refactor async io, add in_isr argument to tud_msc_async_io_done()

use cbw.command[0] for pending IO command
This commit is contained in:
hathach
2025-07-01 20:13:21 +07:00
parent 77e142ed76
commit d22cbe4cb5
2 changed files with 123 additions and 158 deletions

View File

@@ -52,36 +52,27 @@ enum {
MSC_STAGE_NEED_RESET, MSC_STAGE_NEED_RESET,
}; };
enum {
MSC_NEXT_OP_NONE = 0,
MSC_NEXT_OP_READ10,
MSC_NEXT_OP_WRITE10,
MSC_NEXT_OP_STATUS
};
typedef struct { typedef struct {
TU_ATTR_ALIGNED(4) msc_cbw_t cbw; TU_ATTR_ALIGNED(4) msc_cbw_t cbw; // 31 bytes
TU_ATTR_ALIGNED(4) msc_csw_t csw;
uint8_t rhport; uint8_t rhport;
TU_ATTR_ALIGNED(4) msc_csw_t csw; // 13 bytes
uint8_t itf_num; uint8_t itf_num;
uint8_t ep_in; uint8_t ep_in;
uint8_t ep_out; uint8_t ep_out;
// Bulk Only Transfer (BOT) Protocol
uint8_t stage;
uint32_t total_len; // byte to be transferred, can be smaller than total_bytes in cbw uint32_t total_len; // byte to be transferred, can be smaller than total_bytes in cbw
uint32_t xferred_len; // numbered of bytes transferred so far in the Data Stage uint32_t xferred_len; // numbered of bytes transferred so far in the Data Stage
// Sense Response Data // Bulk Only Transfer (BOT) Protocol
uint8_t stage;
// SCSI Sense Response Data
uint8_t sense_key; uint8_t sense_key;
uint8_t add_sense_code; uint8_t add_sense_code;
uint8_t add_sense_qualifier; uint8_t add_sense_qualifier;
// Async IO uint8_t pending_io; // pending async IO
uint8_t next_op;
uint32_t xferred_bytes;
}mscd_interface_t; }mscd_interface_t;
static mscd_interface_t _mscd_itf; static mscd_interface_t _mscd_itf;
@@ -95,12 +86,11 @@ CFG_TUD_MEM_SECTION static struct {
//--------------------------------------------------------------------+ //--------------------------------------------------------------------+
static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_t* buffer, uint32_t bufsize); static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_t* buffer, uint32_t bufsize);
static void proc_read10_cmd(mscd_interface_t* p_msc); static void proc_read10_cmd(mscd_interface_t* p_msc);
static void proc_read10_next(mscd_interface_t* p_msc, int32_t nbytes); static void proc_read_io_data(mscd_interface_t* p_msc, int32_t nbytes);
static void proc_write10_cmd(mscd_interface_t* p_msc); static void proc_write10_cmd(mscd_interface_t* p_msc);
static void proc_write10_new_data(mscd_interface_t* p_msc, uint32_t xferred_bytes); static void proc_write10_host_data(mscd_interface_t* p_msc, uint32_t xferred_bytes);
static void proc_write10_next(mscd_interface_t* p_msc, uint32_t xferred_bytes, int32_t nbytes); static void proc_write_io_data(mscd_interface_t* p_msc, uint32_t xferred_bytes, int32_t nbytes);
static bool proc_stage_status(mscd_interface_t* p_msc); static bool proc_stage_status(mscd_interface_t* p_msc);
static void tud_msc_async_io_done_cb(void* bytes_processed);
TU_ATTR_ALWAYS_INLINE static inline bool is_data_in(uint8_t dir) { TU_ATTR_ALWAYS_INLINE static inline bool is_data_in(uint8_t dir) {
return tu_bit_test(dir, 7); return tu_bit_test(dir, 7);
@@ -195,30 +185,31 @@ static uint8_t rdwr10_validate_cmd(msc_cbw_t const* cbw) {
return status; return status;
} }
