Merge branch 'master' into update-host

This commit is contained in:
hathach
2020-09-01 12:02:25 +07:00
186 changed files with 30742 additions and 1038 deletions

252
src/class/bth/bth_device.c Executable file
View File

@@ -0,0 +1,252 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jerzy Kasenberg
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if (TUSB_OPT_DEVICE_ENABLED && CFG_TUD_BTH)
//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#include "bth_device.h"
#include <common/tusb_types.h>
#include <device/usbd_pvt.h>
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
typedef struct
{
uint8_t itf_num;
uint8_t ep_ev;
uint8_t ep_acl_in;
uint8_t ep_acl_out;
uint8_t ep_voice[2]; // Not used yet
uint8_t ep_voice_size[2][CFG_TUD_BTH_ISO_ALT_COUNT];
// Endpoint Transfer buffer
CFG_TUSB_MEM_ALIGN bt_hci_cmd_t hci_cmd;
CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_BTH_DATA_EPSIZE];
} btd_interface_t;
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
CFG_TUSB_MEM_SECTION btd_interface_t _btd_itf;
static bool bt_tx_data(uint8_t ep, void *data, uint16_t len)
{
// skip if previous transfer not complete
TU_VERIFY(!usbd_edpt_busy(TUD_OPT_RHPORT, ep));
TU_ASSERT(usbd_edpt_xfer(TUD_OPT_RHPORT, ep, data, len));
return true;
}
//--------------------------------------------------------------------+
// READ API
//--------------------------------------------------------------------+
//--------------------------------------------------------------------+
// WRITE API
//--------------------------------------------------------------------+
bool tud_bt_event_send(void *event, uint16_t event_len)
{
return bt_tx_data(_btd_itf.ep_ev, event, event_len);
}
bool tud_bt_acl_data_send(void *event, uint16_t event_len)
{
return bt_tx_data(_btd_itf.ep_acl_in, event, event_len);
}
//--------------------------------------------------------------------+
// USBD Driver API
//--------------------------------------------------------------------+
void btd_init(void)
{
tu_memclr(&_btd_itf, sizeof(_btd_itf));
}
void btd_reset(uint8_t rhport)
{
(void)rhport;
}
uint16_t btd_open(uint8_t rhport, tusb_desc_interface_t const *itf_desc, uint16_t max_len)
{
tusb_desc_endpoint_t const *desc_ep;
uint16_t drv_len = 0;
// Size of single alternative of ISO interface
const uint16_t iso_alt_itf_size = sizeof(tusb_desc_interface_t) + 2 * sizeof(tusb_desc_endpoint_t);
// Size of hci interface
const uint16_t hci_itf_size = sizeof(tusb_desc_interface_t) + 3 * sizeof(tusb_desc_endpoint_t);
// Ensure this is BT Primary Controller
TU_VERIFY(TUSB_CLASS_WIRELESS_CONTROLLER == itf_desc->bInterfaceClass &&
TUD_BT_APP_SUBCLASS == itf_desc->bInterfaceSubClass &&
TUD_BT_PROTOCOL_PRIMARY_CONTROLLER == itf_desc->bInterfaceProtocol, 0);
// Distinguish interface by number of endpoints, as both interface have same class, subclass and protocol
if (itf_desc->bNumEndpoints == 3 && max_len >= hci_itf_size)
{
_btd_itf.itf_num = itf_desc->bInterfaceNumber;
desc_ep = (tusb_desc_endpoint_t const *) tu_desc_next(itf_desc);
TU_ASSERT(TUSB_DESC_ENDPOINT == desc_ep->bDescriptorType && TUSB_XFER_INTERRUPT == desc_ep->bmAttributes.xfer, 0);
TU_ASSERT(usbd_edpt_open(rhport, desc_ep), 0);
_btd_itf.ep_ev = desc_ep->bEndpointAddress;
// Open endpoint pair
TU_ASSERT(usbd_open_edpt_pair(rhport, tu_desc_next(desc_ep), 2, TUSB_XFER_BULK, &_btd_itf.ep_acl_out,
&_btd_itf.ep_acl_in), 0);
// Prepare for incoming data from host
TU_ASSERT(usbd_edpt_xfer(rhport, _btd_itf.ep_acl_out, _btd_itf.epout_buf, CFG_TUD_BTH_DATA_EPSIZE), 0);
drv_len = hci_itf_size;
}
else if (itf_desc->bNumEndpoints == 2 && max_len >= iso_alt_itf_size)
{
uint8_t dir;
desc_ep = (tusb_desc_endpoint_t const *)tu_desc_next(itf_desc);
TU_ASSERT(itf_desc->bAlternateSetting < CFG_TUD_BTH_ISO_ALT_COUNT, 0);
TU_ASSERT(desc_ep->bDescriptorType == TUSB_DESC_ENDPOINT, 0);
dir = tu_edpt_dir(desc_ep->bEndpointAddress);
_btd_itf.ep_voice[dir] = desc_ep->bEndpointAddress;
// Store endpoint size for alternative
_btd_itf.ep_voice_size[dir][itf_desc->bAlternateSetting] = (uint8_t)desc_ep->wMaxPacketSize.size;
desc_ep = (tusb_desc_endpoint_t const *)tu_desc_next(desc_ep);
TU_ASSERT(desc_ep->bDescriptorType == TUSB_DESC_ENDPOINT, 0);
dir = tu_edpt_dir(desc_ep->bEndpointAddress);
_btd_itf.ep_voice[dir] = desc_ep->bEndpointAddress;
// Store endpoint size for alternative
_btd_itf.ep_voice_size[dir][itf_desc->bAlternateSetting] = (uint8_t)desc_ep->wMaxPacketSize.size;
drv_len += iso_alt_itf_size;
for (int i = 1; i < CFG_TUD_BTH_ISO_ALT_COUNT && drv_len + iso_alt_itf_size <= max_len; ++i) {
// Make sure rest of alternatives matches
itf_desc = (tusb_desc_interface_t const *)tu_desc_next(desc_ep);
if (itf_desc->bDescriptorType != TUSB_DESC_INTERFACE ||
TUSB_CLASS_WIRELESS_CONTROLLER != itf_desc->bInterfaceClass ||
TUD_BT_APP_SUBCLASS != itf_desc->bInterfaceSubClass ||
TUD_BT_PROTOCOL_PRIMARY_CONTROLLER != itf_desc->bInterfaceProtocol)
{
// Not an Iso interface instance
break;
}
TU_ASSERT(itf_desc->bAlternateSetting < CFG_TUD_BTH_ISO_ALT_COUNT, 0);
desc_ep = (tusb_desc_endpoint_t const *)tu_desc_next(itf_desc);
dir = tu_edpt_dir(desc_ep->bEndpointAddress);
// Verify that alternative endpoint are same as first ones
TU_ASSERT(desc_ep->bDescriptorType == TUSB_DESC_ENDPOINT &&
_btd_itf.ep_voice[dir] == desc_ep->bEndpointAddress, 0);
_btd_itf.ep_voice_size[dir][itf_desc->bAlternateSetting] = (uint8_t)desc_ep->wMaxPacketSize.size;
desc_ep = (tusb_desc_endpoint_t const *)tu_desc_next(desc_ep);
dir = tu_edpt_dir(desc_ep->bEndpointAddress);
// Verify that alternative endpoint are same as first ones
TU_ASSERT(desc_ep->bDescriptorType == TUSB_DESC_ENDPOINT &&
_btd_itf.ep_voice[dir] == desc_ep->bEndpointAddress, 0);
_btd_itf.ep_voice_size[dir][itf_desc->bAlternateSetting] = (uint8_t)desc_ep->wMaxPacketSize.size;
drv_len += iso_alt_itf_size;
}
}
return drv_len;
}
bool btd_control_complete(uint8_t rhport, tusb_control_request_t const *request)
{
(void)rhport;
// Handle class request only
TU_VERIFY(request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS);
if (tud_bt_hci_cmd_cb) tud_bt_hci_cmd_cb(&_btd_itf.hci_cmd, request->wLength);
return true;
}
bool btd_control_request(uint8_t rhport, tusb_control_request_t const *request)
{
(void)rhport;
if (request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS &&
request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE)
{
// HCI command packet addressing for single function Primary Controllers
TU_VERIFY(request->bRequest == 0 && request->wValue == 0 && request->wIndex == 0);
}
else if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_INTERFACE)
{
if (request->bRequest == TUSB_REQ_SET_INTERFACE && _btd_itf.itf_num + 1 == request->wIndex)
{
// TODO: Set interface it would involve changing size of endpoint size
}
else
{
// HCI command packet for Primary Controller function in a composite device
TU_VERIFY(request->bRequest == 0 && request->wValue == 0 && request->wIndex == _btd_itf.itf_num);
}
}
else return false;
return tud_control_xfer(rhport, request, &_btd_itf.hci_cmd, request->wLength);
}
bool btd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
{
(void)result;
// received new data from host
if (ep_addr == _btd_itf.ep_acl_out)
{
if (tud_bt_acl_data_received_cb) tud_bt_acl_data_received_cb(_btd_itf.epout_buf, xferred_bytes);
// prepare for next data
TU_ASSERT(usbd_edpt_xfer(rhport, _btd_itf.ep_acl_out, _btd_itf.epout_buf, CFG_TUD_BTH_DATA_EPSIZE));
}
else if (ep_addr == _btd_itf.ep_ev)
{
if (tud_bt_event_sent_cb) tud_bt_event_sent_cb((uint16_t)xferred_bytes);
}
else if (ep_addr == _btd_itf.ep_acl_in)
{
if (tud_bt_acl_data_sent_cb) tud_bt_acl_data_sent_cb((uint16_t)xferred_bytes);
}
return TUSB_ERROR_NONE;
}
#endif

