIO_DESC_TYPE_I_FORMAT(_nBytesPerSample, _nBitsUsedPerSample),\
/* Standard AS Isochronous Audio Data Endpoint Descriptor(4.10.1.1) */\
TUD_AUDIO_DESC_STD_AS_ISO_EP(/*_ep*/ _epin, /*_attr*/ (TUSB_XFER_ISOCHRONOUS | TUSB_ISO_EP_ATT_ASYNCHRONOUS | TUSB_ISO_EP_ATT_DATA), /*_maxEPsize*/ _epsize, /*_interval*/ (CFG_TUSB_RHPORT0_MODE & OPT_MODE_HIGH_SPEED) ? 0x04 : 0x01),\
/* Class-Specific AS Isochronous Audio Data Endpoint Descriptor(4.10.1.2) */\
TUD_AUDIO_DESC_CS_AS_ISO_EP(/*_attr*/ AUDIO_CS_AS_ISO_DATA_EP_ATT_NON_MAX_PACKETS_OK, /*_ctrl*/ AUDIO_CTRL_NONE, /*_lockdelayunit*/ AUDIO_CS_AS_ISO_DATA_EP_LOCK_DELAY_UNIT_UNDEFINED, /*_lockdelay*/ 0x0000)
// AUDIO simple descriptor (UAC2) for mono speaker
// - 1 Input Terminal, 2 Feature Unit (Mute and Volume Control), 3 Output Terminal, 4 Clock Source
#define TUD_AUDIO_SPEAKER_MONO_FB_DESC_LEN (TUD_AUDIO_DESC_IAD_LEN\
+ TUD_AUDIO_DESC_STD_AC_LEN\
+ TUD_AUDIO_DESC_CS_AC_LEN\
+ TUD_AUDIO_DESC_CLK_SRC_LEN\
+ TUD_AUDIO_DESC_INPUT_TERM_LEN\
+ TUD_AUDIO_DESC_OUTPUT_TERM_LEN\
+ TUD_AUDIO_DESC_FEATURE_UNIT_ONE_CHANNEL_LEN\
+ TUD_AUDIO_DESC_STD_AS_INT_LEN\
+ TUD_AUDIO_DESC_STD_AS_INT_LEN\
+ TUD_AUDIO_DESC_CS_AS_INT_LEN\
+ TUD_AUDIO_DESC_TYPE_I_FORMAT_LEN\
+ TUD_AUDIO_DESC_STD_AS_ISO_EP_LEN\
+ TUD_AUDIO_DESC_CS_AS_ISO_EP_LEN\
+ TUD_AUDIO_DESC_STD_AS_ISO_FB_EP_LEN)
#define TUD_AUDIO_SPEAKER_MONO_FB_DESCRIPTOR(_itfnum, _stridx, _nBytesPerSample, _nBitsUsedPerSample, _epout, _epsize, _epfb) \
/* Standard Interface Association Descriptor (IAD) */\
TUD_AUDIO_DESC_IAD(/*_firstitfs*/ _itfnum, /*_nitfs*/ 0x02, /*_stridx*/ 0x00),\
/* Standard AC Interface Descriptor(4.7.1) */\
TUD_AUDIO_DESC_STD_AC(/*_itfnum*/ _itfnum, /*_nEPs*/ 0x00, /*_stridx*/ _stridx),\
/* Class-Specific AC Interface Header Descriptor(4.7.2) */\
TUD_AUDIO_DESC_CS_AC(/*_bcdADC*/ 0x0200, /*_category*/ AUDIO_FUNC_DESKTOP_SPEAKER, /*_totallen*/ TUD_AUDIO_DESC_CLK_SRC_LEN+TUD_AUDIO_DESC_INPUT_TERM_LEN+TUD_AUDIO_DESC_OUTPUT_TERM_LEN+TUD_AUDIO_DESC_FEATURE_UNIT_ONE_CHANNEL_LEN, /*_ctrl*/ AUDIO_CS_AS_INTERFACE_CTRL_LATENCY_POS),\
/* Clock Source Descriptor(4.7.2.1) */\
TUD_AUDIO_DESC_CLK_SRC(/*_clkid*/ 0x04, /*_attr*/ AUDIO_CLOCK_SOURCE_ATT_INT_FIX_CLK, /*_ctrl*/ (AUDIO_CTRL_R << AUDIO_CLOCK_SOURCE_CTRL_CLK_FRQ_POS), /*_assocTerm*/ 0x01, /*_stridx*/ 0x00),\
/* Input Terminal Descriptor(4.7.2.4) */\
TUD_AUDIO_DESC_INPUT_TERM(/*_termid*/ 0x01, /*_termtype*/ AUDIO_TERM_TYPE_USB_STREAMING, /*_assocTerm*/ 0x00, /*_clkid*/ 0x04, /*_nchannelslogical*/ 0x01, /*_channelcfg*/ AUDIO_CHANNEL_CONFIG_NON_PREDEFINED, /*_idxchannelnames*/ 0x00, /*_ctrl*/ 0 * (AUDIO_CTRL_R << AUDIO_IN_TERM_CTRL_CONNECTOR_POS), /*_stridx*/ 0x00),\
/* Output Terminal Descriptor(4.7.2.5) */\
TUD_AUDIO_DESC_OUTPUT_TERM(/*_termid*/ 0x03, /*_termtype*/ AUDIO_TERM_TYPE_OUT_DESKTOP_SPEAKER, /*_assocTerm*/ 0x01, /*_srcid*/ 0x02, /*_clkid*/ 0x04, /*_ctrl*/ 0x0000, /*_stridx*/ 0x00),\
/* Feature Unit Descriptor(4.7.2.8) */\
TUD_AUDIO_DESC_FEATURE_UNIT_ONE_CHANNEL(/*_unitid*/ 0x02, /*_srcid*/ 0x01, /*_ctrlch0master*/ 0 * (AUDIO_CTRL_RW << AUDIO_FEATURE_UNIT_CTRL_MUTE_POS | AUDIO_CTRL_RW << AUDIO_FEATURE_UNIT_CTRL_VOLUME_POS), /*_ctrlch1*/ 0 * (AUDIO_CTRL_RW << AUDIO_FEATURE_UNIT_CTRL_MUTE_POS | AUDIO_CTRL_RW << AUDIO_FEATURE_UNIT_CTRL_VOLUME_POS), /*_stridx*/ 0x00),\
/* Standard AS Interface Descriptor(4.9.1) */\
/* Interface 1, Alternate 0 - default alternate setting with 0 bandwidth */\
TUD_AUDIO_DESC_STD_AS_INT(/*_itfnum*/ (uint8_t)((_itfnum) + 1), /*_altset*/ 0x00, /*_nEPs*/ 0x00, /*_stridx*/ 0x00),\
/* Standard AS Interface Descriptor(4.9.1) */\
/* Interface 1, Alternate 1 - alternate interface for data streaming */\
TUD_AUDIO_DESC_STD_AS_INT(/*_itfnum*/ (uint8_t)((_itfnum) + 1), /*_altset*/ 0x01, /*_nEPs*/ 0x02, /*_stridx*/ 0x00),\
/* Class-Specific AS Interface Descriptor(4.9.2) */\
TUD_AUDIO_DESC_CS_AS_INT(/*_termid*/ 0x01, /*_ctrl*/ AUDIO_CTRL_NONE, /*_formattype*/ AUDIO_FORMAT_TYPE_I, /*_formats*/ AUDIO_DATA_FORMAT_TYPE_I_PCM, /*_nchannelsphysical*/ 0x01, /*_channelcfg*/ AUDIO_CHANNEL_CONFIG_NON_PREDEFINED, /*_stridx*/ 0x00),\
/* Type I Format Type Descriptor(2.3.1.6 - Audio Formats) */\
TUD_AUDIO_DESC_TYPE_I_FORMAT(_nBytesPerSample, _nBitsUsedPerSample),\
