Merge pull request #447 from hathach/add-stm-hs

Add support for STM32 OTG HS core
This commit is contained in:
Ha Thach
2020-07-08 19:47:24 +07:00
committed by GitHub
65 changed files with 8105 additions and 393 deletions

View File

@@ -37,7 +37,7 @@
#include "netif/ethernet.h"
/* declared here, NOT in usb_descriptors.c, so that the driver can intelligently ZLP as needed */
#define CFG_TUD_NET_ENDPOINT_SIZE ((CFG_TUSB_RHPORT0_MODE & OPT_MODE_HIGH_SPEED) ? 512 : 64)
#define CFG_TUD_NET_ENDPOINT_SIZE (TUD_OPT_HIGH_SPEED ? 512 : 64)
/* Maximum Tranmission Unit (in bytes) of the network, including Ethernet header */
#define CFG_TUD_NET_MTU (1500 + SIZEOF_ETH_HDR)

View File

@@ -228,7 +228,6 @@ void tu_print_var(uint8_t const* buf, uint32_t bufsize)
for(uint32_t i=0; i<bufsize; i++) tu_printf("%02X ", buf[i]);
}
// Log with debug level 1
#define TU_LOG1 tu_printf
#define TU_LOG1_MEM tu_print_mem
@@ -243,9 +242,9 @@ void tu_print_var(uint8_t const* buf, uint32_t bufsize)
#define TU_LOG2 TU_LOG1
#define TU_LOG2_MEM TU_LOG1_MEM
#define TU_LOG2_VAR TU_LOG1_VAR
#define TU_LOG2_LOCATION() TU_LOG1_LOCATION()
#define TU_LOG2_INT TU_LOG1_INT
#define TU_LOG2_HEX TU_LOG1_HEX
#define TU_LOG2_LOCATION() TU_LOG1_LOCATION()
#endif
@@ -279,6 +278,7 @@ static inline char const* lookup_find(lookup_table_t const* p_table, uint32_t ke
#define TU_LOG1_VAR(...)
#define TU_LOG1_INT(...)
#define TU_LOG1_HEX(...)
#define TU_LOG1_LOCATION()
#define TU_LOG1_FAILED()
#endif
@@ -288,6 +288,7 @@ static inline char const* lookup_find(lookup_table_t const* p_table, uint32_t ke
#define TU_LOG2_VAR(...)
#define TU_LOG2_INT(...)
#define TU_LOG2_HEX(...)
#define TU_LOG2_LOCATION()
#endif
#ifdef __cplusplus

View File

@@ -60,11 +60,17 @@ typedef struct TU_ATTR_ALIGNED(4)
uint8_t rhport;
uint8_t event_id;
union {
// USBD_EVT_SETUP_RECEIVED
union
{
// BUS RESET
struct {
tusb_speed_t speed;
} bus_reset;
// SETUP_RECEIVED
tusb_control_request_t setup_received;
// USBD_EVT_XFER_COMPLETE
// XFER_COMPLETE
struct {
uint8_t ep_addr;
uint8_t result;
@@ -143,6 +149,9 @@ extern void dcd_event_handler(dcd_event_t const * event, bool in_isr);
// helper to send bus signal event
extern void dcd_event_bus_signal (uint8_t rhport, dcd_eventid_t eid, bool in_isr);
// helper to send bus reset event
extern void dcd_event_bus_reset (uint8_t rhport, tusb_speed_t speed, bool in_isr);
// helper to send setup received
extern void dcd_event_setup_received(uint8_t rhport, uint8_t const * setup, bool in_isr);

View File

@@ -40,7 +40,8 @@
//--------------------------------------------------------------------+
// Device Data
//--------------------------------------------------------------------+
typedef struct {
typedef struct
{
struct TU_ATTR_PACKED
{
volatile uint8_t connected : 1;
@@ -53,6 +54,8 @@ typedef struct {
uint8_t self_powered : 1; // configuration descriptor's attribute
};
uint8_t speed;
uint8_t itf2drv[16]; // map interface number to driver (0xff is invalid)
uint8_t ep2drv[8][2]; // map endpoint to driver ( 0xff is invalid )
@@ -390,16 +393,21 @@ void tud_task (void)
if ( !osal_queue_receive(_usbd_q, &event) ) return;
TU_LOG2("USBD %s", event.event_id < DCD_EVENT_COUNT ? _usbd_event_str[event.event_id] : "CORRUPTED");
TU_LOG2("%s", (event.event_id != DCD_EVENT_XFER_COMPLETE && event.event_id != DCD_EVENT_SETUP_RECEIVED) ? "\r\n" : " ");
#if CFG_TUSB_DEBUG >= 2
if (event.event_id == DCD_EVENT_SETUP_RECEIVED) TU_LOG2("\r\n"); // extra line for setup
TU_LOG2("USBD %s ", event.event_id < DCD_EVENT_COUNT ? _usbd_event_str[event.event_id] : "CORRUPTED");
#endif
switch ( event.event_id )
{
case DCD_EVENT_BUS_RESET:
TU_LOG2("\r\n");
usbd_reset(event.rhport);
_usbd_dev.speed = event.bus_reset.speed;
break;
case DCD_EVENT_UNPLUGGED:
TU_LOG2("\r\n");
usbd_reset(event.rhport);
// invoke callback
@@ -451,14 +459,17 @@ void tud_task (void)
break;
case DCD_EVENT_SUSPEND:
TU_LOG2("\r\n");
if (tud_suspend_cb) tud_suspend_cb(_usbd_dev.remote_wakeup_en);
break;
case DCD_EVENT_RESUME:
TU_LOG2("\r\n");
if (tud_resume_cb) tud_resume_cb();
break;
case DCD_EVENT_SOF:
TU_LOG2("\r\n");
for ( uint8_t i = 0; i < USBD_CLASS_DRIVER_COUNT; i++ )
{
if ( _usbd_driver[i].sof )
@@ -469,6 +480,7 @@ void tud_task (void)
break;
case USBD_EVENT_FUNC_CALL:
TU_LOG2("\r\n");
if ( event.func_call.func ) event.func_call.func(event.func_call.param);
break;
@@ -967,7 +979,14 @@ void dcd_event_handler(dcd_event_t const * event, bool in_isr)
void dcd_event_bus_signal (uint8_t rhport, dcd_eventid_t eid, bool in_isr)
{
dcd_event_t event = { .rhport = rhport, .event_id = eid, };
dcd_event_t event = { .rhport = rhport, .event_id = eid };
dcd_event_handler(&event, in_isr);
}
void dcd_event_bus_reset (uint8_t rhport, tusb_speed_t speed, bool in_isr)
{
dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_BUS_RESET };
event.bus_reset.speed = speed;
dcd_event_handler(&event, in_isr);
}