110
src/class/bth/bth_device.h Executable file
View File

@@ -0,0 +1,110 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jerzy Kasenberg
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#ifndef _TUSB_BTH_DEVICE_H_
#define _TUSB_BTH_DEVICE_H_
#include <common/tusb_common.h>
#include <device/usbd.h>
//--------------------------------------------------------------------+
// Class Driver Configuration
//--------------------------------------------------------------------+
#ifndef CFG_TUD_BTH_EVENT_EPSIZE
#define CFG_TUD_BTH_EVENT_EPSIZE 16
#endif
#ifndef CFG_TUD_BTH_DATA_EPSIZE
#define CFG_TUD_BTH_DATA_EPSIZE 64
#endif
typedef struct TU_ATTR_PACKED
{
uint16_t op_code;
uint8_t param_length;
uint8_t param[255];
} bt_hci_cmd_t;
#ifdef __cplusplus
extern "C" {
#endif
//--------------------------------------------------------------------+
// Application Callback API (weak is optional)
//--------------------------------------------------------------------+
// Invoked when HCI command was received over USB from Bluetooth host.
// Detailed format is described in Bluetooth core specification Vol 2,
// Part E, 5.4.1.
// Length of the command is from 3 bytes (2 bytes for OpCode,
// 1 byte for parameter total length) to 258.
TU_ATTR_WEAK void tud_bt_hci_cmd_cb(void *hci_cmd, size_t cmd_len);
// Invoked when ACL data was received over USB from Bluetooth host.
// Detailed format is described in Bluetooth core specification Vol 2,
// Part E, 5.4.2.
// Length is from 4 bytes, (12 bits for Handle, 4 bits for flags
// and 16 bits for data total length) to endpoint size.
TU_ATTR_WEAK void tud_bt_acl_data_received_cb(void *acl_data, uint16_t data_len);
// Called when event sent with tud_bt_event_send() was delivered to BT stack.
// Controller can release/reuse buffer with Event packet at this point.
TU_ATTR_WEAK void tud_bt_event_sent_cb(uint16_t sent_bytes);
// Called when ACL data that was sent with tud_bt_acl_data_send()
// was delivered to BT stack.
// Controller can release/reuse buffer with ACL packet at this point.
TU_ATTR_WEAK void tud_bt_acl_data_sent_cb(uint16_t sent_bytes);
// Bluetooth controller calls this function when it wants to send even packet
// as described in Bluetooth core specification Vol 2, Part E, 5.4.4.
// Event has at least 2 bytes, first is Event code second contains parameter
// total length. Controller can release/reuse event memory after
// tud_bt_event_sent_cb() is called.
bool tud_bt_event_send(void *event, uint16_t event_len);
// Bluetooth controller calls this to send ACL data packet
// as described in Bluetooth core specification Vol 2, Part E, 5.4.2
// Minimum length is 4 bytes, (12 bits for Handle, 4 bits for flags
// and 16 bits for data total length). Upper limit is not limited
// to endpoint size since buffer is allocate by controller
// and must not be reused till tud_bt_acl_data_sent_cb() is called.
bool tud_bt_acl_data_send(void *acl_data, uint16_t data_len);
//--------------------------------------------------------------------+
// Internal Class Driver API
//--------------------------------------------------------------------+
void btd_init (void);
void btd_reset (uint8_t rhport);
uint16_t btd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool btd_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool btd_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool btd_xfer_cb (uint8_t rhport, uint8_t edpt_addr, xfer_result_t result, uint32_t xferred_bytes);
#ifdef __cplusplus
}
#endif
#endif /* _TUSB_BTH_DEVICE_H_ */