static bool proc_stage_status(mscd_interface_t* p_msc) { static bool proc_stage_status(mscd_interface_t *p_msc) {
uint8_t rhport = p_msc->rhport; uint8_t rhport = p_msc->rhport;
msc_cbw_t const* p_cbw = &p_msc->cbw; msc_cbw_t const *p_cbw = &p_msc->cbw;
// skip status if epin is currently stalled, will do it when received Clear Stall request
if (!usbd_edpt_stalled(rhport, p_msc->ep_in)) {
if ((p_cbw->total_bytes > p_msc->xferred_len) && is_data_in(p_cbw->dir)) {
// 6.7 The 13 Cases: case 5 (Hi > Di): STALL before status
// TU_LOG_DRV(" SCSI case 5 (Hi > Di): %lu > %lu\r\n", p_cbw->total_bytes, p_msc->xferred_len);
usbd_edpt_stall(rhport, p_msc->ep_in);
} else {
TU_ASSERT(send_csw(p_msc));
}
}
#if TU_CHECK_MCU(OPT_MCU_CXD56) // skip status if epin is currently stalled, will do it when received Clear Stall request
// WORKAROUND: cxd56 has its own nuttx usb stack which does not forward Set/ClearFeature(Endpoint) to DCD. if (!usbd_edpt_stalled(rhport, p_msc->ep_in)) {
// There is no way for us to know when EP is un-stall, therefore we will unconditionally un-stall here and if ((p_cbw->total_bytes > p_msc->xferred_len) && is_data_in(p_cbw->dir)) {
// hope everything will work // 6.7 The 13 Cases: case 5 (Hi > Di): STALL before status
if ( usbd_edpt_stalled(rhport, p_msc->ep_in) ) { // TU_LOG_DRV(" SCSI case 5 (Hi > Di): %lu > %lu\r\n", p_cbw->total_bytes, p_msc->xferred_len);
usbd_edpt_clear_stall(rhport, p_msc->ep_in); usbd_edpt_stall(rhport, p_msc->ep_in);
send_csw(p_msc); } else {
TU_ASSERT(send_csw(p_msc));
} }
#endif }
return true;
#if TU_CHECK_MCU(OPT_MCU_CXD56)
// WORKAROUND: cxd56 has its own nuttx usb stack which does not forward Set/ClearFeature(Endpoint) to DCD.
// There is no way for us to know when EP is un-stall, therefore we will unconditionally un-stall here and
// hope everything will work
if (usbd_edpt_stalled(rhport, p_msc->ep_in)) {
usbd_edpt_clear_stall(rhport, p_msc->ep_in);
send_csw(p_msc);
}
#endif
return true;
} }
//--------------------------------------------------------------------+ //--------------------------------------------------------------------+
@@ -258,39 +249,57 @@ bool tud_msc_set_sense(uint8_t lun, uint8_t sense_key, uint8_t add_sense_code, u
return true; return true;
} }
static inline void set_sense_medium_not_present(uint8_t lun) { TU_ATTR_ALWAYS_INLINE static inline void set_sense_medium_not_present(uint8_t lun) {
// default sense is NOT READY, MEDIUM NOT PRESENT // default sense is NOT READY, MEDIUM NOT PRESENT
tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x3A, 0x00); tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x3A, 0x00);
} }
void tud_msc_async_io_done(int32_t bytes_processed) { static void proc_async_io_done(void *bytes_processed) {
// Precheck to avoid queueing multiple RW done callback mscd_interface_t *p_msc = &_mscd_itf;
TU_VERIFY(_mscd_itf.next_op != MSC_NEXT_OP_NONE,); TU_VERIFY(p_msc->pending_io, );
// Call usbd_edpt_xfer() in tud_task() to avoid racing condition const int32_t nbytes = (int32_t) (intptr_t) bytes_processed;
usbd_defer_func(tud_msc_async_io_done_cb, (void*) (intptr_t)bytes_processed, false); const uint8_t cmd = p_msc->cbw.command[0];
p_msc->pending_io = 0;
switch (cmd) {
case SCSI_CMD_READ_10:
proc_read_io_data(p_msc, nbytes);