View File

@@ -236,7 +236,7 @@ typedef struct
{
dcd_registers_t* regs; // registers
const IRQn_Type irqnum; // IRQ number
const uint8_t ep_count; // Max bi-directional Endpoints
const uint8_t ep_count; // Max bi-directional Endpoints
}dcd_controller_t;
#if CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX
@@ -244,7 +244,7 @@ typedef struct
// Therefore QHD_MAX is 2 x max endpoint count
#define QHD_MAX (8*2)
dcd_controller_t _dcd_controller[] =
static const dcd_controller_t _dcd_controller[] =
{
// RT1010 and RT1020 only has 1 USB controller
#if FSL_FEATURE_SOC_USBHS_COUNT == 1
@@ -258,7 +258,7 @@ typedef struct
#else
#define QHD_MAX (6*2)
dcd_controller_t _dcd_controller[] =
static const dcd_controller_t _dcd_controller[] =
{
{ .regs = (dcd_registers_t*) LPC_USB0_BASE, .irqnum = USB0_IRQn, .ep_count = 6 },
{ .regs = (dcd_registers_t*) LPC_USB1_BASE, .irqnum = USB1_IRQn, .ep_count = 4 }

View File

@@ -28,6 +28,10 @@
#include "tusb_option.h"
// Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval)
// We disable SOF for now until needed later on
#define USE_SOF 0
#if defined (STM32F105x8) || defined (STM32F105xB) || defined (STM32F105xC) || \
defined (STM32F107xB) || defined (STM32F107xC)
#define STM32F1_SYNOPSYS
@@ -49,55 +53,83 @@
(CFG_TUSB_MCU == OPT_MCU_STM32L4 && defined(STM32L4_SYNOPSYS)) \
)
// TODO Support OTG_HS
// EP_MAX : Max number of bi-directional endpoints including EP0
// EP_FIFO_SIZE : Size of dedicated USB SRAM
#if CFG_TUSB_MCU == OPT_MCU_STM32F1
#include "stm32f1xx.h"
#define EP_MAX 4
#define EP_FIFO_SIZE 1280
#define EP_MAX_FS 4
#define EP_FIFO_SIZE_FS 1280
#elif CFG_TUSB_MCU == OPT_MCU_STM32F2
#include "stm32f2xx.h"
#define EP_MAX USB_OTG_FS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE USB_OTG_FS_TOTAL_FIFO_SIZE
#define EP_MAX_FS USB_OTG_FS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE_FS USB_OTG_FS_TOTAL_FIFO_SIZE
#elif CFG_TUSB_MCU == OPT_MCU_STM32F4
#include "stm32f4xx.h"
#define EP_MAX USB_OTG_FS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE USB_OTG_FS_TOTAL_FIFO_SIZE
#define EP_MAX_FS USB_OTG_FS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE_FS USB_OTG_FS_TOTAL_FIFO_SIZE
#define EP_MAX_HS USB_OTG_HS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE_HS USB_OTG_HS_TOTAL_FIFO_SIZE
#elif CFG_TUSB_MCU == OPT_MCU_STM32H7
#include "stm32h7xx.h"
#define EP_MAX 9
#define EP_FIFO_SIZE 4096
// TODO The official name of the USB FS peripheral on H7 is "USB2_OTG_FS".
#define EP_MAX_FS 9
#define EP_FIFO_SIZE_FS 4096
#define EP_MAX_HS 9
#define EP_FIFO_SIZE_HS 4096
#elif CFG_TUSB_MCU == OPT_MCU_STM32F7
#include "stm32f7xx.h"
#define EP_MAX 6
#define EP_FIFO_SIZE 1280
#define EP_MAX_FS 6
#define EP_FIFO_SIZE_FS 1280
#define EP_MAX_HS 9
#define EP_FIFO_SIZE_HS 4096
#elif CFG_TUSB_MCU == OPT_MCU_STM32L4
#include "stm32l4xx.h"
#define EP_MAX 6
#define EP_FIFO_SIZE 1280
#define EP_MAX_FS 6
#define EP_FIFO_SIZE_FS 1280
#else
#error "Unsupported MCUs"
#endif
#include "device/dcd.h"
/*------------------------------------------------------------------*/
/* MACRO TYPEDEF CONSTANT ENUM
*------------------------------------------------------------------*/
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM
//--------------------------------------------------------------------+
// Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval)
// We disable SOF for now until needed later on
#define USE_SOF 0
// On STM32 we associate Port0 to OTG_FS, and Port1 to OTG_HS
#if TUD_OPT_RHPORT == 0
#define EP_MAX EP_MAX_FS
#define EP_FIFO_SIZE EP_FIFO_SIZE_FS
#define RHPORT_REGS_BASE USB_OTG_FS_PERIPH_BASE
#define RHPORT_IRQn OTG_FS_IRQn
#define DEVICE_BASE (USB_OTG_DeviceTypeDef *) (USB_OTG_FS_PERIPH_BASE + USB_OTG_DEVICE_BASE)
#define OUT_EP_BASE (USB_OTG_OUTEndpointTypeDef *) (USB_OTG_FS_PERIPH_BASE + USB_OTG_OUT_ENDPOINT_BASE)
#define IN_EP_BASE (USB_OTG_INEndpointTypeDef *) (USB_OTG_FS_PERIPH_BASE + USB_OTG_IN_ENDPOINT_BASE)
#define FIFO_BASE(_x) ((volatile uint32_t *) (USB_OTG_FS_PERIPH_BASE + USB_OTG_FIFO_BASE + (_x) * USB_OTG_FIFO_SIZE))
#else
#define EP_MAX EP_MAX_HS
#define EP_FIFO_SIZE EP_FIFO_SIZE_HS
#define RHPORT_REGS_BASE USB_OTG_HS_PERIPH_BASE
#define RHPORT_IRQn OTG_HS_IRQn
#endif
static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[6];
static uint8_t _setup_offs; // We store up to 3 setup packets.
#define GLOBAL_BASE(_port) ((USB_OTG_GlobalTypeDef*) RHPORT_REGS_BASE)
#define DEVICE_BASE(_port) (USB_OTG_DeviceTypeDef *) (RHPORT_REGS_BASE + USB_OTG_DEVICE_BASE)
#define OUT_EP_BASE(_port) (USB_OTG_OUTEndpointTypeDef *) (RHPORT_REGS_BASE + USB_OTG_OUT_ENDPOINT_BASE)
#define IN_EP_BASE(_port) (USB_OTG_INEndpointTypeDef *) (RHPORT_REGS_BASE + USB_OTG_IN_ENDPOINT_BASE)
#define FIFO_BASE(_port, _x) ((volatile uint32_t *) (RHPORT_REGS_BASE + USB_OTG_FIFO_BASE + (_x) * USB_OTG_FIFO_SIZE))
enum
{
DCD_HIGH_SPEED = 0, // Highspeed mode
DCD_FULL_SPEED_USE_HS = 1, // Full speed in Highspeed port (probably with internal PHY)
DCD_FULL_SPEED = 3, // Full speed with internal PHY
};
static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[2];
typedef struct {
uint8_t * buffer;
@@ -113,11 +145,20 @@ xfer_ctl_t xfer_status[EP_MAX][2];
// EP0 transfers are limited to 1 packet - larger sizes has to be split
static uint16_t ep0_pending[2]; // Index determines direction as tusb_dir_t type
// FIFO RAM allocation so far in words
static uint16_t _allocated_fifo_words;
// Setup the control endpoint 0.
static void bus_reset(void) {
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE;
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE;
static void bus_reset(uint8_t rhport)
{
(void) rhport;
USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
tu_memclr(xfer_status, sizeof(xfer_status));
for(uint8_t n = 0; n < EP_MAX; n++) {
out_ep[n].DOEPCTL |= USB_OTG_DOEPCTL_SNAK;
@@ -149,134 +190,286 @@ static void bus_reset(void) {
// - Each EP IN needs at least max packet size, 16 words is sufficient for EP0 IN