/* Standard AS Isochronous Audio Data Endpoint Descriptor(4.10.1.1) */\
TUD_AUDIO_DESC_STD_AS_ISO_EP(/*_ep*/ _epout, /*_attr*/ (TUSB_XFER_ISOCHRONOUS | TUSB_ISO_EP_ATT_ASYNCHRONOUS | TUSB_ISO_EP_ATT_DATA), /*_maxEPsize*/ _epsize, /*_interval*/ (CFG_TUSB_RHPORT0_MODE & OPT_MODE_HIGH_SPEED) ? 0x04 : 0x01),\
/* Class-Specific AS Isochronous Audio Data Endpoint Descriptor(4.10.1.2) */\
TUD_AUDIO_DESC_CS_AS_ISO_EP(/*_attr*/ AUDIO_CS_AS_ISO_DATA_EP_ATT_NON_MAX_PACKETS_OK, /*_ctrl*/ AUDIO_CTRL_NONE, /*_lockdelayunit*/ AUDIO_CS_AS_ISO_DATA_EP_LOCK_DELAY_UNIT_UNDEFINED, /*_lockdelay*/ 0x0000),\
/* Standard AS Isochronous Feedback Endpoint Descriptor(4.10.2.1) */\
TUD_AUDIO_DESC_STD_AS_ISO_FB_EP(/*_ep*/ _epfb, /*_interval*/ 1)\
//------------- TUD_USBTMC/USB488 -------------//
#define TUD_USBTMC_APP_CLASS (TUSB_CLASS_APPLICATION_SPECIFIC)
@@ -403,15 +571,15 @@ TU_ATTR_WEAK bool tud_vendor_control_complete_cb(uint8_t rhport, tusb_control_re
//------------- RNDIS -------------//
#if 0
/* Windows XP */
#define TUD_RNDIS_ITF_CLASS TUSB_CLASS_CDC
#define TUD_RNDIS_ITF_SUBCLASS CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL
#define TUD_RNDIS_ITF_PROTOCOL 0xFF /* CDC_COMM_PROTOCOL_MICROSOFT_RNDIS */
/* Windows XP */
#define TUD_RNDIS_ITF_CLASS TUSB_CLASS_CDC
#define TUD_RNDIS_ITF_SUBCLASS CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL
#define TUD_RNDIS_ITF_PROTOCOL 0xFF /* CDC_COMM_PROTOCOL_MICROSOFT_RNDIS */
#else
/* Windows 7+ */
#define TUD_RNDIS_ITF_CLASS TUSB_CLASS_WIRELESS_CONTROLLER
#define TUD_RNDIS_ITF_SUBCLASS 0x01
#define TUD_RNDIS_ITF_PROTOCOL 0x03
/* Windows 7+ */
#define TUD_RNDIS_ITF_CLASS TUSB_CLASS_WIRELESS_CONTROLLER
#define TUD_RNDIS_ITF_SUBCLASS 0x01
#define TUD_RNDIS_ITF_PROTOCOL 0x03
#endif
// Length of template descriptor: 66 bytes
@@ -477,18 +645,18 @@ TU_ATTR_WEAK bool tud_vendor_control_complete_cb(uint8_t rhport, tusb_control_re
#define TUD_BTH_ISO_ITF_0(_itfnum, ...)
#define TUD_BTH_ISO_ITF_1(_itfnum, _ep_in, _ep_out, ...) TUD_BTH_ISO_ITF(_itfnum, (CFG_TUD_BTH_ISO_ALT_COUNT) - 1, _ep_in, _ep_out, _FIRST(__VA_ARGS__))
#define TUD_BTH_ISO_ITF_2(_itfnum, _ep_in, _ep_out, ...) TUD_BTH_ISO_ITF(_itfnum, (CFG_TUD_BTH_ISO_ALT_COUNT) - 2, _ep_in, _ep_out, _FIRST(__VA_ARGS__)) \
TUD_BTH_ISO_ITF_1(_itfnum, _ep_in, _ep_out, _REST(__VA_ARGS__))
TUD_BTH_ISO_ITF_1(_itfnum, _ep_in, _ep_out, _REST(__VA_ARGS__))
#define TUD_BTH_ISO_ITF_3(_itfnum, _ep_in, _ep_out, ...) TUD_BTH_ISO_ITF(_itfnum, (CFG_TUD_BTH_ISO_ALT_COUNT) - 3, _ep_in, _ep_out, _FIRST(__VA_ARGS__)) \
TUD_BTH_ISO_ITF_2(_itfnum, _ep_in, _ep_out, _REST(__VA_ARGS__))
TUD_BTH_ISO_ITF_2(_itfnum, _ep_in, _ep_out, _REST(__VA_ARGS__))
#define TUD_BTH_ISO_ITF_4(_itfnum, _ep_in, _ep_out, ...) TUD_BTH_ISO_ITF(_itfnum, (CFG_TUD_BTH_ISO_ALT_COUNT) - 4, _ep_in, _ep_out, _FIRST(__VA_ARGS__)) \
TUD_BTH_ISO_ITF_3(_itfnum, _ep_in, _ep_out, _REST(__VA_ARGS__))
TUD_BTH_ISO_ITF_3(_itfnum, _ep_in, _ep_out, _REST(__VA_ARGS__))
#define TUD_BTH_ISO_ITF_5(_itfnum, _ep_in, _ep_out, ...) TUD_BTH_ISO_ITF(_itfnum, (CFG_TUD_BTH_ISO_ALT_COUNT) - 5, _ep_in, _ep_out, _FIRST(__VA_ARGS__)) \
TUD_BTH_ISO_ITF_4(_itfnum, _ep_in, _ep_out, _REST(__VA_ARGS__))
TUD_BTH_ISO_ITF_4(_itfnum, _ep_in, _ep_out, _REST(__VA_ARGS__))
#define TUD_BTH_ISO_ITF_6(_itfnum, _ep_in, _ep_out, ...) TUD_BTH_ISO_ITF(_itfnum, (CFG_TUD_BTH_ISO_ALT_COUNT) - 6, _ep_in, _ep_out, _FIRST(__VA_ARGS__)) \
TUD_BTH_ISO_ITF_5(_itfnum, _ep_in, _ep_out, _REST(__VA_ARGS__))
TUD_BTH_ISO_ITF_5(_itfnum, _ep_in, _ep_out, _REST(__VA_ARGS__))
#define TUD_BTH_ISO_ITFS(_itfnum, _ep_in, _ep_out, ...) \
TU_XSTRCAT(TUD_BTH_ISO_ITF_, CFG_TUD_BTH_ISO_ALT_COUNT)(_itfnum, _ep_in, _ep_out, __VA_ARGS__)
TU_XSTRCAT(TUD_BTH_ISO_ITF_, CFG_TUD_BTH_ISO_ALT_COUNT)(_itfnum, _ep_in, _ep_out, __VA_ARGS__)
// BT Primary controller descriptor
// Interface number, string index, attributes, event endpoint, event endpoint size, interval, data in, data out, data endpoint size, iso endpoint sizes
@@ -497,7 +665,7 @@ TU_ATTR_WEAK bool tud_vendor_control_complete_cb(uint8_t rhport, tusb_control_re
TUD_BTH_ISO_ITFS(_itfnum + 1, _ep_in + 1, _ep_out + 1, __VA_ARGS__)
#ifdef __cplusplus
}
}
#endif
#endif /* _TUSB_USBD_H_ */