break;
case SCSI_CMD_WRITE_10:
proc_write_io_data(p_msc, (uint32_t) nbytes, nbytes);
break;
default: break;
}
// send status if stage is transitioned to STATUS
if (p_msc->stage == MSC_STAGE_STATUS) {
proc_stage_status(p_msc);
}
} }
static void tud_msc_async_io_done_cb(void* bytes_processed) { bool tud_msc_async_io_done(int32_t bytes_io, bool in_isr) {
TU_VERIFY(_mscd_itf.next_op != MSC_NEXT_OP_NONE,); // Precheck to avoid queueing multiple RW done callback
uint8_t next_op = _mscd_itf.next_op; TU_VERIFY(_mscd_itf.pending_io);
_mscd_itf.next_op = MSC_NEXT_OP_NONE; if (bytes_io == 0) {
int32_t nbytes = (int32_t)(intptr_t)bytes_processed; bytes_io = TUD_MSC_RET_ERROR; // 0 is treated as error, no sense to call this with BUSY here
// READ10
if (next_op == MSC_NEXT_OP_READ10) {
proc_read10_next(&_mscd_itf, nbytes);
} else if (next_op == MSC_NEXT_OP_WRITE10) {
proc_write10_next(&_mscd_itf, _mscd_itf.xferred_bytes, nbytes);
// Need to manually invoke CSW transfer
if (_mscd_itf.stage == MSC_STAGE_STATUS) {
proc_stage_status(&_mscd_itf);
}
} }
if (in_isr) {
usbd_defer_func(proc_async_io_done, (void*) (intptr_t)bytes_io, in_isr);
} else {
proc_async_io_done((void*)(intptr_t) bytes_io);
}
return true;
} }
//--------------------------------------------------------------------+ //--------------------------------------------------------------------+
// USBD Driver API // USBD Driver API
//--------------------------------------------------------------------+ //--------------------------------------------------------------------+
void mscd_init(void) { void mscd_init(void) {
TU_LOG_INT(CFG_TUD_MSC_LOG_LEVEL, sizeof(mscd_interface_t));
tu_memclr(&_mscd_itf, sizeof(mscd_interface_t)); tu_memclr(&_mscd_itf, sizeof(mscd_interface_t));
} }
@@ -528,7 +537,7 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
proc_read10_cmd(p_msc); proc_read10_cmd(p_msc);
} }
} else if (SCSI_CMD_WRITE_10 == p_cbw->command[0]) { } else if (SCSI_CMD_WRITE_10 == p_cbw->command[0]) {
proc_write10_new_data(p_msc, xferred_bytes); proc_write10_host_data(p_msc, xferred_bytes);
} else { } else {
p_msc->xferred_len += xferred_bytes; p_msc->xferred_len += xferred_bytes;
@@ -560,7 +569,7 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
break; break;
case MSC_STAGE_STATUS_SENT: case MSC_STAGE_STATUS_SENT:
// Wait for the Status phase to complete // Status phase is complete
if ((ep_addr == p_msc->ep_in) && (xferred_bytes == sizeof(msc_csw_t))) { if ((ep_addr == p_msc->ep_in) && (xferred_bytes == sizeof(msc_csw_t))) {
TU_LOG_DRV(" SCSI Status [Lun%u] = %u\r\n", p_cbw->lun, p_csw->status); TU_LOG_DRV(" SCSI Status [Lun%u] = %u\r\n", p_cbw->lun, p_csw->status);
// TU_LOG_MEM(CFG_TUD_MSC_LOG_LEVEL, p_csw, xferred_bytes, 2); // TU_LOG_MEM(CFG_TUD_MSC_LOG_LEVEL, p_csw, xferred_bytes, 2);
@@ -590,7 +599,7 @@ bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t
TU_ASSERT(prepare_cbw(p_msc)); TU_ASSERT(prepare_cbw(p_msc));
} else { } else {
// Any xfer ended here is consider unknown error, ignore it // Any xfer ended here is considered unknown error, ignore it
TU_LOG1(" Warning expect SCSI Status but received unknown data\r\n"); TU_LOG1(" Warning expect SCSI Status but received unknown data\r\n");
} }