//
// - All EP OUT shared a unique OUT FIFO which uses
// * 10 locations in hardware for setup packets + setup control words (up to 3 setup packets).
// * 2 locations for OUT endpoint control words.
// * 16 for largest packet size of 64 bytes. ( TODO Highspeed is 512 bytes)
// * 1 location for global NAK (not required/used here).
// * It is recommended to allocate 2 times the largest packet size, therefore
// Recommended value = 10 + 1 + 2 x (16+2) = 47 --> Let's make it 52
USB_OTG_FS->GRXFSIZ = 52;
// - 13 for setup packets + control words (up to 3 setup packets).
// - 1 for global NAK (not required/used here).
// - Largest-EPsize / 4 + 1. ( FS: 64 bytes, HS: 512 bytes). Recommended is "2 x (Largest-EPsize/4) + 1"
// - 2 for each used OUT endpoint
//
// Therefore GRXFSIZ = 13 + 1 + 1 + 2 x (Largest-EPsize/4) + 2 x EPOUTnum
// - FullSpeed (64 Bytes ): GRXFSIZ = 15 + 2 x 16 + 2 x EP_MAX = 47 + 2 x EP_MAX
// - Highspeed (512 bytes): GRXFSIZ = 15 + 2 x 128 + 2 x EP_MAX = 271 + 2 x EP_MAX
//
// NOTE: Largest-EPsize & EPOUTnum is actual used endpoints in configuration. Since DCD has no knowledge
// of the overall picture yet. We will use the worst scenario: largest possible + EP_MAX
//
// FIXME: for Isochronous, largest EP size can be 1023/1024 for FS/HS respectively. In addition if multiple ISO
// are enabled at least "2 x (Largest-EPsize/4) + 1" are recommended. Maybe provide a macro for application to
// overwrite this.
#if TUD_OPT_HIGH_SPEED
_allocated_fifo_words = 271 + 2*EP_MAX;
#else
_allocated_fifo_words = 47 + 2*EP_MAX;
#endif
usb_otg->GRXFSIZ = _allocated_fifo_words;
// Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word )
USB_OTG_FS->DIEPTXF0_HNPTXFSIZ = (16 << USB_OTG_TX0FD_Pos) | (USB_OTG_FS->GRXFSIZ & 0x0000ffffUL);
usb_otg->DIEPTXF0_HNPTXFSIZ = (16 << USB_OTG_TX0FD_Pos) | _allocated_fifo_words;
_allocated_fifo_words += 16;
// TU_LOG2_INT(_allocated_fifo_words);
// Fixed control EP0 size to 64 bytes
in_ep[0].DIEPCTL &= ~(0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos);
xfer_status[0][TUSB_DIR_OUT].max_size = xfer_status[0][TUSB_DIR_IN].max_size = 64;
out_ep[0].DOEPTSIZ |= (3 << USB_OTG_DOEPTSIZ_STUPCNT_Pos);
USB_OTG_FS->GINTMSK |= USB_OTG_GINTMSK_OEPINT | USB_OTG_GINTMSK_IEPINT;
usb_otg->GINTMSK |= USB_OTG_GINTMSK_OEPINT | USB_OTG_GINTMSK_IEPINT;
}
static void end_of_reset(void) {
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE;
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE;
// On current silicon on the Full Speed core, speed is fixed to Full Speed.
// However, keep for debugging and in case Low Speed is ever supported.
uint32_t enum_spd = (dev->DSTS & USB_OTG_DSTS_ENUMSPD_Msk) >> USB_OTG_DSTS_ENUMSPD_Pos;
// Set turn-around timeout according to link speed
static void set_turnaround(USB_OTG_GlobalTypeDef * usb_otg, tusb_speed_t speed)
{
usb_otg->GUSBCFG &= ~USB_OTG_GUSBCFG_TRDT;
// Maximum packet size for EP 0 is set for both directions by writing
// DIEPCTL.
if(enum_spd == 0x03) {
// 64 bytes
in_ep[0].DIEPCTL &= ~(0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos);
xfer_status[0][TUSB_DIR_OUT].max_size = 64;
xfer_status[0][TUSB_DIR_IN].max_size = 64;
} else {
// 8 bytes
in_ep[0].DIEPCTL |= (0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos);
xfer_status[0][TUSB_DIR_OUT].max_size = 8;
xfer_status[0][TUSB_DIR_IN].max_size = 8;
if ( speed == TUSB_SPEED_HIGH )
{
// Use fixed 0x09 for Highspeed
usb_otg->GUSBCFG |= (0x09 << USB_OTG_GUSBCFG_TRDT_Pos);
}
else
{
// Turnaround timeout depends on the MCU clock
extern uint32_t SystemCoreClock;
uint32_t turnaround;
if ( SystemCoreClock >= 32000000U )
turnaround = 0x6U;
else if ( SystemCoreClock >= 27500000U )
turnaround = 0x7U;
else if ( SystemCoreClock >= 24000000U )
turnaround = 0x8U;
else if ( SystemCoreClock >= 21800000U )
turnaround = 0x9U;
else if ( SystemCoreClock >= 20000000U )
turnaround = 0xAU;
else if ( SystemCoreClock >= 18500000U )
turnaround = 0xBU;
else if ( SystemCoreClock >= 17200000U )
turnaround = 0xCU;
else if ( SystemCoreClock >= 16000000U )
turnaround = 0xDU;
else if ( SystemCoreClock >= 15000000U )
turnaround = 0xEU;
else
turnaround = 0xFU;
// Fullspeed depends on MCU clocks, but we will use 0x06 for 32+ Mhz
usb_otg->GUSBCFG |= (turnaround << USB_OTG_GUSBCFG_TRDT_Pos);
}
}
static void edpt_schedule_packets(uint8_t const epnum, uint8_t const dir, uint16_t const num_packets, uint16_t total_bytes) {
USB_OTG_DeviceTypeDef * const dev = DEVICE_BASE;
USB_OTG_OUTEndpointTypeDef * const out_ep = OUT_EP_BASE;
USB_OTG_INEndpointTypeDef * const in_ep = IN_EP_BASE;
// EP0 is limited to one packet each xfer
// We use multiple transaction of xfer->max_size length to get a whole transfer done
if(epnum == 0) {
xfer_ctl_t * const xfer = XFER_CTL_BASE(epnum, dir);
total_bytes = tu_min16(ep0_pending[dir], xfer->max_size);
ep0_pending[dir] -= total_bytes;
}
// IN and OUT endpoint xfers are interrupt-driven, we just schedule them here.
if(dir == TUSB_DIR_IN) {
// A full IN transfer (multiple packets, possibly) triggers XFRC.
in_ep[epnum].DIEPTSIZ = (num_packets << USB_OTG_DIEPTSIZ_PKTCNT_Pos) |
((total_bytes << USB_OTG_DIEPTSIZ_XFRSIZ_Pos) & USB_OTG_DIEPTSIZ_XFRSIZ_Msk);
in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_EPENA | USB_OTG_DIEPCTL_CNAK;
// Enable fifo empty interrupt only if there are something to put in the fifo.
if(total_bytes != 0) {
dev->DIEPEMPMSK |= (1 << epnum);
}
} else {
// A full OUT transfer (multiple packets, possibly) triggers XFRC.
out_ep[epnum].DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_PKTCNT_Msk | USB_OTG_DOEPTSIZ_XFRSIZ);
out_ep[epnum].DOEPTSIZ |= (num_packets << USB_OTG_DOEPTSIZ_PKTCNT_Pos) |
((total_bytes << USB_OTG_DOEPTSIZ_XFRSIZ_Pos) & USB_OTG_DOEPTSIZ_XFRSIZ_Msk);
out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_EPENA | USB_OTG_DOEPCTL_CNAK;
}
static tusb_speed_t get_speed(uint8_t rhport)
{
(void) rhport;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
