Merge branch 'master' into portability

This commit is contained in:
hathach
2023-03-17 23:53:38 +07:00
1109 changed files with 57916 additions and 19747 deletions

View File

@@ -56,9 +56,6 @@ static_assert(PICO_USB_HOST_INTERRUPT_ENDPOINTS <= USB_MAX_ENDPOINTS, "");
static struct hw_endpoint ep_pool[1 + PICO_USB_HOST_INTERRUPT_ENDPOINTS];
#define epx (ep_pool[0])
#define usb_hw_set ((usb_hw_t *)hw_set_alias(usb_hw))
#define usb_hw_clear ((usb_hw_t *)hw_clear_alias(usb_hw))
// Flags we set by default in sie_ctrl (we add other bits on top)
enum {
SIE_CTRL_BASE = USB_SIE_CTRL_SOF_EN_BITS | USB_SIE_CTRL_KEEP_ALIVE_EN_BITS |
@@ -81,84 +78,90 @@ static struct hw_endpoint *get_dev_ep(uint8_t dev_addr, uint8_t ep_addr)
TU_ATTR_ALWAYS_INLINE static inline uint8_t dev_speed(void)
{
return (usb_hw->sie_status & USB_SIE_STATUS_SPEED_BITS) >> USB_SIE_STATUS_SPEED_LSB;
return (usb_hw->sie_status & USB_SIE_STATUS_SPEED_BITS) >> USB_SIE_STATUS_SPEED_LSB;
}
static bool need_pre(uint8_t dev_addr)
TU_ATTR_ALWAYS_INLINE static inline bool need_pre(uint8_t dev_addr)
{
// If this device is different to the speed of the root device
// (i.e. is a low speed device on a full speed hub) then need pre
return hcd_port_speed_get(0) != tuh_speed_get(dev_addr);
// If this device is different to the speed of the root device
// (i.e. is a low speed device on a full speed hub) then need pre
return hcd_port_speed_get(0) != tuh_speed_get(dev_addr);
}
static void __tusb_irq_path_func(hw_xfer_complete)(struct hw_endpoint *ep, xfer_result_t xfer_result)
{
// Mark transfer as done before we tell the tinyusb stack
uint8_t dev_addr = ep->dev_addr;
uint8_t ep_addr = ep->ep_addr;
uint xferred_len = ep->xferred_len;
hw_endpoint_reset_transfer(ep);
hcd_event_xfer_complete(dev_addr, ep_addr, xferred_len, xfer_result, true);
// Mark transfer as done before we tell the tinyusb stack
uint8_t dev_addr = ep->dev_addr;
uint8_t ep_addr = ep->ep_addr;
uint xferred_len = ep->xferred_len;
hw_endpoint_reset_transfer(ep);
hcd_event_xfer_complete(dev_addr, ep_addr, xferred_len, xfer_result, true);
}
static void __tusb_irq_path_func(_handle_buff_status_bit)(uint bit, struct hw_endpoint *ep)
{
usb_hw_clear->buf_status = bit;
// EP may have been stalled?
assert(ep->active);
bool done = hw_endpoint_xfer_continue(ep);
if (done)
{
hw_xfer_complete(ep, XFER_RESULT_SUCCESS);
}
usb_hw_clear->buf_status = bit;
// EP may have been stalled?