break; break;
@@ -696,8 +705,7 @@ static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_
break; break;
case SCSI_CMD_READ_FORMAT_CAPACITY: { case SCSI_CMD_READ_FORMAT_CAPACITY: {
scsi_read_format_capacity_data_t read_fmt_capa = scsi_read_format_capacity_data_t read_fmt_capa = {
{
.list_length = 8, .list_length = 8,
.block_num = 0, .block_num = 0,
.descriptor_type = 2, // formatted media .descriptor_type = 2, // formatted media
@@ -729,8 +737,7 @@ static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_
break; break;
case SCSI_CMD_INQUIRY: { case SCSI_CMD_INQUIRY: {
scsi_inquiry_resp_t inquiry_rsp = scsi_inquiry_resp_t inquiry_rsp = {
{
.is_removable = 1, .is_removable = 1,
.version = 2, .version = 2,
.response_data_format = 2, .response_data_format = 2,
@@ -750,8 +757,7 @@ static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_
break; break;
case SCSI_CMD_MODE_SENSE_6: { case SCSI_CMD_MODE_SENSE_6: {
scsi_mode_sense6_resp_t mode_resp = scsi_mode_sense6_resp_t mode_resp = {
{
.data_len = 3, .data_len = 3,
.medium_type = 0, .medium_type = 0,
.write_protected = false, .write_protected = false,
@@ -772,8 +778,7 @@ static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_
break; break;
case SCSI_CMD_REQUEST_SENSE: { case SCSI_CMD_REQUEST_SENSE: {
scsi_sense_fixed_resp_t sense_rsp = scsi_sense_fixed_resp_t sense_rsp = {
{
.response_code = 0x70, // current, fixed format .response_code = 0x70, // current, fixed format
.valid = 1 .valid = 1
}; };
@@ -805,32 +810,27 @@ static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_
static void proc_read10_cmd(mscd_interface_t* p_msc) { static void proc_read10_cmd(mscd_interface_t* p_msc) {
msc_cbw_t const* p_cbw = &p_msc->cbw; msc_cbw_t const* p_cbw = &p_msc->cbw;
uint16_t const block_sz = rdwr10_get_blocksize(p_cbw); // already verified non-zero
// block size already verified not zero // Adjust lba & offset with transferred bytes
uint16_t const block_sz = rdwr10_get_blocksize(p_cbw);
// Adjust lba with transferred bytes
uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz); uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz);
uint32_t const offset = p_msc->xferred_len % block_sz;
// remaining bytes capped at class buffer // remaining bytes capped at class buffer
int32_t nbytes = (int32_t)tu_min32(CFG_TUD_MSC_EP_BUFSIZE, p_cbw->total_bytes - p_msc->xferred_len); int32_t nbytes = (int32_t)tu_min32(CFG_TUD_MSC_EP_BUFSIZE, p_cbw->total_bytes - p_msc->xferred_len);
// Application can consume smaller bytes p_msc->pending_io = 1;
uint32_t const offset = p_msc->xferred_len % block_sz;
p_msc->next_op = MSC_NEXT_OP_READ10;
nbytes = tud_msc_read10_cb(p_cbw->lun, lba, offset, _mscd_epbuf.buf, (uint32_t)nbytes); nbytes = tud_msc_read10_cb(p_cbw->lun, lba, offset, _mscd_epbuf.buf, (uint32_t)nbytes);
if (nbytes != TUD_MSC_RET_ASYNC) { if (nbytes != TUD_MSC_RET_ASYNC) {
p_msc->next_op = MSC_NEXT_OP_NONE; p_msc->pending_io = 0;
proc_read10_next(p_msc, nbytes); proc_read_io_data(p_msc, nbytes);
} }
} }
static void proc_read10_next(mscd_interface_t* p_msc, int32_t nbytes) { static void proc_read_io_data(mscd_interface_t* p_msc, int32_t nbytes) {
uint8_t rhport = p_msc->rhport; uint8_t rhport = p_msc->rhport;