uint32_t const enum_spd = (dev->DSTS & USB_OTG_DSTS_ENUMSPD_Msk) >> USB_OTG_DSTS_ENUMSPD_Pos;
return (enum_spd == DCD_HIGH_SPEED) ? TUSB_SPEED_HIGH : TUSB_SPEED_FULL;
}
static void set_speed(uint8_t rhport, tusb_speed_t speed)
{
uint32_t bitvalue;
if ( rhport == 1 )
{
bitvalue = ((TUSB_SPEED_HIGH == speed) ? DCD_HIGH_SPEED : DCD_FULL_SPEED_USE_HS);
}
else
{
bitvalue = DCD_FULL_SPEED;
}
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
// Clear and set speed bits
dev->DCFG &= ~(3 << USB_OTG_DCFG_DSPD_Pos);
dev->DCFG |= (bitvalue << USB_OTG_DCFG_DSPD_Pos);
}
#if defined(USB_HS_PHYC)
static bool USB_HS_PHYCInit(void)
{
USB_HS_PHYC_GlobalTypeDef *usb_hs_phyc = (USB_HS_PHYC_GlobalTypeDef*) USB_HS_PHYC_CONTROLLER_BASE;
// Enable LDO
usb_hs_phyc->USB_HS_PHYC_LDO |= USB_HS_PHYC_LDO_ENABLE;
// Wait until LDO ready
while ( 0 == (usb_hs_phyc->USB_HS_PHYC_LDO & USB_HS_PHYC_LDO_STATUS) ) {}
uint32_t phyc_pll = 0;
// TODO Try to get HSE_VALUE from registers instead of depending CFLAGS
switch ( HSE_VALUE )
{
case 12000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_12MHZ ; break;
case 12500000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_12_5MHZ ; break;
case 16000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_16MHZ ; break;
case 24000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_24MHZ ; break;
case 25000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_25MHZ ; break;
case 32000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_Msk ; break; // Value not defined in header
default:
TU_ASSERT(0);
}
usb_hs_phyc->USB_HS_PHYC_PLL = phyc_pll;
// Control the tuning interface of the High Speed PHY
// Use magic value (USB_HS_PHYC_TUNE_VALUE) from ST driver
usb_hs_phyc->USB_HS_PHYC_TUNE |= 0x00000F13U;
// Enable PLL internal PHY
usb_hs_phyc->USB_HS_PHYC_PLL |= USB_HS_PHYC_PLL_PLLEN;
// Original ST code has 2 ms delay for PLL stabilization.
// Primitive test shows that more than 10 USB un/replug cycle showed no error with enumeration
return true;
}
#endif
static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t const dir, uint16_t const num_packets, uint16_t total_bytes)
{
(void) rhport;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
// EP0 is limited to one packet each xfer
// We use multiple transaction of xfer->max_size length to get a whole transfer done
if(epnum == 0) {
xfer_ctl_t * const xfer = XFER_CTL_BASE(epnum, dir);
total_bytes = tu_min16(ep0_pending[dir], xfer->max_size);
ep0_pending[dir] -= total_bytes;
}
// IN and OUT endpoint xfers are interrupt-driven, we just schedule them here.
if(dir == TUSB_DIR_IN) {
// A full IN transfer (multiple packets, possibly) triggers XFRC.
in_ep[epnum].DIEPTSIZ = (num_packets << USB_OTG_DIEPTSIZ_PKTCNT_Pos) |
((total_bytes << USB_OTG_DIEPTSIZ_XFRSIZ_Pos) & USB_OTG_DIEPTSIZ_XFRSIZ_Msk);
in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_EPENA | USB_OTG_DIEPCTL_CNAK;
// Enable fifo empty interrupt only if there are something to put in the fifo.
if(total_bytes != 0) {
dev->DIEPEMPMSK |= (1 << epnum);
}
} else {
// A full OUT transfer (multiple packets, possibly) triggers XFRC.
out_ep[epnum].DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_PKTCNT_Msk | USB_OTG_DOEPTSIZ_XFRSIZ);
out_ep[epnum].DOEPTSIZ |= (num_packets << USB_OTG_DOEPTSIZ_PKTCNT_Pos) |
((total_bytes << USB_OTG_DOEPTSIZ_XFRSIZ_Pos) & USB_OTG_DOEPTSIZ_XFRSIZ_Msk);
out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_EPENA | USB_OTG_DOEPCTL_CNAK;
}
}
/*------------------------------------------------------------------*/
/* Controller API
*------------------------------------------------------------------*/
void dcd_init (uint8_t rhport)
{
(void) rhport;
// Programming model begins in the last section of the chapter on the USB
// peripheral in each Reference Manual.
USB_OTG_FS->GAHBCFG |= USB_OTG_GAHBCFG_GINT;
// No HNP/SRP (no OTG support), program timeout later, turnaround
// programmed for 32+ MHz.
// TODO: PHYSEL is read-only on some cores (STM32F407). Worth gating?
USB_OTG_FS->GUSBCFG |= (0x06 << USB_OTG_GUSBCFG_TRDT_Pos) | USB_OTG_GUSBCFG_PHYSEL;
USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
// No HNP/SRP (no OTG support), program timeout later.
if ( rhport == 1 )
{
// On selected MCUs HS port1 can be used with external PHY via ULPI interface
// deactivate internal PHY
usb_otg->GCCFG &= ~USB_OTG_GCCFG_PWRDWN;
// Init The UTMI Interface
usb_otg->GUSBCFG &= ~(USB_OTG_GUSBCFG_TSDPS | USB_OTG_GUSBCFG_ULPIFSLS | USB_OTG_GUSBCFG_PHYSEL);
// Select default internal VBUS Indicator and Drive for ULPI
usb_otg->GUSBCFG &= ~(USB_OTG_GUSBCFG_ULPIEVBUSD | USB_OTG_GUSBCFG_ULPIEVBUSI);
#if defined(USB_HS_PHYC)
// Highspeed with embedded UTMI PHYC
// Select UTMI Interface
usb_otg->GUSBCFG &= ~USB_OTG_GUSBCFG_ULPI_UTMI_SEL;
usb_otg->GCCFG |= USB_OTG_GCCFG_PHYHSEN;
// Enables control of a High Speed USB PHY
USB_HS_PHYCInit();
#endif
} else
{
// Enable internal PHY
usb_otg->GUSBCFG |= USB_OTG_GUSBCFG_PHYSEL;
}
// Reset core after selecting PHY
// Wait AHB IDLE, reset then wait until it is cleared
while ((usb_otg->GRSTCTL & USB_OTG_GRSTCTL_AHBIDL) == 0U) {}
usb_otg->GRSTCTL |= USB_OTG_GRSTCTL_CSRST;
while ((usb_otg->GRSTCTL & USB_OTG_GRSTCTL_CSRST) == USB_OTG_GRSTCTL_CSRST) {}
// Restart PHY clock
*((volatile uint32_t *)(RHPORT_REGS_BASE + USB_OTG_PCGCCTL_BASE)) = 0;
// Clear all interrupts
USB_OTG_FS->GINTSTS |= USB_OTG_FS->GINTSTS;
usb_otg->GINTSTS |= usb_otg->GINTSTS;
// Required as part of core initialization.
// TODO: How should mode mismatch be handled? It will cause
// the core to stop working/require reset.
USB_OTG_FS->GINTMSK |= USB_OTG_GINTMSK_OTGINT | USB_OTG_GINTMSK_MMISM;
usb_otg->GINTMSK |= USB_OTG_GINTMSK_OTGINT | USB_OTG_GINTMSK_MMISM;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
// If USB host misbehaves during status portion of control xfer
// (non zero-length packet), send STALL back and discard. Full speed.
dev->DCFG |= USB_OTG_DCFG_NZLSOHSK | (3 << USB_OTG_DCFG_DSPD_Pos);