View File

@@ -70,6 +70,13 @@ void usbd_edpt_close(uint8_t rhport, uint8_t ep_addr);
// Submit a usb transfer
bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes);
// Claim an endpoint before submitting a transfer.
// If caller does not make any transfer, it must release endpoint for others.
bool usbd_edpt_claim(uint8_t rhport, uint8_t ep_addr);
// Release an endpoint without submitting a transfer
bool usbd_edpt_release(uint8_t rhport, uint8_t ep_addr);
// Check if endpoint transferring is complete
bool usbd_edpt_busy(uint8_t rhport, uint8_t ep_addr);

View File

@@ -40,6 +40,24 @@
// We disable SOF for now until needed later on
#define USE_SOF 0
// Size of RX or TX FIFO.
#define FIFO_SIZE 64
#ifndef TU_DA1469X_FIFO_READ_THRESHOLD
// RX FIFO is 64 bytes. When endpoint size is greater then 64, FIFO warning interrupt
// is enabled to allow read incoming data during frame reception.
// It is possible to stay in interrupt reading whole packet at once, but it may be
// more efficient for MCU to read as much data as possible and when FIFO is hardly
// filled exit interrupt handler waiting for next FIFO warning level interrupt
// or packet end.
// When running at 96MHz code that reads FIFO based on number of bytes stored in
// USB_RXSx_REG.USB_RXCOUNT takes enough time to fill FIFO with two additional bytes.
// Settings this threshold above this allows to leave interrupt handler and wait
// for more bytes to before next ISR. This allows reduce overall ISR time to 1/3
// of time that would be needed if ISR read as fast as possible.
#define TU_DA1469X_FIFO_READ_THRESHOLD 4
#endif
#define EP_MAX 4
#define NFSR_NODE_RESET 0
@@ -119,6 +137,54 @@ typedef struct
#define EP_REGS(first_ep_reg) (EPx_REGS*)(&USB->first_ep_reg)
// DMA channel pair to use, channel 6 will be used for RX channel 7 for TX direction.
#ifndef TU_DA146XX_DMA_RX_CHANNEL
#define TU_DA146XX_DMA_RX_CHANNEL 6
#endif
#define DA146XX_DMA_USB_MUX (0x6 << (TU_DA146XX_DMA_RX_CHANNEL * 2))
#define DA146XX_DMA_USB_MUX_MASK (0xF << (TU_DA146XX_DMA_RX_CHANNEL * 2))
typedef struct
{
__IOM uint32_t DMAx_A_START_REG;
__IOM uint32_t DMAx_B_START_REG;
__IOM uint32_t DMAx_INT_REG;
__IOM uint32_t DMAx_LEN_REG;
__IOM uint32_t DMAx_CTRL_REG;
__IOM uint32_t DMAx_IDX_REG;
__IM uint32_t RESERVED[2]; // Extend structure size for array like usage, registers for each channel are 0x20 bytes apart.
} da146xx_dma_channel_t;
#define DMA_CHANNEL_REGS(n) ((da146xx_dma_channel_t *)(DMA) + n)
#define RX_DMA_REGS DMA_CHANNEL_REGS(TU_DA146XX_DMA_RX_CHANNEL)
#define TX_DMA_REGS DMA_CHANNEL_REGS((TU_DA146XX_DMA_RX_CHANNEL) + 1)
#define RX_DMA_START ((1 << DMA_DMA0_CTRL_REG_DMA_ON_Pos) |\
(0 << DMA_DMA0_CTRL_REG_BW_Pos) | \
(1 << DMA_DMA0_CTRL_REG_DREQ_MODE_Pos) | \
(1 << DMA_DMA0_CTRL_REG_BINC_Pos) | \
(0 << DMA_DMA0_CTRL_REG_AINC_Pos) | \
(0 << DMA_DMA0_CTRL_REG_CIRCULAR_Pos) | \
(2 << DMA_DMA0_CTRL_REG_DMA_PRIO_Pos) | \
(0 << DMA_DMA0_CTRL_REG_DMA_IDLE_Pos) | \
(0 << DMA_DMA0_CTRL_REG_DMA_INIT_Pos) | \
(0 << DMA_DMA0_CTRL_REG_REQ_SENSE_Pos) | \
(0 << DMA_DMA0_CTRL_REG_BURST_MODE_Pos) | \
(0 << DMA_DMA0_CTRL_REG_BUS_ERROR_DETECT_Pos))
#define TX_DMA_START ((1 << DMA_DMA0_CTRL_REG_DMA_ON_Pos) |\
(0 << DMA_DMA0_CTRL_REG_BW_Pos) | \
(1 << DMA_DMA0_CTRL_REG_DREQ_MODE_Pos) | \
(0 << DMA_DMA0_CTRL_REG_BINC_Pos) | \
(1 << DMA_DMA0_CTRL_REG_AINC_Pos) | \
(0 << DMA_DMA0_CTRL_REG_CIRCULAR_Pos) | \
(2 << DMA_DMA0_CTRL_REG_DMA_PRIO_Pos) | \
(0 << DMA_DMA0_CTRL_REG_DMA_IDLE_Pos) | \
(0 << DMA_DMA0_CTRL_REG_DMA_INIT_Pos) | \
(1 << DMA_DMA0_CTRL_REG_REQ_SENSE_Pos) | \
(0 << DMA_DMA0_CTRL_REG_BURST_MODE_Pos) | \
(0 << DMA_DMA0_CTRL_REG_BUS_ERROR_DETECT_Pos))
// Dialog register fields and bit mask are very long. Filed masks repeat register names.
// Those convenience macros are a way to reduce complexity of register modification lines.
#define GET_BIT(val, field) (val & field ## _Msk) >> field ## _Pos
@@ -144,6 +210,8 @@ typedef struct {
uint8_t data1 : 1;
// Endpoint is stalled
uint8_t stall : 1;
// ISO endpoint
uint8_t iso : 1;
} xfer_ctl_t;
static struct
@@ -151,6 +219,8 @@ static struct
bool vbus_present;
bool in_reset;
xfer_ctl_t xfer_status[EP_MAX][2];
// Endpoints that use DMA, one for each direction
uint8_t dma_ep[2];
} _dcd =
{
.vbus_present = false,
@@ -215,15 +285,12 @@ void tusb_vbus_changed(bool present)
}
}
static void transmit_packet(xfer_ctl_t * xfer)
static void fill_tx_fifo(xfer_ctl_t * xfer)
{
int left_to_send;
uint8_t const *src;
EPx_REGS *regs = xfer->regs;
uint32_t txc;
txc = USB_USB_TXC1_REG_USB_TX_EN_Msk;
if (xfer->data1) txc |= USB_USB_TXC1_REG_USB_TOGGLE_TX_Msk;
uint8_t const epnum = tu_edpt_number(xfer->ep_addr);
src = &xfer->buffer[xfer->transferred];
left_to_send = xfer->total_len - xfer->transferred;
@@ -240,53 +307,149 @@ static void transmit_packet(xfer_ctl_t * xfer)
xfer->last_packet_size++;
left_to_send--;
}
if (tu_edpt_number(xfer->ep_addr) != 0)
if (epnum != 0)
{
if (left_to_send > 0)
{
// Max packet size is set to value greater then FIFO. Enable fifo level warning
// to handle larger packets.
txc |= USB_USB_TXC1_REG_USB_TFWL_Msk;
regs->txc |= (3 << USB_USB_TXC1_REG_USB_TFWL_Pos);
USB->USB_FWMSK_REG |= 1 << (epnum - 1 + USB_USB_FWMSK_REG_USB_M_TXWARN31_Pos);
}
else
{
xfer->regs->txc &= ~USB_USB_TXC1_REG_USB_TFWL_Msk;
USB->USB_FWMSK_REG &= ~(1 << (epnum - 1 + USB_USB_FWMSK_REG_USB_M_TXWARN31_Pos));
// Whole packet already in fifo, no need to refill it later. Mark last.
txc |= USB_USB_TXC1_REG_USB_LAST_Msk;
regs->txc |= USB_USB_TXC1_REG_USB_LAST_Msk;
}
}
// Enable transfer with correct interrupts enabled
regs->txc = txc;
}
static void receive_packet(xfer_ctl_t *xfer, uint16_t bytes_in_fifo)
static bool try_allocate_dma(uint8_t epnum, uint8_t dir)
{
// TODO: Disable interrupts while checking
if (_dcd.dma_ep[dir] == 0)
{
_dcd.dma_ep[dir] = epnum;
if (dir == TUSB_DIR_OUT)
USB->USB_DMA_CTRL_REG = (USB->USB_DMA_CTRL_REG & ~USB_USB_DMA_CTRL_REG_USB_DMA_RX_Msk) |
((epnum - 1) << USB_USB_DMA_CTRL_REG_USB_DMA_RX_Pos);
else
USB->USB_DMA_CTRL_REG = (USB->USB_DMA_CTRL_REG & ~USB_USB_DMA_CTRL_REG_USB_DMA_TX_Msk) |
((epnum - 1) << USB_USB_DMA_CTRL_REG_USB_DMA_TX_Pos);