assert(ep->active);
bool done = hw_endpoint_xfer_continue(ep);
if ( done )
{
hw_xfer_complete(ep, XFER_RESULT_SUCCESS);
}
}
static void __tusb_irq_path_func(hw_handle_buff_status)(void)
{
uint32_t remaining_buffers = usb_hw->buf_status;
pico_trace("buf_status 0x%08x\n", remaining_buffers);
uint32_t remaining_buffers = usb_hw->buf_status;
pico_trace("buf_status 0x%08x\n", remaining_buffers);
// Check EPX first
uint bit = 0b1;
if (remaining_buffers & bit)
// Check EPX first
uint bit = 0b1;
if ( remaining_buffers & bit )
{
remaining_buffers &= ~bit;
struct hw_endpoint * ep = &epx;
uint32_t ep_ctrl = *ep->endpoint_control;
if ( ep_ctrl & EP_CTRL_DOUBLE_BUFFERED_BITS )
{
TU_LOG(3, "Double Buffered: ");
}
else
{
TU_LOG(3, "Single Buffered: ");
}
TU_LOG_HEX(3, ep_ctrl);
_handle_buff_status_bit(bit, ep);
}
// Check "interrupt" (asynchronous) endpoints for both IN and OUT
for ( uint i = 1; i <= USB_HOST_INTERRUPT_ENDPOINTS && remaining_buffers; i++ )
{
// EPX is bit 0 & 1
// IEP1 IN is bit 2
// IEP1 OUT is bit 3
// IEP2 IN is bit 4
// IEP2 OUT is bit 5
// IEP3 IN is bit 6
// IEP3 OUT is bit 7
// etc
for ( uint j = 0; j < 2; j++ )
{
bit = 1 << (i * 2 + j);
if ( remaining_buffers & bit )
{
remaining_buffers &= ~bit;
struct hw_endpoint *ep = &epx;
uint32_t ep_ctrl = *ep->endpoint_control;
if (ep_ctrl & EP_CTRL_DOUBLE_BUFFERED_BITS)
{
TU_LOG(3, "Double Buffered: ");
}else
{
TU_LOG(3, "Single Buffered: ");
}
TU_LOG_HEX(3, ep_ctrl);
_handle_buff_status_bit(bit, ep);
_handle_buff_status_bit(bit, &ep_pool[i]);
}
}
}
// Check interrupt endpoints
for (uint i = 1; i <= USB_HOST_INTERRUPT_ENDPOINTS && remaining_buffers; i++)
{
// EPX is bit 0
// IEP1 is bit 2
// IEP2 is bit 4
// IEP3 is bit 6
// etc
bit = 1 << (i*2);
if (remaining_buffers & bit)
{
remaining_buffers &= ~bit;
_handle_buff_status_bit(bit, &ep_pool[i]);
}
}
if (remaining_buffers)
{
panic("Unhandled buffer %d\n", remaining_buffers);
}
if ( remaining_buffers )
{
panic("Unhandled buffer %d\n", remaining_buffers);
}
}
static void __tusb_irq_path_func(hw_trans_complete)(void)
@@ -181,70 +184,72 @@ static void __tusb_irq_path_func(hw_trans_complete)(void)
static void __tusb_irq_path_func(hcd_rp2040_irq)(void)
{
uint32_t status = usb_hw->ints;
uint32_t handled = 0;
uint32_t status = usb_hw->ints;
uint32_t handled = 0;
if (status & USB_INTS_HOST_CONN_DIS_BITS)
if ( status & USB_INTS_HOST_CONN_DIS_BITS )
{
handled |= USB_INTS_HOST_CONN_DIS_BITS;
if ( dev_speed() )
{
handled |= USB_INTS_HOST_CONN_DIS_BITS;
if (dev_speed())
{
hcd_event_device_attach(RHPORT_NATIVE, true);
}
else
{
hcd_event_device_remove(RHPORT_NATIVE, true);
}
// Clear speed change interrupt
usb_hw_clear->sie_status = USB_SIE_STATUS_SPEED_BITS;
hcd_event_device_attach(RHPORT_NATIVE, true);
}
else
{
hcd_event_device_remove(RHPORT_NATIVE, true);
}
if (status & USB_INTS_STALL_BITS)
{
// We have rx'd a stall from the device
// NOTE THIS SHOULD HAVE PRIORITY OVER BUFF_STATUS
// AND TRANS_COMPLETE as the stall is an alternative response
// to one of those events
pico_trace("Stall REC\n");
handled |= USB_INTS_STALL_BITS;
usb_hw_clear->sie_status = USB_SIE_STATUS_STALL_REC_BITS;