View File

@@ -61,8 +61,8 @@ typedef struct
#endif
// Endpoint Transfer buffer
CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_CDC_EPSIZE];
CFG_TUSB_MEM_ALIGN uint8_t epin_buf[CFG_TUD_CDC_EPSIZE];
CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_CDC_EP_BUFSIZE];
CFG_TUSB_MEM_ALIGN uint8_t epin_buf[CFG_TUD_CDC_EP_BUFSIZE];
}cdcd_interface_t;
@@ -82,9 +82,9 @@ static void _prep_out_transaction (uint8_t itf)
// Prepare for incoming data but only allow what we can store in the ring buffer.
uint16_t max_read = tu_fifo_remaining(&p_cdc->rx_ff);
if ( max_read >= TU_ARRAY_SIZE(p_cdc->epout_buf) )
if ( max_read >= sizeof(p_cdc->epout_buf) )
{
usbd_edpt_xfer(TUD_OPT_RHPORT, p_cdc->ep_out, p_cdc->epout_buf, TU_ARRAY_SIZE(p_cdc->epout_buf));
usbd_edpt_xfer(TUD_OPT_RHPORT, p_cdc->ep_out, p_cdc->epout_buf, sizeof(p_cdc->epout_buf));
}
}
@@ -148,7 +148,7 @@ uint32_t tud_cdc_n_write(uint8_t itf, void const* buffer, uint32_t bufsize)
#if 0 // TODO issue with circuitpython's REPL
// flush if queue more than endpoint size
if ( tu_fifo_count(&_cdcd_itf[itf].tx_ff) >= CFG_TUD_CDC_EPSIZE )
if ( tu_fifo_count(&_cdcd_itf[itf].tx_ff) >= CFG_TUD_CDC_EP_BUFSIZE )
{
tud_cdc_n_write_flush(itf);
}
@@ -164,7 +164,7 @@ uint32_t tud_cdc_n_write_flush (uint8_t itf)
// skip if previous transfer not complete yet
TU_VERIFY( !usbd_edpt_busy(TUD_OPT_RHPORT, p_cdc->ep_in), 0 );
uint16_t count = tu_fifo_read_n(&_cdcd_itf[itf].tx_ff, p_cdc->epin_buf, TU_ARRAY_SIZE(p_cdc->epin_buf));
uint16_t count = tu_fifo_read_n(&p_cdc->tx_ff, p_cdc->epin_buf, sizeof(p_cdc->epin_buf));
if ( count )
{
TU_VERIFY( tud_cdc_n_connected(itf), 0 ); // fifo is empty if not connected
@@ -222,14 +222,14 @@ void cdcd_reset(uint8_t rhport)
}
}
bool cdcd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length)
uint16_t cdcd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len)
{
// Only support ACM subclass
TU_VERIFY ( TUSB_CLASS_CDC == itf_desc->bInterfaceClass &&
CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL == itf_desc->bInterfaceSubClass);
CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL == itf_desc->bInterfaceSubClass, 0);
// Note: 0xFF can be used with RNDIS
TU_VERIFY(tu_within(CDC_COMM_PROTOCOL_NONE, itf_desc->bInterfaceProtocol, CDC_COMM_PROTOCOL_ATCOMMAND_CDMA));
TU_VERIFY(tu_within(CDC_COMM_PROTOCOL_NONE, itf_desc->bInterfaceProtocol, CDC_COMM_PROTOCOL_ATCOMMAND_CDMA), 0);
// Find available interface
cdcd_interface_t * p_cdc = NULL;
@@ -242,30 +242,30 @@ bool cdcd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t
break;
}
}
TU_ASSERT(p_cdc);
TU_ASSERT(p_cdc, 0);
//------------- Control Interface -------------//
p_cdc->itf_num = itf_desc->bInterfaceNumber;
uint16_t drv_len = sizeof(tusb_desc_interface_t);
uint8_t const * p_desc = tu_desc_next( itf_desc );
(*p_length) = sizeof(tusb_desc_interface_t);
// Communication Functional Descriptors
while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) )
while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) && drv_len <= max_len )
{
(*p_length) += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
if ( TUSB_DESC_ENDPOINT == tu_desc_type(p_desc) )
{
// notification endpoint if any
TU_ASSERT( usbd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc) );
TU_ASSERT( usbd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc), 0 );
p_cdc->ep_notif = ((tusb_desc_endpoint_t const *) p_desc)->bEndpointAddress;
(*p_length) += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
//------------- Data Interface (if any) -------------//
@@ -273,18 +273,19 @@ bool cdcd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t
(TUSB_CLASS_CDC_DATA == ((tusb_desc_interface_t const *) p_desc)->bInterfaceClass) )
{
// next to endpoint descriptor
p_desc = tu_desc_next(p_desc);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
// Open endpoint pair
TU_ASSERT( usbd_open_edpt_pair(rhport, p_desc, 2, TUSB_XFER_BULK, &p_cdc->ep_out, &p_cdc->ep_in) );
TU_ASSERT( usbd_open_edpt_pair(rhport, p_desc, 2, TUSB_XFER_BULK, &p_cdc->ep_out, &p_cdc->ep_in), 0 );
(*p_length) += sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t);
drv_len += 2*sizeof(tusb_desc_endpoint_t);
}
// Prepare for incoming data
_prep_out_transaction(cdc_id);
return true;
return drv_len;
}
// Invoked when class request DATA stage is finished.
@@ -363,7 +364,7 @@ bool cdcd_control_request(uint8_t rhport, tusb_control_request_t const * request
tud_control_status(rhport, request);
// Invoke callback
if ( tud_cdc_line_state_cb) tud_cdc_line_state_cb(itf, dtr, rts);
if ( tud_cdc_line_state_cb ) tud_cdc_line_state_cb(itf, dtr, rts);
}
break;
@@ -375,7 +376,6 @@ bool cdcd_control_request(uint8_t rhport, tusb_control_request_t const * request
bool cdcd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
{
(void) rhport;
(void) result;
uint8_t itf;
@@ -392,6 +392,7 @@ bool cdcd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_
// Received new data
if ( ep_addr == p_cdc->ep_out )
{
// TODO search for wanted char first for better performance
for(uint32_t i=0; i<xferred_bytes; i++)
{
tu_fifo_write(&p_cdc->rx_ff, &p_cdc->epout_buf[i]);
@@ -415,13 +416,17 @@ bool cdcd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_
// Though maybe the baudrate is not really important !!!
if ( ep_addr == p_cdc->ep_in )
{
// invoke transmit callback to possibly refill tx fifo
if ( tud_cdc_tx_complete_cb ) tud_cdc_tx_complete_cb(itf);
if ( 0 == tud_cdc_n_write_flush(itf) )
{
// There is no data left, a ZLP should be sent if
// xferred_bytes is multiple of EP size and not zero
if ( xferred_bytes && (0 == (xferred_bytes % CFG_TUD_CDC_EPSIZE)) )
// FIXME CFG_TUD_CDC_EP_BUFSIZE is not Endpoint packet size
if ( xferred_bytes && (0 == (xferred_bytes % CFG_TUD_CDC_EP_BUFSIZE)) )
{
usbd_edpt_xfer(TUD_OPT_RHPORT, p_cdc->ep_in, NULL, 0);
usbd_edpt_xfer(rhport, p_cdc->ep_in, NULL, 0);
}
}
}

View File

@@ -34,8 +34,13 @@
//--------------------------------------------------------------------+
// Class Driver Configuration
//--------------------------------------------------------------------+
#ifndef CFG_TUD_CDC_EPSIZE
#define CFG_TUD_CDC_EPSIZE 64
#if !defined(CFG_TUD_CDC_EP_BUFSIZE) && defined(CFG_TUD_CDC_EPSIZE)
#warning CFG_TUD_CDC_EPSIZE is renamed to CFG_TUD_CDC_EP_BUFSIZE, please update to use the new name
#define CFG_TUD_CDC_EP_BUFSIZE CFG_TUD_CDC_EPSIZE
#endif
#ifndef CFG_TUD_CDC_EP_BUFSIZE
#define CFG_TUD_CDC_EP_BUFSIZE (TUD_OPT_HIGH_SPEED ? 512 : 64)
#endif
#ifdef __cplusplus
@@ -52,7 +57,6 @@
// CFG_TUD_CDC > 1
//--------------------------------------------------------------------+
// Check if terminal is connected to this port
bool tud_cdc_n_connected (uint8_t itf);
@@ -95,7 +99,7 @@ uint32_t tud_cdc_n_write_str (uint8_t itf, char const* str);
// Force sending data if possible, return number of forced bytes
uint32_t tud_cdc_n_write_flush (uint8_t itf);
// Return number of characters available for writing
// Return the number of bytes (characters) available for writing to TX FIFO buffer in a single n_write operation.
uint32_t tud_cdc_n_write_available (uint8_t itf);
//--------------------------------------------------------------------+
@@ -128,6 +132,9 @@ TU_ATTR_WEAK void tud_cdc_rx_cb(uint8_t itf);
// Invoked when received `wanted_char`
TU_ATTR_WEAK void tud_cdc_rx_wanted_cb(uint8_t itf, char wanted_char);
// Invoked when space becomes available in TX buffer
TU_ATTR_WEAK void tud_cdc_tx_complete_cb(uint8_t itf);
// Invoked when line state DTR & RTS are changed via SET_CONTROL_LINE_STATE
TU_ATTR_WEAK void tud_cdc_line_state_cb(uint8_t itf, bool dtr, bool rts);
@@ -229,12 +236,12 @@ static inline uint32_t tud_cdc_write_available(void)
//--------------------------------------------------------------------+
// INTERNAL USBD-CLASS DRIVER API
//--------------------------------------------------------------------+
void cdcd_init (void);
void cdcd_reset (uint8_t rhport);
bool cdcd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length);
bool cdcd_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool cdcd_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool cdcd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
void cdcd_init (void);
void cdcd_reset (uint8_t rhport);
uint16_t cdcd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool cdcd_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool cdcd_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool cdcd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
#ifdef __cplusplus
}

View File

@@ -44,6 +44,14 @@ typedef enum {
DFU_REQUEST_ABORT = 6,
} dfu_requests_t;
typedef struct TU_ATTR_PACKED
{
uint8_t status;
uint8_t poll_timeout[3];
uint8_t state;
uint8_t istring;
} dfu_status_t;
//--------------------------------------------------------------------+
// USBD Driver API
//--------------------------------------------------------------------+
@@ -56,24 +64,25 @@ void dfu_rtd_reset(uint8_t rhport)
(void) rhport;
}
bool dfu_rtd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length)
uint16_t dfu_rtd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len)
{
(void) rhport;
(void) max_len;
// Ensure this is DFU Runtime
TU_VERIFY(itf_desc->bInterfaceSubClass == TUD_DFU_APP_SUBCLASS);
TU_VERIFY(itf_desc->bInterfaceProtocol == DFU_PROTOCOL_RT);
TU_VERIFY(itf_desc->bInterfaceSubClass == TUD_DFU_APP_SUBCLASS &&
itf_desc->bInterfaceProtocol == DFU_PROTOCOL_RT, 0);
uint8_t const * p_desc = tu_desc_next( itf_desc );
(*p_length) = sizeof(tusb_desc_interface_t);
uint16_t drv_len = sizeof(tusb_desc_interface_t);
if ( TUSB_DESC_FUNCTIONAL == tu_desc_type(p_desc) )
{
(*p_length) += p_desc[DESC_OFFSET_LEN];
p_desc = tu_desc_next(p_desc);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
return true;
return drv_len;
}
bool dfu_rtd_control_complete(uint8_t rhport, tusb_control_request_t const * request)
@@ -87,10 +96,19 @@ bool dfu_rtd_control_complete(uint8_t rhport, tusb_control_request_t const * req
bool dfu_rtd_control_request(uint8_t rhport, tusb_control_request_t const * request)
{
// Handle class request only
TU_VERIFY(request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS);
TU_VERIFY(request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_INTERFACE);
// dfu-util will try to claim the interface with SET_INTERFACE request before sending DFU request
if ( TUSB_REQ_TYPE_STANDARD == request->bmRequestType_bit.type &&
TUSB_REQ_SET_INTERFACE == request->bRequest )
{
tud_control_status(rhport, request);
return true;
}
// Handle class request only from here
TU_VERIFY(request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS);
switch ( request->bRequest )
{
case DFU_REQUEST_DETACH:
@@ -98,6 +116,14 @@ bool dfu_rtd_control_request(uint8_t rhport, tusb_control_request_t const * requ
tud_dfu_rt_reboot_to_dfu();
break;
case DFU_REQUEST_GETSTATUS:
{
// status = OK, poll timeout = 0, state = app idle, istring = 0
uint8_t status_response[6] = { 0, 0, 0, 0, 0, 0 };
tud_control_xfer(rhport, request, status_response, sizeof(status_response));
}
break;
default: return false; // stall unsupported request
}