USB->USB_DMA_CTRL_REG |= USB_USB_DMA_CTRL_REG_USB_DMA_EN_Msk;
}
return _dcd.dma_ep[dir] == epnum;
}
static void start_rx_dma(volatile void *src, void *dst, uint16_t size)
{
// Setup SRC and DST registers
RX_DMA_REGS->DMAx_A_START_REG = (uint32_t)src;
RX_DMA_REGS->DMAx_B_START_REG = (uint32_t)dst;
// Don't need DMA interrupt, read end is determined by RX_LAST or RX_ERR events.
RX_DMA_REGS->DMAx_INT_REG = size - 1;
RX_DMA_REGS->DMAx_LEN_REG = size - 1;
RX_DMA_REGS->DMAx_CTRL_REG = RX_DMA_START;
}
static void start_rx_packet(xfer_ctl_t *xfer)
{
uint8_t const epnum = tu_edpt_number(xfer->ep_addr);
uint16_t remaining = xfer->total_len - xfer->transferred;
uint16_t size = tu_min16(remaining, xfer->max_packet_size);
xfer->last_packet_size = 0;
if (xfer->max_packet_size > FIFO_SIZE && remaining > FIFO_SIZE)
{
if (try_allocate_dma(epnum, TUSB_DIR_OUT))
{
start_rx_dma(&xfer->regs->rxd, xfer->buffer + xfer->transferred, size);
}
else
{
// Other endpoint is using DMA in that direction, fall back to interrupts.
// For endpoint size greater then FIFO size enable FIFO level warning interrupt
// when FIFO has less then 17 bytes free.
xfer->regs->rxc |= USB_USB_RXC1_REG_USB_RFWL_Msk;
USB->USB_FWMSK_REG |= 1 << (epnum - 1 + USB_USB_FWMSK_REG_USB_M_RXWARN31_Pos);
}
}
else if (epnum != 0)
{
// If max_packet_size would fit in FIFO no need for FIFO level warning interrupt.
xfer->regs->rxc &= ~USB_USB_RXC1_REG_USB_RFWL_Msk;
USB->USB_FWMSK_REG &= ~(1 << (epnum - 1 + USB_USB_FWMSK_REG_USB_M_RXWARN31_Pos));
}
xfer->regs->rxc |= USB_USB_RXC1_REG_USB_RX_EN_Msk;
}
static void start_tx_dma(void *src, volatile void *dst, uint16_t size)
{
// Setup SRC and DST registers
TX_DMA_REGS->DMAx_A_START_REG = (uint32_t)src;
TX_DMA_REGS->DMAx_B_START_REG = (uint32_t)dst;
// Interrupt not needed
TX_DMA_REGS->DMAx_INT_REG = size;
TX_DMA_REGS->DMAx_LEN_REG = size - 1;
TX_DMA_REGS->DMAx_CTRL_REG = TX_DMA_START;
}
static void start_tx_packet(xfer_ctl_t *xfer)
{
uint8_t const epnum = tu_edpt_number(xfer->ep_addr);
uint16_t remaining = xfer->total_len - xfer->transferred;
uint16_t size = tu_min16(remaining, xfer->max_packet_size);
EPx_REGS *regs = xfer->regs;
xfer->last_packet_size = 0;
regs->txc = USB_USB_TXC1_REG_USB_FLUSH_Msk;
regs->txc = USB_USB_TXC1_REG_USB_IGN_ISOMSK_Msk;
if (xfer->data1) xfer->regs->txc |= USB_USB_TXC1_REG_USB_TOGGLE_TX_Msk;
if (xfer->max_packet_size > FIFO_SIZE && remaining > FIFO_SIZE && try_allocate_dma(epnum, TUSB_DIR_IN))
{
// Whole packet will be put in FIFO by DMA. Set LAST bit before start.
start_tx_dma(xfer->buffer + xfer->transferred, &regs->txd, size);
regs->txc |= USB_USB_TXC1_REG_USB_LAST_Msk;
}
else
{
fill_tx_fifo(xfer);
}
regs->txc |= USB_USB_TXC1_REG_USB_TX_EN_Msk;
}
static void read_rx_fifo(xfer_ctl_t *xfer, uint16_t bytes_in_fifo)
{
EPx_REGS *regs = xfer->regs;
uint16_t remaining = xfer->total_len - xfer->transferred;
uint16_t remaining = xfer->total_len - xfer->transferred - xfer->last_packet_size;
uint16_t receive_this_time = bytes_in_fifo;
if (remaining <= bytes_in_fifo) receive_this_time = remaining;
if (remaining < bytes_in_fifo) receive_this_time = remaining;
uint8_t *buf = xfer->buffer + xfer->transferred + xfer->last_packet_size;
for (int i = 0; i < receive_this_time; ++i) buf[i] = regs->rxd;
xfer->transferred += receive_this_time;
xfer->last_packet_size += receive_this_time;
}
static void handle_ep0_rx(void)
{
int packet_size;
int fifo_bytes;
uint32_t rxs0 = USB->USB_RXS0_REG;
xfer_ctl_t *xfer = XFER_CTL_BASE(0, TUSB_DIR_OUT);
packet_size = GET_BIT(rxs0, USB_USB_RXS0_REG_USB_RCOUNT);
fifo_bytes = GET_BIT(rxs0, USB_USB_RXS0_REG_USB_RCOUNT);
if (rxs0 & USB_USB_RXS0_REG_USB_SETUP_Msk)
{
xfer_ctl_t *xfer_in = XFER_CTL_BASE(0, TUSB_DIR_IN);
// Setup packet is in
for (int i = 0; i < packet_size; ++i) _setup_packet[i] = USB->USB_RXD0_REG;
for (int i = 0; i < fifo_bytes; ++i) _setup_packet[i] = USB->USB_RXD0_REG;
xfer->stall = 0;
xfer->data1 = 1;
@@ -302,21 +465,26 @@ static void handle_ep0_rx(void)
{
// Toggle bit does not match discard packet
REG_SET_BIT(USB_RXC0_REG, USB_FLUSH);
xfer->last_packet_size = 0;
}
else
{
receive_packet(xfer, packet_size);
xfer->data1 ^= 1;
read_rx_fifo(xfer, fifo_bytes);
if (rxs0 & USB_USB_RXS0_REG_USB_RX_LAST_Msk)
{
xfer->transferred += xfer->last_packet_size;
xfer->data1 ^= 1;
if (xfer->total_len == xfer->transferred || xfer->last_packet_size < xfer->max_packet_size)
{
dcd_event_xfer_complete(0, 0, xfer->transferred, XFER_RESULT_SUCCESS, true);
}
else
{
if (xfer->total_len == xfer->transferred || xfer->last_packet_size < xfer->max_packet_size)
{
dcd_event_xfer_complete(0, 0, xfer->transferred, XFER_RESULT_SUCCESS, true);
}
else
{
// Re-enable reception
REG_SET_BIT(USB_RXC0_REG, USB_RX_EN);
}
xfer->last_packet_size = 0;
// Re-enable reception
REG_SET_BIT(USB_RXC0_REG, USB_RX_EN);
}
}
}
@@ -350,51 +518,79 @@ static void handle_ep0_tx(void)
// Start from the beginning
xfer->last_packet_size = 0;
}
transmit_packet(xfer);
fill_tx_fifo(xfer);
}
}
static void handle_epx_rx_ev(uint8_t ep)
{
uint32_t rxs;
int packet_size;
int fifo_bytes;
xfer_ctl_t *xfer = XFER_CTL_BASE(ep, TUSB_DIR_OUT);
EPx_REGS *regs = xfer->regs;
rxs = regs->rxs;
do
{
rxs = regs->rxs;
if (GET_BIT(rxs, USB_USB_RXS1_REG_USB_RX_ERR))
{
regs->rxc |= USB_USB_RXC1_REG_USB_FLUSH_Msk;
}
else
{
packet_size = GET_BIT(rxs, USB_USB_RXS1_REG_USB_RXCOUNT);
receive_packet(xfer, packet_size);
if (GET_BIT(rxs, USB_USB_RXS1_REG_USB_RX_LAST))
if (GET_BIT(rxs, USB_USB_RXS1_REG_USB_RX_ERR))
{
if (GET_BIT(rxs, USB_USB_RXS1_REG_USB_TOGGLE_RX) != xfer->data1)
regs->rxc |= USB_USB_RXC1_REG_USB_FLUSH_Msk;
xfer->last_packet_size = 0;
if (_dcd.dma_ep[TUSB_DIR_OUT] == ep)
{
// Toggle bit does not match discard packet
regs->rxc |= USB_USB_RXC1_REG_USB_FLUSH_Msk;
// Stop DMA
RX_DMA_REGS->DMAx_CTRL_REG &= ~DMA_DMA0_CTRL_REG_DMA_ON_Msk;
// Restart DMA since packet was dropped, all parameters should still work.
RX_DMA_REGS->DMAx_CTRL_REG |= DMA_DMA0_CTRL_REG_DMA_ON_Msk;
}
else
break;
}
else
{
if (_dcd.dma_ep[TUSB_DIR_OUT] == ep)
{
xfer->data1 ^= 1;
if (xfer->total_len == xfer->transferred || xfer->last_packet_size < xfer->max_packet_size)