if (nbytes < 0) { if (nbytes < 0) {
// negative means error -> endpoint is stalled & status in CSW set to failed // negative means error -> endpoint is stalled & status in CSW set to failed
TU_LOG_DRV(" tud_msc_read10_cb() return -1\r\n"); TU_LOG_DRV(" IO read() failed\r\n");
// set sense // set sense
msc_cbw_t const* p_cbw = &p_msc->cbw; msc_cbw_t const* p_cbw = &p_msc->cbw;
@@ -838,7 +838,7 @@ static void proc_read10_next(mscd_interface_t* p_msc, int32_t nbytes) {
fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED); fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED);
} else if (nbytes == 0) { } else if (nbytes == 0) {
// zero means not ready -> simulate an transfer complete so that this driver callback will fired again // zero means not ready -> fake a transfer complete so that this driver callback will fire again
dcd_event_xfer_complete(rhport, p_msc->ep_in, 0, XFER_RESULT_SUCCESS, false); dcd_event_xfer_complete(rhport, p_msc->ep_in, 0, XFER_RESULT_SUCCESS, false);
} else { } else {
TU_ASSERT(usbd_edpt_xfer(rhport, p_msc->ep_in, _mscd_epbuf.buf, (uint16_t) nbytes),); TU_ASSERT(usbd_edpt_xfer(rhport, p_msc->ep_in, _mscd_epbuf.buf, (uint16_t) nbytes),);
@@ -864,55 +864,42 @@ static void proc_write10_cmd(mscd_interface_t* p_msc) {
// remaining bytes capped at class buffer // remaining bytes capped at class buffer
uint16_t nbytes = (uint16_t)tu_min32(CFG_TUD_MSC_EP_BUFSIZE, p_cbw->total_bytes - p_msc->xferred_len); uint16_t nbytes = (uint16_t)tu_min32(CFG_TUD_MSC_EP_BUFSIZE, p_cbw->total_bytes - p_msc->xferred_len);
// Write10 callback will be called later when usb transfer complete // Write10 callback will be called later when usb transfer complete
uint8_t rhport = p_msc->rhport; TU_ASSERT(usbd_edpt_xfer(p_msc->rhport, p_msc->ep_out, _mscd_epbuf.buf, nbytes),);
TU_ASSERT(usbd_edpt_xfer(rhport, p_msc->ep_out, _mscd_epbuf.buf, nbytes),);
} }
// process new data arrived from WRITE10 // process new data arrived from WRITE10
static void proc_write10_new_data(mscd_interface_t* p_msc, uint32_t xferred_bytes) { static void proc_write10_host_data(mscd_interface_t* p_msc, uint32_t xferred_bytes) {
msc_cbw_t const* p_cbw = &p_msc->cbw; msc_cbw_t const* p_cbw = &p_msc->cbw;
uint16_t const block_sz = rdwr10_get_blocksize(p_cbw); // already verified non-zero
// block size already verified not zero // Adjust lba & offset with transferred bytes
uint16_t const block_sz = rdwr10_get_blocksize(p_cbw);
// Adjust lba with transferred bytes
uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz); uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz);
// Invoke callback to consume new data
uint32_t const offset = p_msc->xferred_len % block_sz; uint32_t const offset = p_msc->xferred_len % block_sz;
p_msc->next_op = MSC_NEXT_OP_WRITE10; p_msc->pending_io = 1;
p_msc->xferred_bytes = xferred_bytes;
int32_t nbytes = tud_msc_write10_cb(p_cbw->lun, lba, offset, _mscd_epbuf.buf, xferred_bytes); int32_t nbytes = tud_msc_write10_cb(p_cbw->lun, lba, offset, _mscd_epbuf.buf, xferred_bytes);
if (nbytes != TUD_MSC_RET_ASYNC) { if (nbytes != TUD_MSC_RET_ASYNC) {
p_msc->next_op = MSC_NEXT_OP_NONE; p_msc->pending_io = 0;
proc_write10_next(p_msc, xferred_bytes, nbytes); proc_write_io_data(p_msc, xferred_bytes, nbytes);