View File

@@ -63,12 +63,12 @@ TU_ATTR_WEAK void tud_dfu_rt_reboot_to_dfu(void); // TODO rename to _cb conventi
//--------------------------------------------------------------------+
// Internal Class Driver API
//--------------------------------------------------------------------+
void dfu_rtd_init(void);
void dfu_rtd_reset(uint8_t rhport);
bool dfu_rtd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length);
bool dfu_rtd_control_request(uint8_t rhport, tusb_control_request_t const * request);
bool dfu_rtd_control_complete(uint8_t rhport, tusb_control_request_t const * request);
bool dfu_rtd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void dfu_rtd_init(void);
void dfu_rtd_reset(uint8_t rhport);
uint16_t dfu_rtd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool dfu_rtd_control_request(uint8_t rhport, tusb_control_request_t const * request);
bool dfu_rtd_control_complete(uint8_t rhport, tusb_control_request_t const * request);
bool dfu_rtd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
#ifdef __cplusplus
}

View File

@@ -48,8 +48,8 @@ typedef struct
uint8_t idle_rate; // up to application to handle idle rate
uint16_t report_desc_len;
CFG_TUSB_MEM_ALIGN uint8_t epin_buf[CFG_TUD_HID_BUFSIZE];
CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_HID_BUFSIZE];
CFG_TUSB_MEM_ALIGN uint8_t epin_buf[CFG_TUD_HID_EP_BUFSIZE];
CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_HID_EP_BUFSIZE];
tusb_hid_descriptor_hid_t const * hid_descriptor;
} hidd_interface_t;
@@ -86,7 +86,7 @@ bool tud_hid_report(uint8_t report_id, void const* report, uint8_t len)
if (report_id)
{
len = tu_min8(len, CFG_TUD_HID_BUFSIZE-1);
len = tu_min8(len, CFG_TUD_HID_EP_BUFSIZE-1);
p_hid->epin_buf[0] = report_id;
memcpy(p_hid->epin_buf+1, report, len);
@@ -94,7 +94,7 @@ bool tud_hid_report(uint8_t report_id, void const* report, uint8_t len)
}else
{
// If report id = 0, skip ID field
len = tu_min8(len, CFG_TUD_HID_BUFSIZE);
len = tu_min8(len, CFG_TUD_HID_EP_BUFSIZE);
memcpy(p_hid->epin_buf, report, len);
}
@@ -158,11 +158,13 @@ void hidd_reset(uint8_t rhport)
tu_memclr(_hidd_itf, sizeof(_hidd_itf));
}
bool hidd_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t *p_len)
uint16_t hidd_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t max_len)
{
TU_VERIFY(TUSB_CLASS_HID == desc_itf->bInterfaceClass);
TU_VERIFY(TUSB_CLASS_HID == desc_itf->bInterfaceClass, 0);
uint8_t const *p_desc = (uint8_t const *) desc_itf;
// len = interface + hid + n*endpoints
uint16_t const drv_len = sizeof(tusb_desc_interface_t) + sizeof(tusb_hid_descriptor_hid_t) + desc_itf->bNumEndpoints*sizeof(tusb_desc_endpoint_t);
TU_ASSERT(max_len >= drv_len, 0);
// Find available interface
hidd_interface_t * p_hid = NULL;
@@ -175,29 +177,38 @@ bool hidd_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t
break;
}
}
TU_ASSERT(p_hid);
TU_ASSERT(p_hid, 0);
uint8_t const *p_desc = (uint8_t const *) desc_itf;
//------------- HID descriptor -------------//
p_desc = tu_desc_next(p_desc);
p_hid->hid_descriptor = (tusb_hid_descriptor_hid_t const *) p_desc;
TU_ASSERT(HID_DESC_TYPE_HID == p_hid->hid_descriptor->bDescriptorType);
TU_ASSERT(HID_DESC_TYPE_HID == p_hid->hid_descriptor->bDescriptorType, 0);
//------------- Endpoint Descriptor -------------//
p_desc = tu_desc_next(p_desc);
TU_ASSERT(usbd_open_edpt_pair(rhport, p_desc, desc_itf->bNumEndpoints, TUSB_XFER_INTERRUPT, &p_hid->ep_out, &p_hid->ep_in));
TU_ASSERT(usbd_open_edpt_pair(rhport, p_desc, desc_itf->bNumEndpoints, TUSB_XFER_INTERRUPT, &p_hid->ep_out, &p_hid->ep_in), 0);
if ( desc_itf->bInterfaceSubClass == HID_SUBCLASS_BOOT ) p_hid->boot_protocol = desc_itf->bInterfaceProtocol;
p_hid->boot_mode = false; // default mode is REPORT
p_hid->itf_num = desc_itf->bInterfaceNumber;
memcpy(&p_hid->report_desc_len, &(p_hid->hid_descriptor->wReportLength), 2);
*p_len = sizeof(tusb_desc_interface_t) + sizeof(tusb_hid_descriptor_hid_t) + desc_itf->bNumEndpoints*sizeof(tusb_desc_endpoint_t);
// Use offsetof to avoid pointer to the odd/misaligned address
memcpy(&p_hid->report_desc_len, (uint8_t*) p_hid->hid_descriptor + offsetof(tusb_hid_descriptor_hid_t, wReportLength), 2);
// Prepare for output endpoint
if (p_hid->ep_out) TU_ASSERT(usbd_edpt_xfer(rhport, p_hid->ep_out, p_hid->epout_buf, sizeof(p_hid->epout_buf)));
if (p_hid->ep_out)
{
if ( !usbd_edpt_xfer(rhport, p_hid->ep_out, p_hid->epout_buf, sizeof(p_hid->epout_buf)) )
{
TU_LOG1_FAILED();
TU_BREAKPOINT();
}
}
return true;
return drv_len;
}
// Handle class control request

View File

@@ -39,8 +39,14 @@
// Class Driver Default Configure & Validation
//--------------------------------------------------------------------+
#ifndef CFG_TUD_HID_BUFSIZE
#define CFG_TUD_HID_BUFSIZE 16
#if !defined(CFG_TUD_HID_EP_BUFSIZE) & defined(CFG_TUD_HID_BUFSIZE)
// TODO warn user to use new name later on
// #warning CFG_TUD_HID_BUFSIZE is renamed to CFG_TUD_HID_EP_BUFSIZE, please update to use the new name
#define CFG_TUD_HID_EP_BUFSIZE CFG_TUD_HID_BUFSIZE
#endif
#ifndef CFG_TUD_HID_EP_BUFSIZE
#define CFG_TUD_HID_EP_BUFSIZE 16
#endif
//--------------------------------------------------------------------+
@@ -300,12 +306,12 @@ TU_ATTR_WEAK bool tud_hid_set_idle_cb(uint8_t idle_rate);
//--------------------------------------------------------------------+
// Internal Class Driver API
//--------------------------------------------------------------------+
void hidd_init (void);
void hidd_reset (uint8_t rhport);
bool hidd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length);
bool hidd_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool hidd_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool hidd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void hidd_init (void);
void hidd_reset (uint8_t rhport);
uint16_t hidd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool hidd_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool hidd_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool hidd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
#ifdef __cplusplus
}