// Disable DMA and update last_packet_size with what DMA reported.
RX_DMA_REGS->DMAx_CTRL_REG &= ~DMA_DMA0_CTRL_REG_DMA_ON_Msk;
xfer->last_packet_size = RX_DMA_REGS->DMAx_IDX_REG;
// When DMA did not finished (packet was smaller then MPS), DMAx_IDX_REG holds exact number of bytes transmitted.
// When DMA finished value in DMAx_IDX_REG is one less then actual number of transmitted bytes.
if (xfer->last_packet_size == RX_DMA_REGS->DMAx_LEN_REG) xfer->last_packet_size++;
// Release DMA to use by other endpoints.
_dcd.dma_ep[TUSB_DIR_OUT] = 0;
}
fifo_bytes = GET_BIT(rxs, USB_USB_RXS1_REG_USB_RXCOUNT);
// FIFO maybe empty if DMA read it before or it's final iteration and function already read all that was to read.
if (fifo_bytes > 0)
{
read_rx_fifo(xfer, fifo_bytes);
}
if (GET_BIT(rxs, USB_USB_RXS1_REG_USB_RX_LAST))
{
if (!xfer->iso && GET_BIT(rxs, USB_USB_RXS1_REG_USB_TOGGLE_RX) != xfer->data1)
{
dcd_event_xfer_complete(0, xfer->ep_addr, xfer->transferred, XFER_RESULT_SUCCESS, true);
// Toggle bit does not match discard packet
regs->rxc |= USB_USB_RXC1_REG_USB_FLUSH_Msk;
}
else
{
xfer->last_packet_size = 0;
// Re-enable reception
regs->rxc |= USB_USB_RXC1_REG_USB_RX_EN_Msk;
xfer->data1 ^= 1;
xfer->transferred += xfer->last_packet_size;
if (xfer->total_len == xfer->transferred || xfer->last_packet_size < xfer->max_packet_size || xfer->iso)
{
dcd_event_xfer_complete(0, xfer->ep_addr, xfer->transferred, XFER_RESULT_SUCCESS, true);
}
else
{
// Re-enable reception
start_rx_packet(xfer);
}
}
xfer->last_packet_size = 0;
}
}
}
} while (fifo_bytes > TU_DA1469X_FIFO_READ_THRESHOLD);
}
static void handle_rx_ev(void)
@@ -409,14 +605,23 @@ static void handle_rx_ev(void)
static void handle_epx_tx_ev(xfer_ctl_t *xfer)
{
uint32_t usb_txs1_reg;
uint8_t const epnum = tu_edpt_number(xfer->ep_addr);
uint32_t txs;
EPx_REGS *regs = xfer->regs;
usb_txs1_reg = regs->USB_TXS1_REG;
txs = regs->txs;
if (GET_BIT(usb_txs1_reg, USB_USB_TXS1_REG_USB_TX_DONE))
if (GET_BIT(txs, USB_USB_TXS1_REG_USB_TX_DONE))
{
if (GET_BIT(usb_txs1_reg, USB_USB_TXS1_REG_USB_ACK_STAT))
if (_dcd.dma_ep[TUSB_DIR_IN] == epnum)
{
// Disable DMA and update last_packet_size with what DMA reported.
TX_DMA_REGS->DMAx_CTRL_REG &= ~DMA_DMA1_CTRL_REG_DMA_ON_Msk;
xfer->last_packet_size = TX_DMA_REGS->DMAx_IDX_REG + 1;
// Release DMA to used by other endpoints.
_dcd.dma_ep[TUSB_DIR_IN] = 0;
}
if (GET_BIT(txs, USB_USB_TXS1_REG_USB_ACK_STAT))
{
// ACK received, update transfer state and DATA0/1 bit
xfer->transferred += xfer->last_packet_size;
@@ -429,12 +634,13 @@ static void handle_epx_tx_ev(xfer_ctl_t *xfer)
return;
}
}
else
{
xfer->last_packet_size = 0;
}
transmit_packet(xfer);
}
if (txs & USB_USB_TXS1_REG_USB_TX_URUN_Msk)
{
TU_LOG1("EP %d FIFO underrun\n", epnum);
}
// Start next or repeated packet.
start_tx_packet(xfer);
}
static void handle_tx_ev(void)
@@ -459,6 +665,7 @@ static void handle_bus_reset(void)
_dcd.in_reset = true;
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
USB->USB_DMA_CTRL_REG = 0;
USB->USB_MAMSK_REG = USB_USB_MAMSK_REG_USB_M_INTR_Msk |
#if USE_SOF
@@ -503,9 +710,9 @@ static void handle_alt_ev(void)
}
}
static void handle_epx_tx_refill(uint8_t ep)
static void handle_epx_tx_warn_ev(uint8_t ep)
{
transmit_packet(XFER_CTL_BASE(ep, TUSB_DIR_IN));
fill_tx_fifo(XFER_CTL_BASE(ep, TUSB_DIR_IN));
}
static void handle_fifo_warning(void)
@@ -513,11 +720,11 @@ static void handle_fifo_warning(void)
uint32_t fifo_warning = USB->USB_FWEV_REG;
if (fifo_warning & 0x01)
handle_epx_tx_refill(1);
handle_epx_tx_warn_ev(1);
if (fifo_warning & 0x02)
handle_epx_tx_refill(2);
handle_epx_tx_warn_ev(2);
if (fifo_warning & 0x04)
handle_epx_tx_refill(3);
handle_epx_tx_warn_ev(3);
if (fifo_warning & 0x10)
handle_epx_rx_ev(1);
if (fifo_warning & 0x20)
@@ -595,6 +802,9 @@ void dcd_connect(uint8_t rhport)
(void)rhport;
REG_SET_BIT(USB_MCTRL_REG, USB_NAT);
// Select chosen DMA to be triggered by USB.
DMA->DMA_REQ_MUX_REG = (DMA->DMA_REQ_MUX_REG & ~DA146XX_DMA_USB_MUX_MASK) | DA146XX_DMA_USB_MUX;
}
void dcd_disconnect(uint8_t rhport)
@@ -624,8 +834,13 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
xfer->max_packet_size = desc_edpt->wMaxPacketSize.size;
xfer->ep_addr = desc_edpt->bEndpointAddress;
xfer->data1 = 0;
xfer->iso = 0;
if (epnum != 0 && desc_edpt->bmAttributes.xfer == 1) iso_mask = USB_USB_EPC1_REG_USB_ISO_Msk;
if (epnum != 0 && desc_edpt->bmAttributes.xfer == 1)
{
iso_mask = USB_USB_EPC1_REG_USB_ISO_Msk;
xfer->iso = 1;
}
if (epnum == 0)
{
@@ -651,6 +866,50 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
return true;
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
(void)rhport;
TU_ASSERT(epnum < EP_MAX,);
if (epnum == 0)
{
USB->USB_MAMSK_REG &= ~(USB_USB_MAMSK_REG_USB_M_EP0_RX_Msk |
USB_USB_MAMSK_REG_USB_M_EP0_TX_Msk);
}
else
{
if (dir == TUSB_DIR_OUT)
{
xfer->regs->rxc = USB_USB_RXC1_REG_USB_FLUSH_Msk;
xfer->regs->epc_out = 0;
USB->USB_RXMSK_REG &= ~(0x101 << (epnum - 1));
// Release DMA if needed
if (_dcd.dma_ep[TUSB_DIR_OUT] == epnum)
{
RX_DMA_REGS->DMAx_CTRL_REG &= ~DMA_DMA0_CTRL_REG_DMA_ON_Msk;
_dcd.dma_ep[TUSB_DIR_OUT] = 0;
}
}
else
{
xfer->regs->txc = USB_USB_TXC1_REG_USB_FLUSH_Msk;
xfer->regs->epc_in = 0;
USB->USB_TXMSK_REG &= ~(0x101 << (epnum - 1));
// Release DMA if needed
if (_dcd.dma_ep[TUSB_DIR_IN] == epnum)
{
TX_DMA_REGS->DMAx_CTRL_REG &= ~DMA_DMA1_CTRL_REG_DMA_ON_Msk;
_dcd.dma_ep[TUSB_DIR_IN] = 0;
}
}
}
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
@@ -666,26 +925,11 @@ bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t t
if (dir == TUSB_DIR_OUT)
{
if (epnum != 0)
{
if (xfer->max_packet_size > 64)
{
// For endpoint size greater then FIFO size enable FIFO level warning interrupt
// when FIFO has less then 17 bytes free.
xfer->regs->rxc |= USB_USB_RXC1_REG_USB_RFWL_Msk;
}
else
{
// If max_packet_size would fit in FIFO no need for FIFO level warning interrupt.
xfer->regs->rxc &= ~USB_USB_RXC1_REG_USB_RFWL_Msk;
}
}
// USB_RX_EN bit is in same place for all endpoints.
xfer->regs->rxc = USB_USB_RXC0_REG_USB_RX_EN_Msk;
start_rx_packet(xfer);
}
else // IN
{
transmit_packet(xfer);
start_tx_packet(xfer);
}
return true;