} }
} }
static void proc_write10_next(mscd_interface_t* p_msc, uint32_t xferred_bytes, int32_t nbytes) { static void proc_write_io_data(mscd_interface_t* p_msc, uint32_t xferred_bytes, int32_t nbytes) {
if (nbytes < 0) { if (nbytes < 0) {
// negative means error -> failed this scsi op // negative means error -> failed this scsi op
TU_LOG_DRV(" tud_msc_write10_cb() return -1\r\n"); TU_LOG_DRV(" IO write() failed\r\n");
set_sense_medium_not_present(p_msc->cbw.lun);
// update actual byte before failed
p_msc->xferred_len += xferred_bytes;
msc_cbw_t const* p_cbw = &p_msc->cbw;
set_sense_medium_not_present(p_cbw->lun);
fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED); fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED);
} else { } else {
if ((uint32_t)nbytes < xferred_bytes) { if ((uint32_t)nbytes < xferred_bytes) {
// Application consume less than what we got (including zero) // Application consume less than what we got (including zero)
const uint32_t left_over = xferred_bytes - (uint32_t)nbytes; const uint32_t left_over = xferred_bytes - (uint32_t)nbytes;
if (nbytes > 0) { if (nbytes > 0) {
p_msc->xferred_len += (uint16_t)nbytes;
memmove(_mscd_epbuf.buf, _mscd_epbuf.buf + nbytes, left_over); memmove(_mscd_epbuf.buf, _mscd_epbuf.buf + nbytes, left_over);
} }
// simulate a transfer complete with adjusted parameters --> callback will be invoked with adjusted parameter // fake a transfer complete with adjusted parameters --> callback will be invoked with adjusted parameters
uint8_t rhport = p_msc->rhport; dcd_event_xfer_complete(p_msc->rhport, p_msc->ep_out, left_over, XFER_RESULT_SUCCESS, false);
dcd_event_xfer_complete(rhport, p_msc->ep_out, left_over, XFER_RESULT_SUCCESS, false);
} else { } else {
// Application consume all bytes in our buffer // Application consume all bytes in our buffer
p_msc->xferred_len += xferred_bytes; p_msc->xferred_len += xferred_bytes;

View File

@@ -49,10 +49,11 @@
#endif #endif
// Return value of callback functions // Return value of callback functions
// Error enum {
#define TUD_MSC_RET_ERROR -1 TUD_MSC_RET_BUSY = 0, // Busy, e.g disk I/O is not ready
// Asynchronous IO TUD_MSC_RET_ERROR = -1,
#define TUD_MSC_RET_ASYNC -16 TUD_MSC_RET_ASYNC = -2, // Asynchronous IO
};
TU_VERIFY_STATIC(CFG_TUD_MSC_EP_BUFSIZE < UINT16_MAX, "Size is not correct"); TU_VERIFY_STATIC(CFG_TUD_MSC_EP_BUFSIZE < UINT16_MAX, "Size is not correct");
@@ -63,54 +64,31 @@ TU_VERIFY_STATIC(CFG_TUD_MSC_EP_BUFSIZE < UINT16_MAX, "Size is not correct");
// Set SCSI sense response // Set SCSI sense response
bool tud_msc_set_sense(uint8_t lun, uint8_t sense_key, uint8_t add_sense_code, uint8_t add_sense_qualifier); bool tud_msc_set_sense(uint8_t lun, uint8_t sense_key, uint8_t add_sense_code, uint8_t add_sense_qualifier);
// Called once asynchronous read/write operation is done // Called by Application once asynchronous I/O operation is done
// bytes_processed has the same meaning of tud_msc_read10_cb() / // bytes_io is number of bytes in I/O op, typically the bufsize in read/write_cb() or
// tud_msc_write10_cb() return value // TUD_MSC_RET_ERROR (-1) for error. Note TUD_MSC_RET_BUSY (0) will be treated as error as well.