hw_xfer_complete(&epx, XFER_RESULT_STALLED);
}
// Clear speed change interrupt
usb_hw_clear->sie_status = USB_SIE_STATUS_SPEED_BITS;
}
if (status & USB_INTS_BUFF_STATUS_BITS)
{
handled |= USB_INTS_BUFF_STATUS_BITS;
TU_LOG(2, "Buffer complete\n");
hw_handle_buff_status();
}
if ( status & USB_INTS_STALL_BITS )
{
// We have rx'd a stall from the device
// NOTE THIS SHOULD HAVE PRIORITY OVER BUFF_STATUS
// AND TRANS_COMPLETE as the stall is an alternative response
// to one of those events
pico_trace("Stall REC\n");
handled |= USB_INTS_STALL_BITS;
usb_hw_clear->sie_status = USB_SIE_STATUS_STALL_REC_BITS;
hw_xfer_complete(&epx, XFER_RESULT_STALLED);
}
if (status & USB_INTS_TRANS_COMPLETE_BITS)
{
handled |= USB_INTS_TRANS_COMPLETE_BITS;
usb_hw_clear->sie_status = USB_SIE_STATUS_TRANS_COMPLETE_BITS;
TU_LOG(2, "Transfer complete\n");
hw_trans_complete();
}
if ( status & USB_INTS_BUFF_STATUS_BITS )
{
handled |= USB_INTS_BUFF_STATUS_BITS;
TU_LOG(2, "Buffer complete\n");
hw_handle_buff_status();
}
if (status & USB_INTS_ERROR_RX_TIMEOUT_BITS)
{
handled |= USB_INTS_ERROR_RX_TIMEOUT_BITS;
usb_hw_clear->sie_status = USB_SIE_STATUS_RX_TIMEOUT_BITS;
}
if ( status & USB_INTS_TRANS_COMPLETE_BITS )
{
handled |= USB_INTS_TRANS_COMPLETE_BITS;
usb_hw_clear->sie_status = USB_SIE_STATUS_TRANS_COMPLETE_BITS;
TU_LOG(2, "Transfer complete\n");
hw_trans_complete();
}
if (status & USB_INTS_ERROR_DATA_SEQ_BITS)
{
usb_hw_clear->sie_status = USB_SIE_STATUS_DATA_SEQ_ERROR_BITS;
TU_LOG(3, " Seq Error: [0] = 0x%04u [1] = 0x%04x\r\n", tu_u32_low16(*epx.buffer_control), tu_u32_high16(*epx.buffer_control));
panic("Data Seq Error \n");
}
if ( status & USB_INTS_ERROR_RX_TIMEOUT_BITS )
{
handled |= USB_INTS_ERROR_RX_TIMEOUT_BITS;
usb_hw_clear->sie_status = USB_SIE_STATUS_RX_TIMEOUT_BITS;
}
if (status ^ handled)
{
panic("Unhandled IRQ 0x%x\n", (uint) (status ^ handled));
}
if ( status & USB_INTS_ERROR_DATA_SEQ_BITS )
{
usb_hw_clear->sie_status = USB_SIE_STATUS_DATA_SEQ_ERROR_BITS;
TU_LOG(3, " Seq Error: [0] = 0x%04u [1] = 0x%04x\r\n",
tu_u32_low16(*epx.buffer_control),
tu_u32_high16(*epx.buffer_control));
panic("Data Seq Error \n");
}
if ( status ^ handled )
{
panic("Unhandled IRQ 0x%x\n", (uint) (status ^ handled));
}
}
void __tusb_irq_path_func(hcd_int_handler)(uint8_t rhport)
@@ -255,114 +260,118 @@ void __tusb_irq_path_func(hcd_int_handler)(uint8_t rhport)
static struct hw_endpoint *_next_free_interrupt_ep(void)
{
struct hw_endpoint *ep = NULL;
for (uint i = 1; i < TU_ARRAY_SIZE(ep_pool); i++)
struct hw_endpoint * ep = NULL;
for ( uint i = 1; i < TU_ARRAY_SIZE(ep_pool); i++ )
{
ep = &ep_pool[i];
if ( !ep->configured )
{
ep = &ep_pool[i];
if (!ep->configured)
{
// Will be configured by _hw_endpoint_init / _hw_endpoint_allocate
ep->interrupt_num = (uint8_t) (i - 1);
return ep;
}
// Will be configured by _hw_endpoint_init / _hw_endpoint_allocate
ep->interrupt_num = (uint8_t) (i - 1);
return ep;
}
return ep;
}
return ep;
}
static struct hw_endpoint *_hw_endpoint_allocate(uint8_t transfer_type)
{
struct hw_endpoint *ep = NULL;
struct hw_endpoint * ep = NULL;
if (transfer_type == TUSB_XFER_INTERRUPT)
{
ep = _next_free_interrupt_ep();