// (non zero-length packet), send STALL back and discard.
dev->DCFG |= USB_OTG_DCFG_NZLSOHSK;
USB_OTG_FS->GINTMSK |= USB_OTG_GINTMSK_USBRST | USB_OTG_GINTMSK_ENUMDNEM |
USB_OTG_GINTMSK_USBSUSPM | USB_OTG_GINTMSK_WUIM |
USB_OTG_GINTMSK_RXFLVLM | (USE_SOF ? USB_OTG_GINTMSK_SOFM : 0);
set_speed(rhport, TUD_OPT_HIGH_SPEED ? TUSB_SPEED_HIGH : TUSB_SPEED_FULL);
// Enable USB transceiver.
USB_OTG_FS->GCCFG |= USB_OTG_GCCFG_PWRDWN;
// Enable internal USB transceiver.
if ( rhport == 0 ) usb_otg->GCCFG |= USB_OTG_GCCFG_PWRDWN;
usb_otg->GINTMSK |= USB_OTG_GINTMSK_USBRST | USB_OTG_GINTMSK_ENUMDNEM |
USB_OTG_GINTMSK_USBSUSPM | USB_OTG_GINTMSK_WUIM |
USB_OTG_GINTMSK_RXFLVLM | (USE_SOF ? USB_OTG_GINTMSK_SOFM : 0);
// Enable global interrupt
usb_otg->GAHBCFG |= USB_OTG_GAHBCFG_GINT;
}
void dcd_int_enable (uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(OTG_FS_IRQn);
NVIC_EnableIRQ(RHPORT_IRQn);
}
void dcd_int_disable (uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(OTG_FS_IRQn);
NVIC_DisableIRQ(RHPORT_IRQn);
}
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
(void) rhport;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
dev->DCFG |= (dev_addr << USB_OTG_DCFG_DAD_Pos) & USB_OTG_DCFG_DAD_Msk;
// Response with status after changing device address
@@ -291,7 +484,7 @@ void dcd_remote_wakeup(uint8_t rhport)
void dcd_connect(uint8_t rhport)
{
(void) rhport;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
dev->DCTL &= ~USB_OTG_DCTL_SDIS;
}
@@ -299,7 +492,7 @@ void dcd_connect(uint8_t rhport)
void dcd_disconnect(uint8_t rhport)
{
(void) rhport;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
dev->DCTL |= USB_OTG_DCTL_SDIS;
}
@@ -311,17 +504,19 @@ void dcd_disconnect(uint8_t rhport)
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
(void) rhport;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE;
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE;
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE;
USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(desc_edpt->bEndpointAddress);
TU_ASSERT(desc_edpt->wMaxPacketSize.size <= 64);
TU_ASSERT(epnum < EP_MAX);
// TODO ISO endpoint can be up to 1024 bytes
TU_ASSERT(desc_edpt->wMaxPacketSize.size <= (get_speed(rhport) == TUSB_SPEED_HIGH ? 512 : 64));
xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
xfer->max_size = desc_edpt->wMaxPacketSize.size;
@@ -353,10 +548,36 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
// | ( Shared ) |
// --------------- 0
//
// Since OUT FIFO = GRXFSIZ, FIFO 0 = 16, for simplicity, we equally allocated for the rest of endpoints
// - Size : (FIFO_SIZE/4 - GRXFSIZ - 16) / (EP_MAX-1)
// - Offset: GRXFSIZ + 16 + Size*(epnum-1)
// In FIFO is allocated by following rules:
// - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n".
// - Offset: allocated so far
// - Size
// - Interrupt is EPSize
// - Bulk/ISO is max(EPSize, remaining-fifo / non-opened-EPIN)
uint16_t const fifo_remaining = EP_FIFO_SIZE/4 - _allocated_fifo_words;
uint16_t fifo_size = desc_edpt->wMaxPacketSize.size / 4;
if ( desc_edpt->bmAttributes.xfer != TUSB_XFER_INTERRUPT )
{
uint8_t opened = 0;
for(uint8_t i = 0; i < EP_MAX; i++)
{
if ( (i != epnum) && (xfer_status[i][TUSB_DIR_IN].max_size > 0) ) opened++;
}
// EP Size or equally divided of remaining whichever is larger
fifo_size = tu_max16(fifo_size, fifo_remaining / (EP_MAX - opened));
}
// FIFO overflows, we probably need a better allocating scheme
TU_ASSERT(fifo_size <= fifo_remaining);
// DIEPTXF starts at FIFO #1.
// Both TXFD and TXSA are in unit of 32-bit words.
usb_otg->DIEPTXF[epnum - 1] = (fifo_size << USB_OTG_DIEPTXF_INEPTXFD_Pos) | _allocated_fifo_words;
_allocated_fifo_words += fifo_size;
in_ep[epnum].DIEPCTL |= (1 << USB_OTG_DIEPCTL_USBAEP_Pos) |
(epnum << USB_OTG_DIEPCTL_TXFNUM_Pos) |
@@ -365,15 +586,6 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
(desc_edpt->wMaxPacketSize.size << USB_OTG_DIEPCTL_MPSIZ_Pos);
dev->DAINTMSK |= (1 << (USB_OTG_DAINTMSK_IEPM_Pos + epnum));
// Both TXFD and TXSA are in unit of 32-bit words.
// IN FIFO 0 was configured during enumeration, hence the "+ 16".
uint16_t const allocated_size = (USB_OTG_FS->GRXFSIZ & 0x0000ffff) + 16;
uint16_t const fifo_size = (EP_FIFO_SIZE/4 - allocated_size) / (EP_MAX-1);
uint32_t const fifo_offset = allocated_size + fifo_size*(epnum-1);
// DIEPTXF starts at FIFO #1.
USB_OTG_FS->DIEPTXF[epnum - 1] = (fifo_size << USB_OTG_DIEPTXF_INEPTXFD_Pos) | fifo_offset;
}
return true;
@@ -381,20 +593,18 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
xfer->buffer = buffer;
xfer->total_len = total_bytes;
xfer->buffer = buffer;
xfer->total_len = total_bytes;
// EP0 can only handle one packet
if(epnum == 0) {
ep0_pending[dir] = total_bytes;
// Schedule the first transaction for EP0 transfer
edpt_schedule_packets(epnum, dir, 1, ep0_pending[dir]);
edpt_schedule_packets(rhport, epnum, dir, 1, ep0_pending[dir]);
return true;
}
@@ -407,7 +617,7 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
}
// Schedule packets to be sent within interrupt
edpt_schedule_packets(epnum, dir, num_packets, total_bytes);
edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes);
return true;
}
@@ -417,9 +627,11 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE;
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE;
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE;
USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
@@ -440,9 +652,9 @@ void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
}
// Flush the FIFO, and wait until we have confirmed it cleared.
USB_OTG_FS->GRSTCTL |= ((epnum - 1) << USB_OTG_GRSTCTL_TXFNUM_Pos);
USB_OTG_FS->GRSTCTL |= USB_OTG_GRSTCTL_TXFFLSH;
while((USB_OTG_FS->GRSTCTL & USB_OTG_GRSTCTL_TXFFLSH_Msk) != 0);
usb_otg->GRSTCTL |= ((epnum - 1) << USB_OTG_GRSTCTL_TXFNUM_Pos);
usb_otg->GRSTCTL |= USB_OTG_GRSTCTL_TXFFLSH;
while((usb_otg->GRSTCTL & USB_OTG_GRSTCTL_TXFFLSH_Msk) != 0);
} else {
// Only disable currently enabled non-control endpoint