View File

@@ -67,8 +67,8 @@ typedef struct
uint8_t read_target_length;
// Endpoint Transfer buffer
CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_MIDI_EPSIZE];
CFG_TUSB_MEM_ALIGN uint8_t epin_buf[CFG_TUD_MIDI_EPSIZE];
CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_MIDI_EP_BUFSIZE];
CFG_TUSB_MEM_ALIGN uint8_t epin_buf[CFG_TUD_MIDI_EP_BUFSIZE];
} midid_interface_t;
@@ -101,8 +101,7 @@ uint32_t tud_midi_n_read(uint8_t itf, uint8_t jack_id, void* buffer, uint32_t bu
// Fill empty buffer
if (midi->read_buffer_length == 0) {
if (!tud_midi_n_receive(itf, midi->read_buffer))
return 0;
if (!tud_midi_n_receive(itf, midi->read_buffer)) return 0;
uint8_t code_index = midi->read_buffer[0] & 0x0f;
// We always copy over the first byte.
@@ -119,8 +118,7 @@ uint32_t tud_midi_n_read(uint8_t itf, uint8_t jack_id, void* buffer, uint32_t bu
}
uint32_t n = midi->read_buffer_length - midi->read_target_length;
if (bufsize < n)
n = bufsize;
if (bufsize < n) n = bufsize;
// Skip the header in the buffer
memcpy(buffer, midi->read_buffer + 1 + midi->read_target_length, n);
@@ -153,19 +151,17 @@ void midi_rx_done_cb(midid_interface_t* midi, uint8_t const* buffer, uint32_t bu
// WRITE API
//--------------------------------------------------------------------+
static bool maybe_transmit(midid_interface_t* midi, uint8_t itf_index)
static uint32_t write_flush(midid_interface_t* midi)
{
(void) itf_index;
// skip if previous transfer not complete
TU_VERIFY( !usbd_edpt_busy(TUD_OPT_RHPORT, midi->ep_in) );
uint16_t count = tu_fifo_read_n(&midi->tx_ff, midi->epin_buf, CFG_TUD_MIDI_EPSIZE);
uint16_t count = tu_fifo_read_n(&midi->tx_ff, midi->epin_buf, CFG_TUD_MIDI_EP_BUFSIZE);
if (count > 0)
{
TU_ASSERT( usbd_edpt_xfer(TUD_OPT_RHPORT, midi->ep_in, midi->epin_buf, count) );
}
return true;
return count;
}
uint32_t tud_midi_n_write(uint8_t itf, uint8_t jack_id, uint8_t const* buffer, uint32_t bufsize)
@@ -234,7 +230,8 @@ uint32_t tud_midi_n_write(uint8_t itf, uint8_t jack_id, uint8_t const* buffer, u
}
i++;
}
maybe_transmit(midi, itf);
write_flush(midi);
return i;
}
@@ -250,7 +247,7 @@ bool tud_midi_n_send (uint8_t itf, uint8_t const packet[4])
return false;
tu_fifo_write_n(&midi->tx_ff, packet, 4);
maybe_transmit(midi, itf);
write_flush(midi);
return true;
}
@@ -290,31 +287,30 @@ void midid_reset(uint8_t rhport)
}
}
bool midid_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t *p_length)
uint16_t midid_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t max_len)
{
// 1st Interface is Audio Control v1
TU_VERIFY(TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass &&
AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass &&
AUDIO_PROTOCOL_V1 == desc_itf->bInterfaceProtocol);
AUDIO_PROTOCOL_V1 == desc_itf->bInterfaceProtocol, 0);
uint16_t drv_len = tu_desc_len(desc_itf);
uint8_t const * p_desc = tu_desc_next(desc_itf);
// Skip Class Specific descriptors
while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) )
while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) && drv_len <= max_len )
{
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
p_desc = tu_desc_next(p_desc);
}
// 2nd Interface is MIDI Streaming
TU_VERIFY(TUSB_DESC_INTERFACE == tu_desc_type(p_desc));
TU_VERIFY(TUSB_DESC_INTERFACE == tu_desc_type(p_desc), 0);
tusb_desc_interface_t const * desc_midi = (tusb_desc_interface_t const *) p_desc;
TU_VERIFY(TUSB_CLASS_AUDIO == desc_midi->bInterfaceClass &&
AUDIO_SUBCLASS_MIDI_STREAMING == desc_midi->bInterfaceSubClass &&
AUDIO_PROTOCOL_V1 == desc_midi->bInterfaceProtocol );
AUDIO_PROTOCOL_V1 == desc_midi->bInterfaceProtocol, 0);
// Find available interface
midid_interface_t * p_midi = NULL;
@@ -327,40 +323,46 @@ bool midid_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t
}
}
p_midi->itf_num = desc_midi->bInterfaceNumber;
p_midi->itf_num = desc_midi->bInterfaceNumber;
// next descriptor
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
p_desc = tu_desc_next(p_desc);
// Find and open endpoint descriptors
uint8_t found_endpoints = 0;
while (found_endpoints < desc_midi->bNumEndpoints)
while ( (found_endpoints < desc_midi->bNumEndpoints) && (drv_len <= max_len) )
{
if ( TUSB_DESC_ENDPOINT == p_desc[DESC_OFFSET_TYPE])
if ( TUSB_DESC_ENDPOINT == tu_desc_type(p_desc) )
{
TU_ASSERT( usbd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc), false);
uint8_t ep_addr = ((tusb_desc_endpoint_t const *) p_desc)->bEndpointAddress;
if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) {
p_midi->ep_in = ep_addr;
} else {
p_midi->ep_out = ep_addr;
}
TU_ASSERT(usbd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc), 0);
uint8_t ep_addr = ((tusb_desc_endpoint_t const *) p_desc)->bEndpointAddress;
drv_len += p_desc[DESC_OFFSET_LEN];
p_desc = tu_desc_next(p_desc);
found_endpoints += 1;
if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN)
{
p_midi->ep_in = ep_addr;
} else {
p_midi->ep_out = ep_addr;
}
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
found_endpoints += 1;
}
drv_len += p_desc[DESC_OFFSET_LEN];
p_desc = tu_desc_next(p_desc);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
*p_length = drv_len;
// Prepare for incoming data
TU_ASSERT( usbd_edpt_xfer(rhport, p_midi->ep_out, p_midi->epout_buf, CFG_TUD_MIDI_EPSIZE), false);
if ( !usbd_edpt_xfer(rhport, p_midi->ep_out, p_midi->epout_buf, CFG_TUD_MIDI_EP_BUFSIZE) )
{
TU_LOG1_FAILED();
TU_BREAKPOINT();
}
return true;
return drv_len;
}
bool midid_control_complete(uint8_t rhport, tusb_control_request_t const * p_request)
@@ -383,28 +385,40 @@ bool midid_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32
{
(void) result;
uint8_t itf = 0;
midid_interface_t* p_midi = _midid_itf;
uint8_t itf;
midid_interface_t* p_midi;
for ( ; ; itf++, p_midi++)
// Identify which interface to use
for (itf = 0; itf < CFG_TUD_MIDI; itf++)
{
if (itf >= TU_ARRAY_SIZE(_midid_itf)) return false;
if ( ep_addr == p_midi->ep_out ) break;
p_midi = &_midid_itf[itf];
if ( ( ep_addr == p_midi->ep_out ) || ( ep_addr == p_midi->ep_in ) ) break;
}
TU_ASSERT(itf < CFG_TUD_MIDI);
// receive new data
if ( ep_addr == p_midi->ep_out )
{
midi_rx_done_cb(p_midi, p_midi->epout_buf, xferred_bytes);
tu_fifo_write_n(&p_midi->rx_ff, p_midi->epout_buf, xferred_bytes);
// invoke receive callback if available
if (tud_midi_rx_cb) tud_midi_rx_cb(itf);
// prepare for next
TU_ASSERT( usbd_edpt_xfer(rhport, p_midi->ep_out, p_midi->epout_buf, CFG_TUD_MIDI_EPSIZE), false );
} else if ( ep_addr == p_midi->ep_in ) {
maybe_transmit(p_midi, itf);
TU_ASSERT(usbd_edpt_xfer(rhport, p_midi->ep_out, p_midi->epout_buf, CFG_TUD_MIDI_EP_BUFSIZE), false);
}
else if ( ep_addr == p_midi->ep_in )
{
if (0 == write_flush(p_midi))
{
// There is no data left, a ZLP should be sent if
// xferred_bytes is multiple of EP size and not zero
if ( xferred_bytes && (0 == (xferred_bytes % CFG_TUD_MIDI_EP_BUFSIZE)) )
{
usbd_edpt_xfer(rhport, p_midi->ep_in, NULL, 0);
}
}
}
// nothing to do with in and notif endpoint
return true;
}