View File

@@ -53,6 +53,9 @@ enum
enum
{
// Endpoint number is fixed (8) for ISOOUT and ISOIN.
EP_ISO_NUM = 8,
// CBI endpoints count
EP_COUNT = 8
};
@@ -62,11 +65,14 @@ typedef struct
uint8_t* buffer;
uint16_t total_len;
volatile uint16_t actual_len;
uint8_t mps; // max packet size
uint16_t mps; // max packet size
// nrf52840 will auto ACK OUT packet after DMA is done
// indicate packet is already ACK
volatile bool data_received;
// Set to true when data was transferred from RAM to ISO IN output buffer.
// New data can be put in ISO IN output buffer after SOF.
bool iso_in_transfer_ready;
} xfer_td_t;
@@ -74,7 +80,8 @@ typedef struct
static struct
{
// All 8 endpoints including control IN & OUT (offset 1)
xfer_td_t xfer[EP_COUNT][2];
// +1 for ISO endpoints
xfer_td_t xfer[EP_COUNT + 1][2];
// Number of pending DMA that is started but not handled yet by dcd_int_handler().
// Since nRF can only carry one DMA can run at a time, this value is normally be either 0 or 1.
@@ -122,7 +129,7 @@ static void edpt_dma_start(volatile uint32_t* reg_startep)
// for the DMA complete by comparing current pending DMA with number of ENDED Events
uint32_t ended = 0;
while ( _dcd.dma_pending < ((uint8_t) ended) )
while ( _dcd.dma_pending > ((uint8_t) ended) )
{
ended = NRF_USBD->EVENTS_ENDISOIN + NRF_USBD->EVENTS_ENDISOOUT;
@@ -173,6 +180,7 @@ static void xact_out_prepare(uint8_t epnum)
{
// Write zero value to SIZE register will allow hw to ACK (accept data)
// If it is not already done by DMA
// SIZE.ISOOUT can also be accessed this way
NRF_USBD->SIZE.EPOUT[epnum] = 0;
}
@@ -183,15 +191,32 @@ static void xact_out_prepare(uint8_t epnum)
static void xact_out_dma(uint8_t epnum)
{
xfer_td_t* xfer = get_td(epnum, TUSB_DIR_OUT);
uint32_t xact_len;
uint8_t const xact_len = NRF_USBD->SIZE.EPOUT[epnum];
if (epnum == EP_ISO_NUM)
{
xact_len = NRF_USBD->SIZE.ISOOUT;
// If ZERO bit is set, ignore ISOOUT length
if (xact_len & USBD_SIZE_ISOOUT_ZERO_Msk) xact_len = 0;
else
{
// Trigger DMA move data from Endpoint -> SRAM
NRF_USBD->ISOOUT.PTR = (uint32_t) xfer->buffer;
NRF_USBD->ISOOUT.MAXCNT = xact_len;
// Trigger DMA move data from Endpoint -> SRAM
NRF_USBD->EPOUT[epnum].PTR = (uint32_t) xfer->buffer;
NRF_USBD->EPOUT[epnum].MAXCNT = xact_len;
edpt_dma_start(&NRF_USBD->TASKS_STARTISOOUT);
}
}
else
{
xact_len = (uint8_t)NRF_USBD->SIZE.EPOUT[epnum];
edpt_dma_start(&NRF_USBD->TASKS_STARTEPOUT[epnum]);
// Trigger DMA move data from Endpoint -> SRAM
NRF_USBD->EPOUT[epnum].PTR = (uint32_t) xfer->buffer;
NRF_USBD->EPOUT[epnum].MAXCNT = xact_len;
edpt_dma_start(&NRF_USBD->TASKS_STARTEPOUT[epnum]);
}
xfer->buffer += xact_len;
xfer->actual_len += xact_len;
}
@@ -205,7 +230,7 @@ static void xact_in_prepare(uint8_t epnum)
xfer_td_t* xfer = get_td(epnum, TUSB_DIR_IN);
// Each transaction is up to Max Packet Size
uint8_t const xact_len = tu_min16(xfer->total_len - xfer->actual_len, xfer->mps);
uint16_t const xact_len = tu_min16(xfer->total_len - xfer->actual_len, xfer->mps);
NRF_USBD->EPIN[epnum].PTR = (uint32_t) xfer->buffer;
NRF_USBD->EPIN[epnum].MAXCNT = xact_len;
@@ -296,20 +321,94 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
_dcd.xfer[epnum][dir].mps = desc_edpt->wMaxPacketSize.size;
if ( dir == TUSB_DIR_OUT )
if (desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS)
{
NRF_USBD->INTENSET = TU_BIT(USBD_INTEN_ENDEPOUT0_Pos + epnum);
NRF_USBD->EPOUTEN |= TU_BIT(epnum);
}else
if (dir == TUSB_DIR_OUT)
{
NRF_USBD->INTENSET = TU_BIT(USBD_INTEN_ENDEPOUT0_Pos + epnum);
NRF_USBD->EPOUTEN |= TU_BIT(epnum);
}else
{
NRF_USBD->INTENSET = TU_BIT(USBD_INTEN_ENDEPIN0_Pos + epnum);
NRF_USBD->EPINEN |= TU_BIT(epnum);
}
}
else
{
NRF_USBD->INTENSET = TU_BIT(USBD_INTEN_ENDEPIN0_Pos + epnum);
NRF_USBD->EPINEN |= TU_BIT(epnum);
TU_ASSERT(epnum == EP_ISO_NUM);
if (dir == TUSB_DIR_OUT)
{
// SPLIT ISO buffer when ISO IN endpoint is already opened.
if (_dcd.xfer[EP_ISO_NUM][TUSB_DIR_IN].mps) NRF_USBD->ISOSPLIT = USBD_ISOSPLIT_SPLIT_HalfIN;
// Clear old events
NRF_USBD->EVENTS_ENDISOOUT = 0;
// Clear SOF event in case interrupt was not enabled yet.
if ((NRF_USBD->INTEN & USBD_INTEN_SOF_Msk) == 0) NRF_USBD->EVENTS_SOF = 0;
// Enable SOF and ISOOUT interrupts, and ISOOUT endpoint.
NRF_USBD->INTENSET = USBD_INTENSET_ENDISOOUT_Msk | USBD_INTENSET_SOF_Msk;
NRF_USBD->EPOUTEN |= USBD_EPOUTEN_ISOOUT_Msk;
}
else
{
NRF_USBD->EVENTS_ENDISOIN = 0;
// SPLIT ISO buffer when ISO OUT endpoint is already opened.
if (_dcd.xfer[EP_ISO_NUM][TUSB_DIR_OUT].mps) NRF_USBD->ISOSPLIT = USBD_ISOSPLIT_SPLIT_HalfIN;
// Clear SOF event in case interrupt was not enabled yet.
if ((NRF_USBD->INTEN & USBD_INTEN_SOF_Msk) == 0) NRF_USBD->EVENTS_SOF = 0;
// Enable SOF and ISOIN interrupts, and ISOIN endpoint.
NRF_USBD->INTENSET = USBD_INTENSET_ENDISOIN_Msk | USBD_INTENSET_SOF_Msk;
NRF_USBD->EPINEN |= USBD_EPINEN_ISOIN_Msk;
}
}
__ISB(); __DSB();
return true;
}
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
if (epnum != EP_ISO_NUM)
{
// CBI
if (dir == TUSB_DIR_OUT)
{
NRF_USBD->INTENCLR = TU_BIT(USBD_INTEN_ENDEPOUT0_Pos + epnum);
NRF_USBD->EPOUTEN &= ~TU_BIT(epnum);
}
else
{
NRF_USBD->INTENCLR = TU_BIT(USBD_INTEN_ENDEPIN0_Pos + epnum);
NRF_USBD->EPINEN &= ~TU_BIT(epnum);
}
}
else
{
_dcd.xfer[EP_ISO_NUM][dir].mps = 0;
// ISO
if (dir == TUSB_DIR_OUT)
{
NRF_USBD->INTENCLR = USBD_INTENCLR_ENDISOOUT_Msk;
NRF_USBD->EPOUTEN &= ~USBD_EPOUTEN_ISOOUT_Msk;
NRF_USBD->EVENTS_ENDISOOUT = 0;
}
else
{
NRF_USBD->INTENCLR = USBD_INTENCLR_ENDISOIN_Msk;
NRF_USBD->EPINEN &= ~USBD_EPINEN_ISOIN_Msk;
}
// One of the ISO endpoints closed, no need to split buffers any more.
NRF_USBD->ISOSPLIT = USBD_ISOSPLIT_SPLIT_OneDir;
// When both ISO endpoint are close there is no need for SOF any more.
if (_dcd.xfer[EP_ISO_NUM][TUSB_DIR_IN].mps + _dcd.xfer[EP_ISO_NUM][TUSB_DIR_OUT].mps == 0) NRF_USBD->INTENCLR = USBD_INTENCLR_SOF_Msk;
}
__ISB(); __DSB();
}
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void) rhport;
@@ -361,11 +460,12 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
if ( tu_edpt_number(ep_addr) == 0 )
if ( epnum == 0 )
{
NRF_USBD->TASKS_EP0STALL = 1;
}else
}else if (epnum != EP_ISO_NUM)
{
NRF_USBD->EPSTALL = (USBD_EPSTALL_STALL_Stall << USBD_EPSTALL_STALL_Pos) | ep_addr;
}
@@ -376,8 +476,9 @@ void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
if ( tu_edpt_number(ep_addr) )
if ( epnum != 0 && epnum != EP_ISO_NUM )
{
// clear stall
NRF_USBD->EPSTALL = (USBD_EPSTALL_STALL_UnStall << USBD_EPSTALL_STALL_Pos) | ep_addr;
@@ -435,8 +536,31 @@ void dcd_int_handler(uint8_t rhport)
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
}
// ISOIN: Data was moved to endpoint buffer, client will be notified in SOF
if ( int_status & USBD_INTEN_ENDISOIN_Msk )
{
xfer_td_t* xfer = get_td(EP_ISO_NUM, TUSB_DIR_IN);
xfer->actual_len = NRF_USBD->ISOIN.AMOUNT;
// Data transferred from RAM to endpoint output buffer.
// Next transfer can be scheduled after SOF.
xfer->iso_in_transfer_ready = true;
}
if ( int_status & USBD_INTEN_SOF_Msk )
{
// ISOOUT: Transfer data gathered in previous frame from buffer to RAM
if (NRF_USBD->EPOUTEN & USBD_EPOUTEN_ISOOUT_Msk)
{
xact_out_dma(EP_ISO_NUM);
}
// ISOIN: Notify client that data was transferred
xfer_td_t* xfer = get_td(EP_ISO_NUM, TUSB_DIR_IN);
if ( xfer->iso_in_transfer_ready )
{
xfer->iso_in_transfer_ready = false;
dcd_event_xfer_complete(0, EP_ISO_NUM | TUSB_DIR_IN_MASK, xfer->actual_len, XFER_RESULT_SUCCESS, true);
}
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
@@ -518,8 +642,11 @@ void dcd_int_handler(uint8_t rhport)
* Note: Since nRF controller auto ACK next packet without SW awareness
* We must handle this stage before Host -> Endpoint just in case
* 2 event happens at once
* ISO OUT: Transaction must fit in single packed, it can be shorter then total
* len if Host decides to sent fewer bytes, it this case transaction is also
* complete and next transfer is not initiated here like for CBI.
*/
for(uint8_t epnum=0; epnum<8; epnum++)
for(uint8_t epnum=0; epnum<EP_COUNT+1; epnum++)
{
if ( tu_bit_test(int_status, USBD_INTEN_ENDEPOUT0_Pos+epnum))
{
@@ -530,7 +657,7 @@ void dcd_int_handler(uint8_t rhport)
xfer->data_received = false;
// Transfer complete if transaction len < Max Packet Size or total len is transferred
if ( (xact_len == xfer->mps) && (xfer->actual_len < xfer->total_len) )
if ( (epnum != EP_ISO_NUM) && (xact_len == xfer->mps) && (xfer->actual_len < xfer->total_len) )
{
// Prepare for next transaction
xact_out_prepare(epnum);