pico_info("Allocate interrupt ep %d\n", ep->interrupt_num);
assert(ep);
ep->buffer_control = &usbh_dpram->int_ep_buffer_ctrl[ep->interrupt_num].ctrl;
ep->endpoint_control = &usbh_dpram->int_ep_ctrl[ep->interrupt_num].ctrl;
// 0 for epx (double buffered): TODO increase to 1024 for ISO
// 2x64 for intep0
// 3x64 for intep1
// etc
ep->hw_data_buf = &usbh_dpram->epx_data[64 * (ep->interrupt_num + 2)];
}
else
{
ep = &epx;
ep->buffer_control = &usbh_dpram->epx_buf_ctrl;
ep->endpoint_control = &usbh_dpram->epx_ctrl;
ep->hw_data_buf = &usbh_dpram->epx_data[0];
}
if ( transfer_type != TUSB_XFER_CONTROL )
{
// Note: even though datasheet name these "Interrupt" endpoints. These are actually
// "Asynchronous" endpoints and can be used for other type such as: Bulk (ISO need confirmation)
ep = _next_free_interrupt_ep();
pico_info("Allocate %s ep %d\n", tu_edpt_type_str(transfer_type), ep->interrupt_num);
assert(ep);
ep->buffer_control = &usbh_dpram->int_ep_buffer_ctrl[ep->interrupt_num].ctrl;
ep->endpoint_control = &usbh_dpram->int_ep_ctrl[ep->interrupt_num].ctrl;
// 0 for epx (double buffered): TODO increase to 1024 for ISO
// 2x64 for intep0
// 3x64 for intep1
// etc
ep->hw_data_buf = &usbh_dpram->epx_data[64 * (ep->interrupt_num + 2)];
}
else
{
ep = &epx;
ep->buffer_control = &usbh_dpram->epx_buf_ctrl;
ep->endpoint_control = &usbh_dpram->epx_ctrl;
ep->hw_data_buf = &usbh_dpram->epx_data[0];
}
return ep;
return ep;
}
static void _hw_endpoint_init(struct hw_endpoint *ep, uint8_t dev_addr, uint8_t ep_addr, uint16_t wMaxPacketSize, uint8_t transfer_type, uint8_t bmInterval)
{
// Already has data buffer, endpoint control, and buffer control allocated at this point
assert(ep->endpoint_control);
assert(ep->buffer_control);
assert(ep->hw_data_buf);
// Already has data buffer, endpoint control, and buffer control allocated at this point
assert(ep->endpoint_control);
assert(ep->buffer_control);
assert(ep->hw_data_buf);
uint8_t const num = tu_edpt_number(ep_addr);
tusb_dir_t const dir = tu_edpt_dir(ep_addr);
uint8_t const num = tu_edpt_number(ep_addr);
tusb_dir_t const dir = tu_edpt_dir(ep_addr);
ep->ep_addr = ep_addr;
ep->dev_addr = dev_addr;
ep->ep_addr = ep_addr;
ep->dev_addr = dev_addr;
// For host, IN to host == RX, anything else rx == false
ep->rx = (dir == TUSB_DIR_IN);
// For host, IN to host == RX, anything else rx == false
ep->rx = (dir == TUSB_DIR_IN);
// Response to a setup packet on EP0 starts with pid of 1
ep->next_pid = (num == 0 ? 1u : 0u);
ep->wMaxPacketSize = wMaxPacketSize;
ep->transfer_type = transfer_type;
// Response to a setup packet on EP0 starts with pid of 1
ep->next_pid = (num == 0 ? 1u : 0u);
ep->wMaxPacketSize = wMaxPacketSize;
ep->transfer_type = transfer_type;
pico_trace("hw_endpoint_init dev %d ep %d %s xfer %d\n", ep->dev_addr, tu_edpt_number(ep->ep_addr), ep_dir_string[tu_edpt_dir(ep->ep_addr)], ep->transfer_type);
pico_trace("dev %d ep %d %s setup buffer @ 0x%p\n", ep->dev_addr, tu_edpt_number(ep->ep_addr), ep_dir_string[tu_edpt_dir(ep->ep_addr)], ep->hw_data_buf);
uint dpram_offset = hw_data_offset(ep->hw_data_buf);
// Bits 0-5 should be 0
assert(!(dpram_offset & 0b111111));