void tud_msc_async_io_done(int32_t bytes_processed); bool tud_msc_async_io_done(int32_t bytes_io, bool in_isr);
//--------------------------------------------------------------------+ //--------------------------------------------------------------------+
// Application Callbacks (WEAK is optional) // Application Callbacks (WEAK is optional)
//--------------------------------------------------------------------+ //--------------------------------------------------------------------+
// Invoked when received SCSI READ10 command /*
// - Address = lba * BLOCK_SIZE + offset Invoked when received SCSI READ10/WRITE10 command
// - offset is only needed if CFG_TUD_MSC_EP_BUFSIZE is smaller than BLOCK_SIZE. - Address = lba * BLOCK_SIZE + offset
// - offset is only needed if CFG_TUD_MSC_EP_BUFSIZE is smaller than BLOCK_SIZE.
// - Application fill the buffer (up to bufsize) with address contents and return number of bytes read or status. - Application fill the buffer (up to bufsize) with address contents and return number of bytes read or status.
// - 0 < ret < bufsize: These bytes are transferred first and callback will be invoked again for remaining data.
// - ret < bufsize : These bytes are transferred first and callback will be invoked again for remaining data. - ret == TUD_MSC_RET_BUSY
// Application is buys e.g disk I/O not ready.
// - ret == 0 : Indicate application is not ready yet e.g disk I/O busy. Callback will be invoked again with the same parameters later on.
// Callback will be invoked again with the same parameters later on. - ret == TUD_MSC_RET_ERROR
// error such as invalid address. This request will be STALLed and scsi command will be failed
// - ret == TUD_MSC_RET_ERROR (-1) - ret == TUD_MSC_RET_ASYNC
// : Indicate application error e.g invalid address. This request will be STALLed Data I/O will be done asynchronously in a background task. Application should return immediately.
// and return failed status in command status wrapper phase. tud_msc_async_io_done() must be called once IO/ is done to signal completion.
// */
// - ret == TUD_MSC_RET_ASYNC (-16)
// : Data reading will be done asynchronously in a background task. Application should return immediately.
// tud_msc_async_io_done() must be called once reading is done to signal completion.
int32_t tud_msc_read10_cb (uint8_t lun, uint32_t lba, uint32_t offset, void* buffer, uint32_t bufsize); int32_t tud_msc_read10_cb (uint8_t lun, uint32_t lba, uint32_t offset, void* buffer, uint32_t bufsize);
// Invoked when received SCSI WRITE10 command
// - Address = lba * BLOCK_SIZE + offset
// - offset is only needed if CFG_TUD_MSC_EP_BUFSIZE is smaller than BLOCK_SIZE.
//
// - Application writes data from buffer to address contents (up to bufsize) and returns the number of bytes written or status.
//
// - ret < bufsize : Callback will be invoked again with remaining data later on.
//
// - ret == 0 : Indicate application is not ready yet e.g disk I/O busy.
// Callback will be invoked again with the same parameters later on.
//
// - ret == TUD_MSC_RET_ERROR (-1)
// : Indicate application error e.g invalid address. This request will be STALLed
// and return failed status in command status wrapper phase.
//
// - ret == TUD_MSC_RET_ASYNC (-16)
// : Data writing will be done asynchronously in a background task. Application should return immediately.
// tud_msc_async_io_done() must be called once writing is done to signal completion.
// TODO change buffer to const uint8_t*
int32_t tud_msc_write10_cb (uint8_t lun, uint32_t lba, uint32_t offset, uint8_t* buffer, uint32_t bufsize); int32_t tud_msc_write10_cb (uint8_t lun, uint32_t lba, uint32_t offset, uint8_t* buffer, uint32_t bufsize);
// Invoked when received SCSI_CMD_INQUIRY // Invoked when received SCSI_CMD_INQUIRY