if ( (epnum == 0) || !(out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPENA) ){
@@ -453,7 +665,7 @@ void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
// anyway, and it can't be cleared by user code. If this while loop never
// finishes, we have bigger problems than just the stack.
dev->DCTL |= USB_OTG_DCTL_SGONAK;
while((USB_OTG_FS->GINTSTS & USB_OTG_GINTSTS_BOUTNAKEFF_Msk) == 0);
while((usb_otg->GINTSTS & USB_OTG_GINTSTS_BOUTNAKEFF_Msk) == 0);
// Ditto here- disable the endpoint.
out_ep[epnum].DOEPCTL |= (USB_OTG_DOEPCTL_STALL | USB_OTG_DOEPCTL_EPDIS);
@@ -469,8 +681,9 @@ void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE;
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE;
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
@@ -478,20 +691,16 @@ void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
if(dir == TUSB_DIR_IN) {
in_ep[epnum].DIEPCTL &= ~USB_OTG_DIEPCTL_STALL;
uint8_t eptype = (in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPTYP_Msk) >> \
USB_OTG_DIEPCTL_EPTYP_Pos;
// Required by USB spec to reset DATA toggle bit to DATA0 on interrupt
// and bulk endpoints.
uint8_t eptype = (in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPTYP_Msk) >> USB_OTG_DIEPCTL_EPTYP_Pos;
// Required by USB spec to reset DATA toggle bit to DATA0 on interrupt and bulk endpoints.
if(eptype == 2 || eptype == 3) {
in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_SD0PID_SEVNFRM;
}
} else {
out_ep[epnum].DOEPCTL &= ~USB_OTG_DOEPCTL_STALL;
uint8_t eptype = (out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPTYP_Msk) >> \
USB_OTG_DOEPCTL_EPTYP_Pos;
// Required by USB spec to reset DATA toggle bit to DATA0 on interrupt
// and bulk endpoints.
uint8_t eptype = (out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPTYP_Msk) >> USB_OTG_DOEPCTL_EPTYP_Pos;
// Required by USB spec to reset DATA toggle bit to DATA0 on interrupt and bulk endpoints.
if(eptype == 2 || eptype == 3) {
out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_SD0PID_SEVNFRM;
}
@@ -501,8 +710,11 @@ void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
/*------------------------------------------------------------------*/
// Read a single data packet from receive FIFO
static void read_fifo_packet(uint8_t * dst, uint16_t len){
usb_fifo_t rx_fifo = FIFO_BASE(0);
static void read_fifo_packet(uint8_t rhport, uint8_t * dst, uint16_t len)
{
(void) rhport;
usb_fifo_t rx_fifo = FIFO_BASE(rhport, 0);
// Reading full available 32 bit words from fifo
uint16_t full_words = len >> 2;
@@ -530,8 +742,11 @@ static void read_fifo_packet(uint8_t * dst, uint16_t len){
}
// Write a single data packet to EPIN FIFO
static void write_fifo_packet(uint8_t fifo_num, uint8_t * src, uint16_t len){
usb_fifo_t tx_fifo = FIFO_BASE(fifo_num);
static void write_fifo_packet(uint8_t rhport, uint8_t fifo_num, uint8_t * src, uint16_t len)
{
(void) rhport;
usb_fifo_t tx_fifo = FIFO_BASE(rhport, fifo_num);
// Pushing full available 32 bit words to fifo
uint16_t full_words = len >> 2;
@@ -555,61 +770,62 @@ static void write_fifo_packet(uint8_t fifo_num, uint8_t * src, uint16_t len){
}
}
static void handle_rxflvl_ints(USB_OTG_OUTEndpointTypeDef * out_ep) {
usb_fifo_t rx_fifo = FIFO_BASE(0);
static void handle_rxflvl_ints(uint8_t rhport, USB_OTG_OUTEndpointTypeDef * out_ep) {
USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
usb_fifo_t rx_fifo = FIFO_BASE(rhport, 0);
// Pop control word off FIFO
uint32_t ctl_word = USB_OTG_FS->GRXSTSP;
uint32_t ctl_word = usb_otg->GRXSTSP;
uint8_t pktsts = (ctl_word & USB_OTG_GRXSTSP_PKTSTS_Msk) >> USB_OTG_GRXSTSP_PKTSTS_Pos;
uint8_t epnum = (ctl_word & USB_OTG_GRXSTSP_EPNUM_Msk) >> USB_OTG_GRXSTSP_EPNUM_Pos;
uint16_t bcnt = (ctl_word & USB_OTG_GRXSTSP_BCNT_Msk) >> USB_OTG_GRXSTSP_BCNT_Pos;
switch(pktsts) {
case 0x01: // Global OUT NAK (Interrupt)
break;
break;
case 0x02: // Out packet recvd
{
xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT);
{
xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT);
// Read packet off RxFIFO
read_fifo_packet(xfer->buffer, bcnt);
// Read packet off RxFIFO
read_fifo_packet(rhport, xfer->buffer, bcnt);
// Increment pointer to xfer data
xfer->buffer += bcnt;
// Increment pointer to xfer data
xfer->buffer += bcnt;
// Truncate transfer length in case of short packet
if(bcnt < xfer->max_size) {
xfer->total_len -= (out_ep[epnum].DOEPTSIZ & USB_OTG_DOEPTSIZ_XFRSIZ_Msk) >> USB_OTG_DOEPTSIZ_XFRSIZ_Pos;
if(epnum == 0) {
xfer->total_len -= ep0_pending[TUSB_DIR_OUT];
ep0_pending[TUSB_DIR_OUT] = 0;
}
// Truncate transfer length in case of short packet
if(bcnt < xfer->max_size) {
xfer->total_len -= (out_ep[epnum].DOEPTSIZ & USB_OTG_DOEPTSIZ_XFRSIZ_Msk) >> USB_OTG_DOEPTSIZ_XFRSIZ_Pos;
if(epnum == 0) {
xfer->total_len -= ep0_pending[TUSB_DIR_OUT];
ep0_pending[TUSB_DIR_OUT] = 0;
}
}
break;
}
break;
case 0x03: // Out packet done (Interrupt)
break;
case 0x04: // Setup packet done (Interrupt)
_setup_offs = 2 - ((out_ep[epnum].DOEPTSIZ & USB_OTG_DOEPTSIZ_STUPCNT_Msk) >> USB_OTG_DOEPTSIZ_STUPCNT_Pos);
out_ep[epnum].DOEPTSIZ |= (3 << USB_OTG_DOEPTSIZ_STUPCNT_Pos);
break;
case 0x06: // Setup packet recvd
{
uint8_t setup_left = ((out_ep[epnum].DOEPTSIZ & USB_OTG_DOEPTSIZ_STUPCNT_Msk) >> USB_OTG_DOEPTSIZ_STUPCNT_Pos);
// We can receive up to three setup packets in succession, but
// only the last one is valid.
_setup_packet[4 - 2*setup_left] = (* rx_fifo);
_setup_packet[5 - 2*setup_left] = (* rx_fifo);
}
break;
case 0x04: // Setup packet done (Interrupt)
out_ep[epnum].DOEPTSIZ |= (3 << USB_OTG_DOEPTSIZ_STUPCNT_Pos);
break;
case 0x06: // Setup packet recvd
// We can receive up to three setup packets in succession, but
// only the last one is valid.
_setup_packet[0] = (* rx_fifo);
_setup_packet[1] = (* rx_fifo);
break;
default: // Invalid
TU_BREAKPOINT();
break;
break;
}
}
static void handle_epout_ints(USB_OTG_DeviceTypeDef * dev, USB_OTG_OUTEndpointTypeDef * out_ep) {