pico_trace("hw_endpoint_init dev %d ep %d %s xfer %d\n", ep->dev_addr, tu_edpt_number(ep->ep_addr),
ep_dir_string[tu_edpt_dir(ep->ep_addr)], ep->transfer_type);
pico_trace("dev %d ep %d %s setup buffer @ 0x%p\n", ep->dev_addr, tu_edpt_number(ep->ep_addr),
ep_dir_string[tu_edpt_dir(ep->ep_addr)], ep->hw_data_buf);
uint dpram_offset = hw_data_offset(ep->hw_data_buf);
// Bits 0-5 should be 0
assert(!(dpram_offset & 0b111111));
// Fill in endpoint control register with buffer offset
uint32_t ep_reg = EP_CTRL_ENABLE_BITS
| EP_CTRL_INTERRUPT_PER_BUFFER
| (ep->transfer_type << EP_CTRL_BUFFER_TYPE_LSB)
| dpram_offset;
if (bmInterval)
// Fill in endpoint control register with buffer offset
uint32_t ep_reg = EP_CTRL_ENABLE_BITS
| EP_CTRL_INTERRUPT_PER_BUFFER
| (ep->transfer_type << EP_CTRL_BUFFER_TYPE_LSB)
| dpram_offset;
if ( bmInterval )
{
ep_reg |= (uint32_t) ((bmInterval - 1) << EP_CTRL_HOST_INTERRUPT_INTERVAL_LSB);
}
*ep->endpoint_control = ep_reg;
pico_trace("endpoint control (0x%p) <- 0x%x\n", ep->endpoint_control, ep_reg);
ep->configured = true;
if ( ep != &epx )
{
// Endpoint has its own addr_endp and interrupt bits to be setup!
// This is an interrupt/async endpoint. so need to set up ADDR_ENDP register with:
// - device address
// - endpoint number / direction
// - preamble
uint32_t reg = (uint32_t) (dev_addr | (num << USB_ADDR_ENDP1_ENDPOINT_LSB));
if ( dir == TUSB_DIR_OUT )
{
ep_reg |= (uint32_t) ((bmInterval - 1) << EP_CTRL_HOST_INTERRUPT_INTERVAL_LSB);
reg |= USB_ADDR_ENDP1_INTEP_DIR_BITS;
}
*ep->endpoint_control = ep_reg;
pico_trace("endpoint control (0x%p) <- 0x%x\n", ep->endpoint_control, ep_reg);
ep->configured = true;
if (bmInterval)
if ( need_pre(dev_addr) )
{
// This is an interrupt endpoint
// so need to set up interrupt endpoint address control register with:
// device address
// endpoint number / direction
// preamble
uint32_t reg = (uint32_t) (dev_addr | (num << USB_ADDR_ENDP1_ENDPOINT_LSB));
if (dir == TUSB_DIR_OUT)
{
reg |= USB_ADDR_ENDP1_INTEP_DIR_BITS;
}
if (need_pre(dev_addr))
{
reg |= USB_ADDR_ENDP1_INTEP_PREAMBLE_BITS;
}
usb_hw->int_ep_addr_ctrl[ep->interrupt_num] = reg;
// Finally, enable interrupt that endpoint
usb_hw_set->int_ep_ctrl = 1 << (ep->interrupt_num + 1);
// If it's an interrupt endpoint we need to set up the buffer control
// register
reg |= USB_ADDR_ENDP1_INTEP_PREAMBLE_BITS;
}
usb_hw->int_ep_addr_ctrl[ep->interrupt_num] = reg;
// Finally, enable interrupt that endpoint
usb_hw_set->int_ep_ctrl = 1 << (ep->interrupt_num + 1);
// If it's an interrupt endpoint we need to set up the buffer control
// register
}
}
//--------------------------------------------------------------------+
@@ -380,6 +389,9 @@ bool hcd_init(uint8_t rhport)
// Force VBUS detect to always present, for now we assume vbus is always provided (without using VBUS En)
usb_hw->pwr = USB_USB_PWR_VBUS_DETECT_BITS | USB_USB_PWR_VBUS_DETECT_OVERRIDE_EN_BITS;
// Remove shared irq if it was previously added so as not to fill up shared irq slots
irq_remove_handler(USBCTRL_IRQ, hcd_rp2040_irq);
irq_add_shared_handler(USBCTRL_IRQ, hcd_rp2040_irq, PICO_SHARED_IRQ_HANDLER_HIGHEST_ORDER_PRIORITY);