View File

@@ -36,8 +36,14 @@
//--------------------------------------------------------------------+
// Class Driver Configuration
//--------------------------------------------------------------------+
#ifndef CFG_TUD_MIDI_EPSIZE
#define CFG_TUD_MIDI_EPSIZE 64
#if !defined(CFG_TUD_MIDI_EP_BUFSIZE) && defined(CFG_TUD_MIDI_EPSIZE)
#warning CFG_TUD_MIDI_EPSIZE is renamed to CFG_TUD_MIDI_EP_BUFSIZE, please update to use the new name
#define CFG_TUD_MIDI_EP_BUFSIZE CFG_TUD_MIDI_EPSIZE
#endif
#ifndef CFG_TUD_MIDI_EP_BUFSIZE
#define CFG_TUD_MIDI_EP_BUFSIZE (TUD_OPT_HIGH_SPEED ? 512 : 64)
#endif
#ifdef __cplusplus
@@ -66,7 +72,7 @@ bool tud_midi_n_receive (uint8_t itf, uint8_t packet[4]);
bool tud_midi_n_send (uint8_t itf, uint8_t const packet[4]);
//--------------------------------------------------------------------+
// Application API (Interface0)
// Application API (Single Interface)
//--------------------------------------------------------------------+
static inline bool tud_midi_mounted (void);
static inline uint32_t tud_midi_available (void);
@@ -136,12 +142,12 @@ static inline bool tud_midi_send (uint8_t const packet[4])
//--------------------------------------------------------------------+
// Internal Class Driver API
//--------------------------------------------------------------------+
void midid_init (void);
void midid_reset (uint8_t rhport);
bool midid_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length);
bool midid_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool midid_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool midid_xfer_cb (uint8_t rhport, uint8_t edpt_addr, xfer_result_t result, uint32_t xferred_bytes);
void midid_init (void);
void midid_reset (uint8_t rhport);
uint16_t midid_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool midid_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool midid_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool midid_xfer_cb (uint8_t rhport, uint8_t edpt_addr, xfer_result_t result, uint32_t xferred_bytes);
#ifdef __cplusplus
}

View File

@@ -31,6 +31,7 @@
#include "common/tusb_common.h"
#include "msc_device.h"
#include "device/usbd_pvt.h"
#include "device/dcd.h" // for faking dcd_event_xfer_complete
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
@@ -65,7 +66,7 @@ typedef struct
}mscd_interface_t;
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN static mscd_interface_t _mscd_itf;
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN static uint8_t _mscd_buf[CFG_TUD_MSC_BUFSIZE];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN static uint8_t _mscd_buf[CFG_TUD_MSC_EP_BUFSIZE];
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
@@ -80,7 +81,8 @@ static inline uint32_t rdwr10_get_lba(uint8_t const command[])
// copy first to prevent mis-aligned access
uint32_t lba;
memcpy(&lba, &p_rdwr10->lba, 4);
// use offsetof to avoid pointer to the odd/misaligned address
memcpy(&lba, (uint8_t*) p_rdwr10 + offsetof(scsi_write10_t, lba), 4);
// lba is in Big Endian format
return tu_ntohl(lba);
@@ -93,7 +95,8 @@ static inline uint16_t rdwr10_get_blockcount(uint8_t const command[])
// copy first to prevent mis-aligned access
uint16_t block_count;
memcpy(&block_count, &p_rdwr10->block_count, 2);
// use offsetof to avoid pointer to the odd/misaligned address
memcpy(&block_count, (uint8_t*) p_rdwr10 + offsetof(scsi_write10_t, block_count), 2);
return tu_ntohs(block_count);
}
@@ -103,7 +106,7 @@ static inline uint16_t rdwr10_get_blockcount(uint8_t const command[])
//--------------------------------------------------------------------+
#if CFG_TUSB_DEBUG >= 2
static lookup_entry_t const _msc_scsi_cmd_lookup[] =
static tu_lookup_entry_t const _msc_scsi_cmd_lookup[] =
{
{ .key = SCSI_CMD_TEST_UNIT_READY , .data = "Test Unit Ready" },
{ .key = SCSI_CMD_INQUIRY , .data = "Inquiry" },
@@ -118,7 +121,7 @@ static lookup_entry_t const _msc_scsi_cmd_lookup[] =
{ .key = SCSI_CMD_WRITE_10 , .data = "Write10" }
};
static lookup_table_t const _msc_scsi_cmd_table =
static tu_lookup_table_t const _msc_scsi_cmd_table =
{
.count = TU_ARRAY_SIZE(_msc_scsi_cmd_lookup),
.items = _msc_scsi_cmd_lookup
@@ -154,25 +157,33 @@ void mscd_reset(uint8_t rhport)
tu_memclr(&_mscd_itf, sizeof(mscd_interface_t));
}
bool mscd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_len)
uint16_t mscd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len)
{
// only support SCSI's BOT protocol
TU_VERIFY(TUSB_CLASS_MSC == itf_desc->bInterfaceClass &&
MSC_SUBCLASS_SCSI == itf_desc->bInterfaceSubClass &&
MSC_PROTOCOL_BOT == itf_desc->bInterfaceProtocol);
MSC_PROTOCOL_BOT == itf_desc->bInterfaceProtocol, 0);
// msc driver length is fixed
uint16_t const drv_len = sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t);
// Max length mus be at least 1 interface + 2 endpoints
TU_ASSERT(max_len >= drv_len, 0);
mscd_interface_t * p_msc = &_mscd_itf;
p_msc->itf_num = itf_desc->bInterfaceNumber;
// Open endpoint pair
TU_ASSERT( usbd_open_edpt_pair(rhport, tu_desc_next(itf_desc), 2, TUSB_XFER_BULK, &p_msc->ep_out, &p_msc->ep_in) );
p_msc->itf_num = itf_desc->bInterfaceNumber;
(*p_len) = sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t);
TU_ASSERT( usbd_open_edpt_pair(rhport, tu_desc_next(itf_desc), 2, TUSB_XFER_BULK, &p_msc->ep_out, &p_msc->ep_in), 0 );
// Prepare for Command Block Wrapper
TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_out, (uint8_t*) &p_msc->cbw, sizeof(msc_cbw_t)) );
if ( !usbd_edpt_xfer(rhport, p_msc->ep_out, (uint8_t*) &p_msc->cbw, sizeof(msc_cbw_t)) )
{
TU_LOG1_FAILED();
TU_BREAKPOINT();
}
return true;
return drv_len;
}
// Handle class control request
@@ -408,7 +419,7 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
TU_ASSERT( event == XFER_RESULT_SUCCESS &&
xferred_bytes == sizeof(msc_cbw_t) && p_cbw->signature == MSC_CBW_SIGNATURE );
TU_LOG2(" SCSI Command: %s\r\n", lookup_find(&_msc_scsi_cmd_table, p_cbw->command[0]));
TU_LOG2(" SCSI Command: %s\r\n", tu_lookup_find(&_msc_scsi_cmd_table, p_cbw->command[0]));
// TU_LOG2_MEM(p_cbw, xferred_bytes, 2);
p_csw->signature = MSC_CSW_SIGNATURE;
@@ -554,7 +565,7 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
else
{
// READ10 & WRITE10 Can be executed with large bulk of data e.g write 8K bytes (several flash write)
// We break it into multiple smaller command whose data size is up to CFG_TUD_MSC_BUFSIZE
// We break it into multiple smaller command whose data size is up to CFG_TUD_MSC_EP_BUFSIZE
if (SCSI_CMD_READ_10 == p_cbw->command[0])
{
proc_read10_cmd(rhport, p_msc);