static void handle_epout_ints(uint8_t rhport, USB_OTG_DeviceTypeDef * dev, USB_OTG_OUTEndpointTypeDef * out_ep) {
// DAINT for a given EP clears when DOEPINTx is cleared.
// OEPINT will be cleared when DAINT's out bits are cleared.
for(uint8_t n = 0; n < EP_MAX; n++) {
@@ -619,8 +835,7 @@ static void handle_epout_ints(USB_OTG_DeviceTypeDef * dev, USB_OTG_OUTEndpointTy
// SETUP packet Setup Phase done.
if(out_ep[n].DOEPINT & USB_OTG_DOEPINT_STUP) {
out_ep[n].DOEPINT = USB_OTG_DOEPINT_STUP;
dcd_event_setup_received(0, (uint8_t*) &_setup_packet[2*_setup_offs], true);
_setup_offs = 0;
dcd_event_setup_received(rhport, (uint8_t*) &_setup_packet[0], true);
}
// OUT XFER complete
@@ -630,16 +845,16 @@ static void handle_epout_ints(USB_OTG_DeviceTypeDef * dev, USB_OTG_OUTEndpointTy
// EP0 can only handle one packet
if((n == 0) && ep0_pending[TUSB_DIR_OUT]) {
// Schedule another packet to be received.
edpt_schedule_packets(n, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]);
edpt_schedule_packets(rhport, n, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]);
} else {
dcd_event_xfer_complete(0, n, xfer->total_len, XFER_RESULT_SUCCESS, true);
dcd_event_xfer_complete(rhport, n, xfer->total_len, XFER_RESULT_SUCCESS, true);
}
}
}
}
}
static void handle_epin_ints(USB_OTG_DeviceTypeDef * dev, USB_OTG_INEndpointTypeDef * in_ep) {
static void handle_epin_ints(uint8_t rhport, USB_OTG_DeviceTypeDef * dev, USB_OTG_INEndpointTypeDef * in_ep) {
// DAINT for a given EP clears when DIEPINTx is cleared.
// IEPINT will be cleared when DAINT's out bits are cleared.
for ( uint8_t n = 0; n < EP_MAX; n++ )
@@ -648,7 +863,6 @@ static void handle_epin_ints(USB_OTG_DeviceTypeDef * dev, USB_OTG_INEndpointType
if ( dev->DAINT & (1 << (USB_OTG_DAINT_IEPINT_Pos + n)) )
{
// IN XFER complete (entire xfer).
if ( in_ep[n].DIEPINT & USB_OTG_DIEPINT_XFRC )
{
@@ -657,9 +871,9 @@ static void handle_epin_ints(USB_OTG_DeviceTypeDef * dev, USB_OTG_INEndpointType
// EP0 can only handle one packet
if((n == 0) && ep0_pending[TUSB_DIR_IN]) {
// Schedule another packet to be transmitted.
edpt_schedule_packets(n, TUSB_DIR_IN, 1, ep0_pending[TUSB_DIR_IN]);
edpt_schedule_packets(rhport, n, TUSB_DIR_IN, 1, ep0_pending[TUSB_DIR_IN]);
} else {
dcd_event_xfer_complete(0, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true);
dcd_event_xfer_complete(rhport, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true);
}
}
@@ -686,7 +900,7 @@ static void handle_epin_ints(USB_OTG_DeviceTypeDef * dev, USB_OTG_INEndpointType
}
// Push packet to Tx-FIFO
write_fifo_packet(n, xfer->buffer, packet_size);
write_fifo_packet(rhport, n, xfer->buffer, packet_size);
// Increment pointer to xfer data
xfer->buffer += packet_size;
@@ -702,60 +916,61 @@ static void handle_epin_ints(USB_OTG_DeviceTypeDef * dev, USB_OTG_INEndpointType
}
}
void dcd_int_handler(uint8_t rhport) {
void dcd_int_handler(uint8_t rhport)
{
USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
(void) rhport;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE;
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE;
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE;
uint32_t int_status = USB_OTG_FS->GINTSTS;
uint32_t int_status = usb_otg->GINTSTS;
if(int_status & USB_OTG_GINTSTS_USBRST) {
// USBRST is start of reset.
USB_OTG_FS->GINTSTS = USB_OTG_GINTSTS_USBRST;
bus_reset();
usb_otg->GINTSTS = USB_OTG_GINTSTS_USBRST;
bus_reset(rhport);
}
if(int_status & USB_OTG_GINTSTS_ENUMDNE) {
// ENUMDNE detects speed of the link. For full-speed, we
// always expect the same value. This interrupt is considered
// the end of reset.
USB_OTG_FS->GINTSTS = USB_OTG_GINTSTS_ENUMDNE;
end_of_reset();
dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true);
// ENUMDNE is the end of reset where speed of the link is detected
usb_otg->GINTSTS = USB_OTG_GINTSTS_ENUMDNE;
tusb_speed_t const speed = get_speed(rhport);
set_turnaround(usb_otg, speed);
dcd_event_bus_reset(rhport, speed, true);
}
if(int_status & USB_OTG_GINTSTS_USBSUSP)
{
USB_OTG_FS->GINTSTS = USB_OTG_GINTSTS_USBSUSP;
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
usb_otg->GINTSTS = USB_OTG_GINTSTS_USBSUSP;
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
if(int_status & USB_OTG_GINTSTS_WKUINT)
{
USB_OTG_FS->GINTSTS = USB_OTG_GINTSTS_WKUINT;
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
usb_otg->GINTSTS = USB_OTG_GINTSTS_WKUINT;
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
}
if(int_status & USB_OTG_GINTSTS_OTGINT)
{
// OTG INT bit is read-only
uint32_t const otg_int = USB_OTG_FS->GOTGINT;
uint32_t const otg_int = usb_otg->GOTGINT;
if (otg_int & USB_OTG_GOTGINT_SEDET)
{
dcd_event_bus_signal(0, DCD_EVENT_UNPLUGGED, true);
dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
}
USB_OTG_FS->GOTGINT = otg_int;
usb_otg->GOTGINT = otg_int;
}
#if USE_SOF
if(int_status & USB_OTG_GINTSTS_SOF) {
USB_OTG_FS->GINTSTS = USB_OTG_GINTSTS_SOF;
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
usb_otg->GINTSTS = USB_OTG_GINTSTS_SOF;
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
}
#endif
@@ -764,27 +979,27 @@ void dcd_int_handler(uint8_t rhport) {
// RXFLVL bit is read-only
// Mask out RXFLVL while reading data from FIFO
USB_OTG_FS->GINTMSK &= ~USB_OTG_GINTMSK_RXFLVLM;
usb_otg->GINTMSK &= ~USB_OTG_GINTMSK_RXFLVLM;
// Loop until all available packets were handled
do {
handle_rxflvl_ints(out_ep);
int_status = USB_OTG_FS->GINTSTS;
handle_rxflvl_ints(rhport, out_ep);
int_status = usb_otg->GINTSTS;
} while(int_status & USB_OTG_GINTSTS_RXFLVL);
USB_OTG_FS->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM;
usb_otg->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM;
}
// OUT endpoint interrupt handling.
if(int_status & USB_OTG_GINTSTS_OEPINT) {
// OEPINT is read-only
handle_epout_ints(dev, out_ep);
handle_epout_ints(rhport, dev, out_ep);
}
// IN endpoint interrupt handling.
if(int_status & USB_OTG_GINTSTS_IEPINT) {
// IEPINT bit read-only
handle_epin_ints(dev, in_ep);
handle_epin_ints(rhport, dev, in_ep);
}
}