// clear epx and interrupt eps
@@ -424,15 +436,17 @@ tusb_speed_t hcd_port_speed_get(uint8_t rhport)
{
(void) rhport;
assert(rhport == 0);
// TODO: Should enumval this register
switch (dev_speed())
switch ( dev_speed() )
{
case 1:
return TUSB_SPEED_LOW;
case 2:
return TUSB_SPEED_FULL;
default:
panic("Invalid speed\n"); // does not return
case 1:
return TUSB_SPEED_LOW;
case 2:
return TUSB_SPEED_FULL;
default:
panic("Invalid speed\n");
// return TUSB_SPEED_INVALID;
}
}
@@ -465,8 +479,8 @@ void hcd_device_close(uint8_t rhport, uint8_t dev_addr)
uint32_t hcd_frame_number(uint8_t rhport)
{
(void) rhport;
return usb_hw->sof_rd;
(void) rhport;
return usb_hw->sof_rd;
}
void hcd_int_enable(uint8_t rhport)
@@ -490,115 +504,116 @@ void hcd_int_disable(uint8_t rhport)
bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
(void) rhport;
pico_trace("hcd_edpt_open dev_addr %d, ep_addr %d\n", dev_addr, ep_desc->bEndpointAddress);
pico_trace("hcd_edpt_open dev_addr %d, ep_addr %d\n", dev_addr, ep_desc->bEndpointAddress);
// Allocated differently based on if it's an interrupt endpoint or not
struct hw_endpoint *ep = _hw_endpoint_allocate(ep_desc->bmAttributes.xfer);
TU_ASSERT(ep);
// Allocated differently based on if it's an interrupt endpoint or not
struct hw_endpoint *ep = _hw_endpoint_allocate(ep_desc->bmAttributes.xfer);
TU_ASSERT(ep);
_hw_endpoint_init(ep,
dev_addr,
ep_desc->bEndpointAddress,
tu_edpt_packet_size(ep_desc),
ep_desc->bmAttributes.xfer,
ep_desc->bInterval);
_hw_endpoint_init(ep,
dev_addr,
ep_desc->bEndpointAddress,
tu_edpt_packet_size(ep_desc),
ep_desc->bmAttributes.xfer,
ep_desc->bInterval);
return true;
return true;
}
bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t buflen)
{
(void) rhport;
(void) rhport;
pico_trace("hcd_edpt_xfer dev_addr %d, ep_addr 0x%x, len %d\n", dev_addr, ep_addr, buflen);
uint8_t const ep_num = tu_edpt_number(ep_addr);
tusb_dir_t const ep_dir = tu_edpt_dir(ep_addr);
pico_trace("hcd_edpt_xfer dev_addr %d, ep_addr 0x%x, len %d\n", dev_addr, ep_addr, buflen);
// Get appropriate ep. Either EPX or interrupt endpoint
struct hw_endpoint *ep = get_dev_ep(dev_addr, ep_addr);
TU_ASSERT(ep);
uint8_t const ep_num = tu_edpt_number(ep_addr);
tusb_dir_t const ep_dir = tu_edpt_dir(ep_addr);
// EP should be inactive
assert(!ep->active);
// Get appropriate ep. Either EPX or interrupt endpoint
struct hw_endpoint *ep = get_dev_ep(dev_addr, ep_addr);
// Control endpoint can change direction 0x00 <-> 0x80
if ( ep_addr != ep->ep_addr )
{
assert(ep_num == 0);
TU_ASSERT(ep);
// Direction has flipped on endpoint control so re init it but with same properties
_hw_endpoint_init(ep, dev_addr, ep_addr, ep->wMaxPacketSize, ep->transfer_type, 0);
}
// EP should be inactive
assert(!ep->active);
// If a normal transfer (non-interrupt) then initiate using
// sie ctrl registers. Otherwise interrupt ep registers should
// already be configured
if (ep == &epx) {
hw_endpoint_xfer_start(ep, buffer, buflen);
// Control endpoint can change direction 0x00 <-> 0x80
if ( ep_addr != ep->ep_addr )
{
assert(ep_num == 0);
// That has set up buffer control, endpoint control etc
// for host we have to initiate the transfer