View File

@@ -38,12 +38,19 @@
//--------------------------------------------------------------------+
// Class Driver Configuration
//--------------------------------------------------------------------+
TU_VERIFY_STATIC(CFG_TUD_MSC_BUFSIZE < UINT16_MAX, "Size is not correct");
#ifndef CFG_TUD_MSC_BUFSIZE
#error CFG_TUD_MSC_BUFSIZE must be defined, value of a block size should work well, the more the better
#if !defined(CFG_TUD_MSC_EP_BUFSIZE) & defined(CFG_TUD_MSC_BUFSIZE)
// TODO warn user to use new name later on
// #warning CFG_TUD_MSC_BUFSIZE is renamed to CFG_TUD_MSC_EP_BUFSIZE, please update to use the new name
#define CFG_TUD_MSC_EP_BUFSIZE CFG_TUD_MSC_BUFSIZE
#endif
#ifndef CFG_TUD_MSC_EP_BUFSIZE
#error CFG_TUD_MSC_EP_BUFSIZE must be defined, value of a block size should work well, the more the better
#endif
TU_VERIFY_STATIC(CFG_TUD_MSC_EP_BUFSIZE < UINT16_MAX, "Size is not correct");
/** \addtogroup ClassDriver_MSC
* @{
* \defgroup MSC_Device Device
@@ -151,12 +158,12 @@ TU_ATTR_WEAK bool tud_msc_is_writable_cb(uint8_t lun);
//--------------------------------------------------------------------+
// Internal Class Driver API
//--------------------------------------------------------------------+
void mscd_init (void);
void mscd_reset (uint8_t rhport);
bool mscd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length);
bool mscd_control_request (uint8_t rhport, tusb_control_request_t const * p_request);
bool mscd_control_complete (uint8_t rhport, tusb_control_request_t const * p_request);
bool mscd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void mscd_init (void);
void mscd_reset (uint8_t rhport);
uint16_t mscd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool mscd_control_request (uint8_t rhport, tusb_control_request_t const * p_request);
bool mscd_control_complete (uint8_t rhport, tusb_control_request_t const * p_request);
bool mscd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
#ifdef __cplusplus
}

View File

@@ -135,7 +135,7 @@ void netd_reset(uint8_t rhport)
netd_init();
}
bool netd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length)
uint16_t netd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len)
{
bool const is_rndis = (TUD_RNDIS_ITF_CLASS == itf_desc->bInterfaceClass &&
TUD_RNDIS_ITF_SUBCLASS == itf_desc->bInterfaceSubClass &&
@@ -145,10 +145,10 @@ bool netd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t
CDC_COMM_SUBCLASS_ETHERNET_NETWORKING_CONTROL_MODEL == itf_desc->bInterfaceSubClass &&
0x00 == itf_desc->bInterfaceProtocol);
TU_VERIFY ( is_rndis || is_ecm );
TU_VERIFY(is_rndis || is_ecm, 0);
// confirm interface hasn't already been allocated
TU_ASSERT(0 == _netd_itf.ep_notif);
TU_ASSERT(0 == _netd_itf.ep_notif, 0);
// sanity check the descriptor
_netd_itf.ecm_mode = is_ecm;
@@ -156,25 +156,25 @@ bool netd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t
//------------- Management Interface -------------//
_netd_itf.itf_num = itf_desc->bInterfaceNumber;
(*p_length) = sizeof(tusb_desc_interface_t);
uint16_t drv_len = sizeof(tusb_desc_interface_t);
uint8_t const * p_desc = tu_desc_next( itf_desc );
// Communication Functional Descriptors
while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) )
while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) && drv_len <= max_len )
{
(*p_length) += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
// notification endpoint (if any)
if ( TUSB_DESC_ENDPOINT == tu_desc_type(p_desc) )
{
TU_ASSERT( usbd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc) );
TU_ASSERT( usbd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc), 0 );
_netd_itf.ep_notif = ((tusb_desc_endpoint_t const *) p_desc)->bEndpointAddress;
(*p_length) += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
//------------- Data Interface -------------//
@@ -182,19 +182,19 @@ bool netd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t
// - CDC-ECM data interface has 2 alternate settings
// - 0 : zero endpoints for inactive (default)
// - 1 : IN & OUT endpoints for active networking
TU_ASSERT(TUSB_DESC_INTERFACE == tu_desc_type(p_desc));
TU_ASSERT(TUSB_DESC_INTERFACE == tu_desc_type(p_desc), 0);
do
{
tusb_desc_interface_t const * data_itf_desc = (tusb_desc_interface_t const *) p_desc;
TU_ASSERT(TUSB_CLASS_CDC_DATA == data_itf_desc->bInterfaceClass);
TU_ASSERT(TUSB_CLASS_CDC_DATA == data_itf_desc->bInterfaceClass, 0);
(*p_length) += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}while( _netd_itf.ecm_mode && (TUSB_DESC_INTERFACE == tu_desc_type(p_desc)) );
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}while( _netd_itf.ecm_mode && (TUSB_DESC_INTERFACE == tu_desc_type(p_desc)) && (drv_len <= max_len) );
// Pair of endpoints
TU_ASSERT(TUSB_DESC_ENDPOINT == tu_desc_type(p_desc));
TU_ASSERT(TUSB_DESC_ENDPOINT == tu_desc_type(p_desc), 0);
if ( _netd_itf.ecm_mode )
{
@@ -204,7 +204,7 @@ bool netd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t
}else
{
// Open endpoint pair for RNDIS
TU_ASSERT( usbd_open_edpt_pair(rhport, p_desc, 2, TUSB_XFER_BULK, &_netd_itf.ep_out, &_netd_itf.ep_in) );
TU_ASSERT( usbd_open_edpt_pair(rhport, p_desc, 2, TUSB_XFER_BULK, &_netd_itf.ep_out, &_netd_itf.ep_in), 0 );
tud_network_init_cb();
@@ -215,9 +215,9 @@ bool netd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t
tud_network_recv_renew();
}
(*p_length) += 2*sizeof(tusb_desc_endpoint_t);
drv_len += 2*sizeof(tusb_desc_endpoint_t);
return true;
return drv_len;
}
// Invoked when class request DATA stage is finished.
@@ -326,7 +326,7 @@ bool netd_control_request(uint8_t rhport, tusb_control_request_t const * request
{
if (request->bmRequestType_bit.direction == TUSB_DIR_IN)
{
rndis_generic_msg_t *rndis_msg = (rndis_generic_msg_t *)notify.rndis_buf;
rndis_generic_msg_t *rndis_msg = (rndis_generic_msg_t *) ((void*) notify.rndis_buf);
uint32_t msglen = tu_le32toh(rndis_msg->MessageLength);
TU_ASSERT(msglen <= sizeof(notify.rndis_buf));
tud_control_xfer(rhport, request, notify.rndis_buf, msglen);
@@ -356,7 +356,7 @@ static void handle_incoming_packet(uint32_t len)
}
else
{
rndis_data_packet_t *r = (rndis_data_packet_t *)pnt;
rndis_data_packet_t *r = (rndis_data_packet_t *) ((void*) pnt);
if (len >= sizeof(rndis_data_packet_t))
if ( (r->MessageType == REMOTE_NDIS_PACKET_MSG) && (r->MessageLength <= len))
if ( (r->DataOffset + offsetof(rndis_data_packet_t, DataOffset) + r->DataLength) <= len)
@@ -450,7 +450,7 @@ void tud_network_xmit(struct pbuf *p)
if (!_netd_itf.ecm_mode)
{
rndis_data_packet_t *hdr = (rndis_data_packet_t *)transmitted;
rndis_data_packet_t *hdr = (rndis_data_packet_t *) ((void*) transmitted);
memset(hdr, 0, sizeof(rndis_data_packet_t));
hdr->MessageType = REMOTE_NDIS_PACKET_MSG;
hdr->MessageLength = len;

View File

@@ -37,7 +37,7 @@
#include "netif/ethernet.h"
/* declared here, NOT in usb_descriptors.c, so that the driver can intelligently ZLP as needed */
#define CFG_TUD_NET_ENDPOINT_SIZE ((CFG_TUSB_RHPORT0_MODE & OPT_MODE_HIGH_SPEED) ? 512 : 64)
#define CFG_TUD_NET_ENDPOINT_SIZE (TUD_OPT_HIGH_SPEED ? 512 : 64)
/* Maximum Tranmission Unit (in bytes) of the network, including Ethernet header */
#define CFG_TUD_NET_MTU (1500 + SIZEOF_ETH_HDR)
@@ -72,13 +72,13 @@ void tud_network_xmit(struct pbuf *p);
//--------------------------------------------------------------------+
// INTERNAL USBD-CLASS DRIVER API
//--------------------------------------------------------------------+
void netd_init (void);
void netd_reset (uint8_t rhport);
bool netd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length);
bool netd_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool netd_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool netd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
void netd_report (uint8_t *buf, uint16_t len);
void netd_init (void);
void netd_reset (uint8_t rhport);
uint16_t netd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool netd_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool netd_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool netd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
void netd_report (uint8_t *buf, uint16_t len);
#ifdef __cplusplus
}