View File

@@ -203,6 +203,11 @@ static inline void reg16_clear_bits(__IO uint16_t *reg, uint16_t mask) {
*reg = (uint16_t)(*reg & ~mask);
}
// Bits in ISTR are cleared upon writing 0
static inline void clear_istr_bits(uint16_t mask) {
USB->ISTR = ~mask;
}
void dcd_init (uint8_t rhport)
{
/* Clocks should already be enabled */
@@ -231,7 +236,7 @@ void dcd_init (uint8_t rhport)
USB->BTABLE = DCD_STM32_BTABLE_BASE;
reg16_clear_bits(&USB->ISTR, USB_ISTR_ALL_EVENTS); // Clear pending interrupts
USB->ISTR = 0; // Clear pending interrupts
// Reset endpoints to disabled
for(uint32_t i=0; i<STFSDEV_EP_COUNT; i++)
@@ -276,9 +281,23 @@ void dcd_int_enable (uint8_t rhport)
#if CFG_TUSB_MCU == OPT_MCU_STM32F0 || CFG_TUSB_MCU == OPT_MCU_STM32L0
NVIC_EnableIRQ(USB_IRQn);
#elif CFG_TUSB_MCU == OPT_MCU_STM32F3
NVIC_EnableIRQ(USB_HP_CAN_TX_IRQn);
NVIC_EnableIRQ(USB_LP_CAN_RX0_IRQn);
NVIC_EnableIRQ(USBWakeUp_IRQn);
// Some STM32F302/F303 devices allow to remap the USB interrupt vectors from
// shared USB/CAN IRQs to separate CAN and USB IRQs.
// This dynamically checks if this remap is active to enable the right IRQs.
#ifdef SYSCFG_CFGR1_USB_IT_RMP
if (SYSCFG->CFGR1 & SYSCFG_CFGR1_USB_IT_RMP)
{
NVIC_EnableIRQ(USB_HP_IRQn);
NVIC_EnableIRQ(USB_LP_IRQn);
NVIC_EnableIRQ(USBWakeUp_RMP_IRQn);
}
else
#endif
{
NVIC_EnableIRQ(USB_HP_CAN_TX_IRQn);
NVIC_EnableIRQ(USB_LP_CAN_RX0_IRQn);
NVIC_EnableIRQ(USBWakeUp_IRQn);
}
#elif CFG_TUSB_MCU == OPT_MCU_STM32F1
NVIC_EnableIRQ(USB_HP_CAN1_TX_IRQn);
NVIC_EnableIRQ(USB_LP_CAN1_RX0_IRQn);
@@ -296,9 +315,23 @@ void dcd_int_disable(uint8_t rhport)
#if CFG_TUSB_MCU == OPT_MCU_STM32F0 || CFG_TUSB_MCU == OPT_MCU_STM32L0
NVIC_DisableIRQ(USB_IRQn);
#elif CFG_TUSB_MCU == OPT_MCU_STM32F3
NVIC_DisableIRQ(USB_HP_CAN_TX_IRQn);
NVIC_DisableIRQ(USB_LP_CAN_RX0_IRQn);
NVIC_DisableIRQ(USBWakeUp_IRQn);
// Some STM32F302/F303 devices allow to remap the USB interrupt vectors from
// shared USB/CAN IRQs to separate CAN and USB IRQs.
// This dynamically checks if this remap is active to disable the right IRQs.
#ifdef SYSCFG_CFGR1_USB_IT_RMP
if (SYSCFG->CFGR1 & SYSCFG_CFGR1_USB_IT_RMP)
{
NVIC_DisableIRQ(USB_HP_IRQn);
NVIC_DisableIRQ(USB_LP_IRQn);
NVIC_DisableIRQ(USBWakeUp_RMP_IRQn);
}
else
#endif
{
NVIC_DisableIRQ(USB_HP_CAN_TX_IRQn);
NVIC_DisableIRQ(USB_LP_CAN_RX0_IRQn);
NVIC_DisableIRQ(USBWakeUp_IRQn);
}
#elif CFG_TUSB_MCU == OPT_MCU_STM32F1
NVIC_DisableIRQ(USB_HP_CAN1_TX_IRQn);
NVIC_DisableIRQ(USB_LP_CAN1_RX0_IRQn);
@@ -512,7 +545,7 @@ void dcd_int_handler(uint8_t rhport) {
if(int_status & USB_ISTR_RESET) {
// USBRST is start of reset.
reg16_clear_bits(&USB->ISTR, USB_ISTR_RESET);
clear_istr_bits(USB_ISTR_RESET);
dcd_handle_bus_reset();
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
return; // Don't do the rest of the things here; perhaps they've been cleared?
@@ -523,14 +556,13 @@ void dcd_int_handler(uint8_t rhport) {
/* servicing of the endpoint correct transfer interrupt */
/* clear of the CTR flag into the sub */
dcd_ep_ctr_handler();
reg16_clear_bits(&USB->ISTR, USB_ISTR_CTR);
}
if (int_status & USB_ISTR_WKUP)
{
reg16_clear_bits(&USB->CNTR, USB_CNTR_LPMODE);
reg16_clear_bits(&USB->CNTR, USB_CNTR_FSUSP);
reg16_clear_bits(&USB->ISTR, USB_ISTR_WKUP);
clear_istr_bits(USB_ISTR_WKUP);
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
}
@@ -544,13 +576,13 @@ void dcd_int_handler(uint8_t rhport) {
USB->CNTR |= USB_CNTR_LPMODE;
/* clear of the ISTR bit must be done after setting of CNTR_FSUSP */
reg16_clear_bits(&USB->ISTR, USB_ISTR_SUSP);
clear_istr_bits(USB_ISTR_SUSP);
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
}
#if USE_SOF
if(int_status & USB_ISTR_SOF) {
reg16_clear_bits(&USB->ISTR, USB_ISTR_SOF);
clear_istr_bits(USB_ISTR_SOF);
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
#endif
@@ -564,7 +596,7 @@ void dcd_int_handler(uint8_t rhport) {
{
remoteWakeCountdown--;
}
reg16_clear_bits(&USB->ISTR, USB_ISTR_ESOF);
clear_istr_bits(USB_ISTR_ESOF);
}
}

View File

@@ -143,13 +143,17 @@ static inline uint32_t pcd_get_eptype(USB_TypeDef * USBx, uint32_t bEpNum)
static inline void pcd_clear_rx_ep_ctr(USB_TypeDef * USBx, uint32_t bEpNum)
{
uint32_t regVal = pcd_get_endpoint(USBx, bEpNum);
regVal &= 0x7FFFu & USB_EPREG_MASK;
regVal &= USB_EPREG_MASK;
regVal &= ~USB_EP_CTR_RX;
regVal |= USB_EP_CTR_TX; // preserve CTR_TX (clears on writing 0)
pcd_set_endpoint(USBx, bEpNum, regVal);
}
static inline void pcd_clear_tx_ep_ctr(USB_TypeDef * USBx, uint32_t bEpNum)
{
uint32_t regVal = pcd_get_endpoint(USBx, bEpNum);
regVal &= regVal & 0xFF7FU & USB_EPREG_MASK;
regVal &= USB_EPREG_MASK;
regVal &= ~USB_EP_CTR_TX;
regVal |= USB_EP_CTR_RX; // preserve CTR_RX (clears on writing 0)
pcd_set_endpoint(USBx, bEpNum,regVal);
}
/**