usb_hw->dev_addr_ctrl = (uint32_t) (dev_addr | (ep_num << USB_ADDR_ENDP_ENDPOINT_LSB));
// Direction has flipped on endpoint control so re init it but with same properties
_hw_endpoint_init(ep, dev_addr, ep_addr, ep->wMaxPacketSize, ep->transfer_type, 0);
}
uint32_t flags = USB_SIE_CTRL_START_TRANS_BITS | SIE_CTRL_BASE |
(ep_dir ? USB_SIE_CTRL_RECEIVE_DATA_BITS : USB_SIE_CTRL_SEND_DATA_BITS);
// Set pre if we are a low speed device on full speed hub
flags |= need_pre(dev_addr) ? USB_SIE_CTRL_PREAMBLE_EN_BITS : 0;
// If a normal transfer (non-interrupt) then initiate using
// sie ctrl registers. Otherwise interrupt ep registers should
// already be configured
if ( ep == &epx )
{
hw_endpoint_xfer_start(ep, buffer, buflen);
usb_hw->sie_ctrl = flags;
}else
{
hw_endpoint_xfer_start(ep, buffer, buflen);
}
// That has set up buffer control, endpoint control etc
// for host we have to initiate the transfer
usb_hw->dev_addr_ctrl = (uint32_t) (dev_addr | (ep_num << USB_ADDR_ENDP_ENDPOINT_LSB));
return true;
uint32_t flags = USB_SIE_CTRL_START_TRANS_BITS | SIE_CTRL_BASE |
(ep_dir ? USB_SIE_CTRL_RECEIVE_DATA_BITS : USB_SIE_CTRL_SEND_DATA_BITS) |
(need_pre(dev_addr) ? USB_SIE_CTRL_PREAMBLE_EN_BITS : 0);
usb_hw->sie_ctrl = flags;
}else
{
hw_endpoint_xfer_start(ep, buffer, buflen);
}
return true;
}
bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet[8])
{
(void) rhport;
(void) rhport;
// Copy data into setup packet buffer
for(uint8_t i=0; i<8; i++)
{
usbh_dpram->setup_packet[i] = setup_packet[i];
}
// Copy data into setup packet buffer
for ( uint8_t i = 0; i < 8; i++ )
{
usbh_dpram->setup_packet[i] = setup_packet[i];
}
// Configure EP0 struct with setup info for the trans complete
struct hw_endpoint *ep = _hw_endpoint_allocate(0);
TU_ASSERT(ep);
// Configure EP0 struct with setup info for the trans complete
struct hw_endpoint * ep = _hw_endpoint_allocate(0);
TU_ASSERT(ep);
// EPX should be inactive
assert(!ep->active);
// EPX should be inactive
assert(!ep->active);
// EP0 out
_hw_endpoint_init(ep, dev_addr, 0x00, ep->wMaxPacketSize, 0, 0);
assert(ep->configured);
// EP0 out
_hw_endpoint_init(ep, dev_addr, 0x00, ep->wMaxPacketSize, 0, 0);
assert(ep->configured);
ep->remaining_len = 8;
ep->active = true;
ep->remaining_len = 8;
ep->active = true;
// Set device address
usb_hw->dev_addr_ctrl = dev_addr;
// Set device address
usb_hw->dev_addr_ctrl = dev_addr;
// Set pre if we are a low speed device on full speed hub
uint32_t const flags = SIE_CTRL_BASE | USB_SIE_CTRL_SEND_SETUP_BITS | USB_SIE_CTRL_START_TRANS_BITS |
(need_pre(dev_addr) ? USB_SIE_CTRL_PREAMBLE_EN_BITS : 0);
// Set pre if we are a low speed device on full speed hub
uint32_t const flags = SIE_CTRL_BASE | USB_SIE_CTRL_SEND_SETUP_BITS | USB_SIE_CTRL_START_TRANS_BITS |
(need_pre(dev_addr) ? USB_SIE_CTRL_PREAMBLE_EN_BITS : 0);
usb_hw->sie_ctrl = flags;
usb_hw->sie_ctrl = flags;
return true;
return true;
}
bool hcd_edpt_clear_stall(uint8_t dev_addr, uint8_t ep_addr)
{
(void) dev_addr;
(void) ep_addr;
(void) dev_addr;
(void) ep_addr;
panic("hcd_clear_stall"); // does not return
panic("hcd_clear_stall");
// return true;
}
#endif