View File

@@ -80,7 +80,6 @@
#include <string.h>
#include "usbtmc.h"
#include "usbtmc_device.h"
#include "device/dcd.h"
#include "device/usbd.h"
#include "osal/osal.h"
@@ -260,37 +259,39 @@ void usbtmcd_init_cb(void)
usbtmcLock = osal_mutex_create(&usbtmcLockBuffer);
}
bool usbtmcd_open_cb(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length)
uint16_t usbtmcd_open_cb(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len)
{
(void)rhport;
uint16_t drv_len;
uint8_t const * p_desc;
uint8_t found_endpoints = 0;
TU_VERIFY(itf_desc->bInterfaceClass == TUD_USBTMC_APP_CLASS);
TU_VERIFY(itf_desc->bInterfaceSubClass == TUD_USBTMC_APP_SUBCLASS);
TU_VERIFY(itf_desc->bInterfaceClass == TUD_USBTMC_APP_CLASS , 0);
TU_VERIFY(itf_desc->bInterfaceSubClass == TUD_USBTMC_APP_SUBCLASS, 0);
#ifndef NDEBUG
// Only 2 or 3 endpoints are allowed for USBTMC.
TU_ASSERT((itf_desc->bNumEndpoints == 2) || (itf_desc->bNumEndpoints ==3));
TU_ASSERT((itf_desc->bNumEndpoints == 2) || (itf_desc->bNumEndpoints ==3), 0);
#endif
TU_ASSERT(usbtmc_state.state == STATE_CLOSED);
TU_ASSERT(usbtmc_state.state == STATE_CLOSED, 0);
// Interface
(*p_length) = 0u;
drv_len = 0u;
p_desc = (uint8_t const *) itf_desc;
usbtmc_state.itf_id = itf_desc->bInterfaceNumber;
usbtmc_state.rhport = rhport;
while (found_endpoints < itf_desc->bNumEndpoints)
while (found_endpoints < itf_desc->bNumEndpoints && drv_len <= max_len)
{
if ( TUSB_DESC_ENDPOINT == p_desc[DESC_OFFSET_TYPE])
{
tusb_desc_endpoint_t const *ep_desc = (tusb_desc_endpoint_t const *)p_desc;
switch(ep_desc->bmAttributes.xfer) {
case TUSB_XFER_BULK:
TU_ASSERT(ep_desc->wMaxPacketSize.size == USBTMCD_MAX_PACKET_SIZE);
TU_ASSERT(ep_desc->wMaxPacketSize.size == USBTMCD_MAX_PACKET_SIZE, 0);
if (tu_edpt_dir(ep_desc->bEndpointAddress) == TUSB_DIR_IN)
{
usbtmc_state.ep_bulk_in = ep_desc->bEndpointAddress;
@@ -301,45 +302,46 @@ bool usbtmcd_open_cb(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uin
break;
case TUSB_XFER_INTERRUPT:
#ifndef NDEBUG
TU_ASSERT(tu_edpt_dir(ep_desc->bEndpointAddress) == TUSB_DIR_IN);
TU_ASSERT(usbtmc_state.ep_int_in == 0);
TU_ASSERT(tu_edpt_dir(ep_desc->bEndpointAddress) == TUSB_DIR_IN, 0);
TU_ASSERT(usbtmc_state.ep_int_in == 0, 0);
#endif
usbtmc_state.ep_int_in = ep_desc->bEndpointAddress;
break;
default:
TU_ASSERT(false);
TU_ASSERT(false, 0);
}
TU_VERIFY( usbd_edpt_open(rhport, ep_desc));
TU_ASSERT( usbd_edpt_open(rhport, ep_desc), 0);
found_endpoints++;
}
(*p_length) = (uint8_t)((*p_length) + p_desc[DESC_OFFSET_LEN]);
p_desc = tu_desc_next(p_desc);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
// bulk endpoints are required, but interrupt IN is optional
#ifndef NDEBUG
TU_ASSERT(usbtmc_state.ep_bulk_in != 0);
TU_ASSERT(usbtmc_state.ep_bulk_out != 0);
TU_ASSERT(usbtmc_state.ep_bulk_in != 0, 0);
TU_ASSERT(usbtmc_state.ep_bulk_out != 0, 0);
if (itf_desc->bNumEndpoints == 2)
{
TU_ASSERT(usbtmc_state.ep_int_in == 0);
TU_ASSERT(usbtmc_state.ep_int_in == 0, 0);
}
else if (itf_desc->bNumEndpoints == 3)
{
TU_ASSERT(usbtmc_state.ep_int_in != 0);
TU_ASSERT(usbtmc_state.ep_int_in != 0, 0);
}
#if (CFG_TUD_USBTMC_ENABLE_488)
if(usbtmc_state.capabilities->bmIntfcCapabilities488.is488_2 ||
usbtmc_state.capabilities->bmDevCapabilities488.SR1)
{
TU_ASSERT(usbtmc_state.ep_int_in != 0);
TU_ASSERT(usbtmc_state.ep_int_in != 0, 0);
}
#endif
#endif
atomicChangeState(STATE_CLOSED, STATE_NAK);
tud_usbtmc_open_cb(itf_desc->iInterface);
return true;
return drv_len;
}
// Tell USBTMC class to set its bulk-in EP to ACK so that it can
// receive USBTMC commands.

View File

@@ -108,12 +108,12 @@ bool tud_usbtmc_start_bus_read(void);
/* "callbacks" from USB device core */
bool usbtmcd_open_cb(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length);
void usbtmcd_reset_cb(uint8_t rhport);
bool usbtmcd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
bool usbtmcd_control_request_cb(uint8_t rhport, tusb_control_request_t const * request);
bool usbtmcd_control_complete_cb(uint8_t rhport, tusb_control_request_t const * request);
void usbtmcd_init_cb(void);
uint16_t usbtmcd_open_cb(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
void usbtmcd_reset_cb(uint8_t rhport);
bool usbtmcd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
bool usbtmcd_control_request_cb(uint8_t rhport, tusb_control_request_t const * request);
bool usbtmcd_control_complete_cb(uint8_t rhport, tusb_control_request_t const * request);
void usbtmcd_init_cb(void);
/************************************************************
* USBTMC Descriptor Templates

View File

@@ -166,9 +166,12 @@ void vendord_reset(uint8_t rhport)
}
}
bool vendord_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_len)
uint16_t vendord_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len)
{
TU_VERIFY(TUSB_CLASS_VENDOR_SPECIFIC == itf_desc->bInterfaceClass);
TU_VERIFY(TUSB_CLASS_VENDOR_SPECIFIC == itf_desc->bInterfaceClass, 0);
uint16_t const drv_len = sizeof(tusb_desc_interface_t) + itf_desc->bNumEndpoints*sizeof(tusb_desc_endpoint_t);
TU_VERIFY(max_len >= drv_len, 0);
// Find available interface
vendord_interface_t* p_vendor = NULL;
@@ -180,18 +183,21 @@ bool vendord_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16
break;
}
}
TU_VERIFY(p_vendor);
TU_VERIFY(p_vendor, 0);
// Open endpoint pair with usbd helper
TU_ASSERT(usbd_open_edpt_pair(rhport, tu_desc_next(itf_desc), 2, TUSB_XFER_BULK, &p_vendor->ep_out, &p_vendor->ep_in));
TU_ASSERT(usbd_open_edpt_pair(rhport, tu_desc_next(itf_desc), 2, TUSB_XFER_BULK, &p_vendor->ep_out, &p_vendor->ep_in), 0);
p_vendor->itf_num = itf_desc->bInterfaceNumber;
(*p_len) = sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t);
// Prepare for incoming data
TU_ASSERT(usbd_edpt_xfer(rhport, p_vendor->ep_out, p_vendor->epout_buf, sizeof(p_vendor->epout_buf)));
if ( !usbd_edpt_xfer(rhport, p_vendor->ep_out, p_vendor->epout_buf, sizeof(p_vendor->epout_buf)) )
{
TU_LOG1_FAILED();
TU_BREAKPOINT();
}
return true;
return drv_len;
}
bool vendord_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)

View File

@@ -118,10 +118,10 @@ static inline uint32_t tud_vendor_write_available (void)
//--------------------------------------------------------------------+
// Internal Class Driver API
//--------------------------------------------------------------------+
void vendord_init(void);
void vendord_reset(uint8_t rhport);
bool vendord_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length);
bool vendord_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void vendord_init(void);
void vendord_reset(uint8_t rhport);
uint16_t vendord_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool vendord_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
#ifdef __cplusplus
}