View File

@@ -4,6 +4,7 @@
* Copyright (c) 2018 Scott Shawcroft, 2019 William D. Jones for Adafruit Industries
* Copyright (c) 2019 Ha Thach (tinyusb.org)
* Copyright (c) 2020 Jan Duempelmann
* Copyright (c) 2020 Reinhard Panhuber
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@@ -46,53 +47,53 @@
#if TUSB_OPT_DEVICE_ENABLED && \
( (CFG_TUSB_MCU == OPT_MCU_STM32F1 && defined(STM32F1_SYNOPSYS)) || \
CFG_TUSB_MCU == OPT_MCU_STM32F2 || \
CFG_TUSB_MCU == OPT_MCU_STM32F4 || \
CFG_TUSB_MCU == OPT_MCU_STM32F7 || \
CFG_TUSB_MCU == OPT_MCU_STM32H7 || \
(CFG_TUSB_MCU == OPT_MCU_STM32L4 && defined(STM32L4_SYNOPSYS)) \
CFG_TUSB_MCU == OPT_MCU_STM32F2 || \
CFG_TUSB_MCU == OPT_MCU_STM32F4 || \
CFG_TUSB_MCU == OPT_MCU_STM32F7 || \
CFG_TUSB_MCU == OPT_MCU_STM32H7 || \
(CFG_TUSB_MCU == OPT_MCU_STM32L4 && defined(STM32L4_SYNOPSYS)) \
)
// EP_MAX : Max number of bi-directional endpoints including EP0
// EP_FIFO_SIZE : Size of dedicated USB SRAM
#if CFG_TUSB_MCU == OPT_MCU_STM32F1
#include "stm32f1xx.h"
#define EP_MAX_FS 4
#define EP_FIFO_SIZE_FS 1280
#include "stm32f1xx.h"
#define EP_MAX_FS 4
#define EP_FIFO_SIZE_FS 1280
#elif CFG_TUSB_MCU == OPT_MCU_STM32F2
#include "stm32f2xx.h"
#define EP_MAX_FS USB_OTG_FS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE_FS USB_OTG_FS_TOTAL_FIFO_SIZE
#include "stm32f2xx.h"
#define EP_MAX_FS USB_OTG_FS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE_FS USB_OTG_FS_TOTAL_FIFO_SIZE
#elif CFG_TUSB_MCU == OPT_MCU_STM32F4
#include "stm32f4xx.h"
#define EP_MAX_FS USB_OTG_FS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE_FS USB_OTG_FS_TOTAL_FIFO_SIZE
#define EP_MAX_HS USB_OTG_HS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE_HS USB_OTG_HS_TOTAL_FIFO_SIZE
#include "stm32f4xx.h"
#define EP_MAX_FS USB_OTG_FS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE_FS USB_OTG_FS_TOTAL_FIFO_SIZE
#define EP_MAX_HS USB_OTG_HS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE_HS USB_OTG_HS_TOTAL_FIFO_SIZE
#elif CFG_TUSB_MCU == OPT_MCU_STM32H7
#include "stm32h7xx.h"
#define EP_MAX_FS 9
#define EP_FIFO_SIZE_FS 4096
#define EP_MAX_HS 9
#define EP_FIFO_SIZE_HS 4096
#include "stm32h7xx.h"
#define EP_MAX_FS 9
#define EP_FIFO_SIZE_FS 4096
#define EP_MAX_HS 9
#define EP_FIFO_SIZE_HS 4096
#elif CFG_TUSB_MCU == OPT_MCU_STM32F7
#include "stm32f7xx.h"
#define EP_MAX_FS 6
#define EP_FIFO_SIZE_FS 1280
#define EP_MAX_HS 9
#define EP_FIFO_SIZE_HS 4096
#include "stm32f7xx.h"
#define EP_MAX_FS 6
#define EP_FIFO_SIZE_FS 1280
#define EP_MAX_HS 9
#define EP_FIFO_SIZE_HS 4096
#elif CFG_TUSB_MCU == OPT_MCU_STM32L4
#include "stm32l4xx.h"
#define EP_MAX_FS 6
#define EP_FIFO_SIZE_FS 1280
#include "stm32l4xx.h"
#define EP_MAX_FS 6
#define EP_FIFO_SIZE_FS 1280
#else
#error "Unsupported MCUs"
#error "Unsupported MCUs"
#endif
@@ -104,16 +105,16 @@
// On STM32 we associate Port0 to OTG_FS, and Port1 to OTG_HS
#if TUD_OPT_RHPORT == 0
#define EP_MAX EP_MAX_FS
#define EP_FIFO_SIZE EP_FIFO_SIZE_FS
#define RHPORT_REGS_BASE USB_OTG_FS_PERIPH_BASE
#define RHPORT_IRQn OTG_FS_IRQn
#define EP_MAX EP_MAX_FS
#define EP_FIFO_SIZE EP_FIFO_SIZE_FS
#define RHPORT_REGS_BASE USB_OTG_FS_PERIPH_BASE
#define RHPORT_IRQn OTG_FS_IRQn
#else
#define EP_MAX EP_MAX_HS
#define EP_FIFO_SIZE EP_FIFO_SIZE_HS
#define RHPORT_REGS_BASE USB_OTG_HS_PERIPH_BASE
#define RHPORT_IRQn OTG_HS_IRQn
#define EP_MAX EP_MAX_HS
#define EP_FIFO_SIZE EP_FIFO_SIZE_HS
#define RHPORT_REGS_BASE USB_OTG_HS_PERIPH_BASE
#define RHPORT_IRQn OTG_HS_IRQn
#endif
#define GLOBAL_BASE(_port) ((USB_OTG_GlobalTypeDef*) RHPORT_REGS_BASE)
@@ -135,8 +136,18 @@ typedef struct {
uint8_t * buffer;
uint16_t total_len;
uint16_t max_size;
uint8_t interval;
} xfer_ctl_t;
// EP size and transfer type report
typedef struct TU_ATTR_PACKED {
// The following format may look complicated but it is the most elegant way of addressing the required fields: EP number, EP direction, and EP transfer type.
// The codes assigned to those fields, according to the USB specification, can be neatly used as indices.
uint16_t ep_size[EP_MAX][2]; ///< dim 1: EP number, dim 2: EP direction denoted by TUSB_DIR_OUT (= 0) and TUSB_DIR_IN (= 1)
bool ep_transfer_type[EP_MAX][2][4]; ///< dim 1: EP number, dim 2: EP direction, dim 3: transfer type, where 0 = Control, 1 = Isochronous, 2 = Bulk, and 3 = Interrupt
///< I know very well that EP0 can only be used as control EP and we waste space here but for the sake of simplicity we accept that. It is used in a non-persistent way anyway!
} ep_sz_tt_report_t;
typedef volatile uint32_t * usb_fifo_t;
xfer_ctl_t xfer_status[EP_MAX][2];
@@ -300,7 +311,6 @@ static void set_speed(uint8_t rhport, tusb_speed_t speed)
dev->DCFG |= (bitvalue << USB_OTG_DCFG_DSPD_Pos);
}
#if defined(USB_HS_PHYC)
static bool USB_HS_PHYCInit(void)
{
@@ -366,7 +376,7 @@ static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t c
in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_EPENA | USB_OTG_DIEPCTL_CNAK;
// For ISO endpoint set correct odd/even bit for next frame.
if ((in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPTYP) == USB_OTG_DIEPCTL_EPTYP_0)
if ((in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPTYP) == USB_OTG_DIEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1)
{
// Take odd/even bit from frame counter.
uint32_t const odd_frame_now = (dev->DSTS & (1u << USB_OTG_DSTS_FNSOF_Pos));
@@ -383,6 +393,12 @@ static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t c
((total_bytes << USB_OTG_DOEPTSIZ_XFRSIZ_Pos) & USB_OTG_DOEPTSIZ_XFRSIZ_Msk);
out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_EPENA | USB_OTG_DOEPCTL_CNAK;
if ((out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPTYP) == USB_OTG_DOEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1)
{
// Take odd/even bit from frame counter.
uint32_t const odd_frame_now = (dev->DSTS & (1u << USB_OTG_DSTS_FNSOF_Pos));
out_ep[epnum].DOEPCTL |= (odd_frame_now ? USB_OTG_DOEPCTL_SD0PID_SEVNFRM_Msk : USB_OTG_DOEPCTL_SODDFRM_Msk);
}
}
}
@@ -455,8 +471,8 @@ void dcd_init (uint8_t rhport)
if ( rhport == 0 ) usb_otg->GCCFG |= USB_OTG_GCCFG_PWRDWN;
usb_otg->GINTMSK |= USB_OTG_GINTMSK_USBRST | USB_OTG_GINTMSK_ENUMDNEM |
USB_OTG_GINTMSK_USBSUSPM | USB_OTG_GINTMSK_WUIM |
USB_OTG_GINTMSK_RXFLVLM | (USE_SOF ? USB_OTG_GINTMSK_SOFM : 0);
USB_OTG_GINTMSK_USBSUSPM | USB_OTG_GINTMSK_WUIM |
USB_OTG_GINTMSK_RXFLVLM | (USE_SOF ? USB_OTG_GINTMSK_SOFM : 0);
// Enable global interrupt
usb_otg->GAHBCFG |= USB_OTG_GAHBCFG_GINT;
@@ -534,12 +550,13 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
xfer->max_size = desc_edpt->wMaxPacketSize.size;
xfer->interval = desc_edpt->bInterval;
if(dir == TUSB_DIR_OUT)
{
out_ep[epnum].DOEPCTL |= (1 << USB_OTG_DOEPCTL_USBAEP_Pos) |
(desc_edpt->bmAttributes.xfer << USB_OTG_DOEPCTL_EPTYP_Pos) |
(desc_edpt->wMaxPacketSize.size << USB_OTG_DOEPCTL_MPSIZ_Pos);
(desc_edpt->bmAttributes.xfer << USB_OTG_DOEPCTL_EPTYP_Pos) |
(desc_edpt->wMaxPacketSize.size << USB_OTG_DOEPCTL_MPSIZ_Pos);
dev->DAINTMSK |= (1 << (USB_OTG_DAINTMSK_OEPM_Pos + epnum));
}
@@ -571,7 +588,7 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
// - Bulk/ISO is max(EPSize, remaining-fifo / non-opened-EPIN)
uint16_t const fifo_remaining = EP_FIFO_SIZE/4 - _allocated_fifo_words;
uint16_t fifo_size = desc_edpt->wMaxPacketSize.size / 4;
uint16_t fifo_size = (desc_edpt->wMaxPacketSize.size + 3) / 4; // +3 for rounding up to next full word
if ( desc_edpt->bmAttributes.xfer != TUSB_XFER_INTERRUPT )
{
@@ -595,10 +612,10 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
_allocated_fifo_words += fifo_size;
in_ep[epnum].DIEPCTL |= (1 << USB_OTG_DIEPCTL_USBAEP_Pos) |
(epnum << USB_OTG_DIEPCTL_TXFNUM_Pos) |
(desc_edpt->bmAttributes.xfer << USB_OTG_DIEPCTL_EPTYP_Pos) |
(desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? USB_OTG_DOEPCTL_SD0PID_SEVNFRM : 0) |
(desc_edpt->wMaxPacketSize.size << USB_OTG_DIEPCTL_MPSIZ_Pos);
(epnum << USB_OTG_DIEPCTL_TXFNUM_Pos) |
(desc_edpt->bmAttributes.xfer << USB_OTG_DIEPCTL_EPTYP_Pos) |
(desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? USB_OTG_DOEPCTL_SD0PID_SEVNFRM : 0) |
(desc_edpt->wMaxPacketSize.size << USB_OTG_DIEPCTL_MPSIZ_Pos);
dev->DAINTMSK |= (1 << (USB_OTG_DAINTMSK_IEPM_Pos + epnum));
}
@@ -821,7 +838,7 @@ static void handle_rxflvl_ints(uint8_t rhport, USB_OTG_OUTEndpointTypeDef * out_
switch(pktsts) {
case 0x01: // Global OUT NAK (Interrupt)
break;
break;
case 0x02: // Out packet recvd
{
@@ -849,18 +866,18 @@ static void handle_rxflvl_ints(uint8_t rhport, USB_OTG_OUTEndpointTypeDef * out_
case 0x04: // Setup packet done (Interrupt)
out_ep[epnum].DOEPTSIZ |= (3 << USB_OTG_DOEPTSIZ_STUPCNT_Pos);
break;
break;
case 0x06: // Setup packet recvd
// We can receive up to three setup packets in succession, but
// only the last one is valid.
_setup_packet[0] = (* rx_fifo);
_setup_packet[1] = (* rx_fifo);
break;
break;
default: // Invalid
TU_BREAKPOINT();
break;
break;
}
}
@@ -1040,6 +1057,12 @@ void dcd_int_handler(uint8_t rhport)
// IEPINT bit read-only
handle_epin_ints(rhport, dev, in_ep);
}
// // Check for Incomplete isochronous IN transfer
// if(int_status & USB_OTG_GINTSTS_IISOIXFR) {
// printf(" IISOIXFR!\r\n");
//// TU_LOG2(" IISOIXFR!\r\n");
// }
}
#endif

View File

@@ -76,6 +76,10 @@
#include "class/msc/msc_device.h"
#endif
#if CFG_TUD_AUDIO
#include "class/audio/audio_device.h"
#endif
#if CFG_TUD_MIDI
#include "class/midi/midi_device.h"
#endif

View File

@@ -110,11 +110,13 @@
// Allow to use command line to change the config name/location
#ifndef CFG_TUSB_CONFIG_FILE
#define CFG_TUSB_CONFIG_FILE "tusb_config.h"
#ifdef CFG_TUSB_CONFIG_FILE
#include CFG_TUSB_CONFIG_FILE
#else
#include "tusb_config.h"
#endif
#include CFG_TUSB_CONFIG_FILE
/** \addtogroup group_configuration
* @{ */
@@ -207,6 +209,10 @@
#define CFG_TUD_HID 0
#endif
#ifndef CFG_TUD_AUDIO
#define CFG_TUD_AUDIO 0
#endif
#ifndef CFG_TUD_MIDI
#define CFG_TUD_MIDI 0
#endif