View File

@@ -118,31 +118,35 @@
/** \addtogroup group_configuration
* @{ */
//--------------------------------------------------------------------
// CONTROLLER
// Only 1 roothub port can be configured to be device and/or host.
// tinyusb does not support dual devices or dual host configuration
// RootHub Mode Configuration
// CFG_TUSB_RHPORTx_MODE contains operation mode and speed for that port
//--------------------------------------------------------------------
/** \defgroup group_mode Controller Mode Selection
* \brief CFG_TUSB_CONTROLLER_N_MODE must be defined with these
* @{ */
// Lower 4-bit is operational mode
#define OPT_MODE_NONE 0x00 ///< Disabled
#define OPT_MODE_DEVICE 0x01 ///< Device Mode
#define OPT_MODE_HOST 0x02 ///< Host Mode
#define OPT_MODE_HIGH_SPEED 0x10 ///< High speed
/** @} */
// Higher 4-bit is max operational speed (corresponding to tusb_speed_t)
#define OPT_MODE_FULL_SPEED 0x00 ///< Max Full Speed
#define OPT_MODE_LOW_SPEED 0x10 ///< Max Low Speed
#define OPT_MODE_HIGH_SPEED 0x20 ///< Max High Speed
#ifndef CFG_TUSB_RHPORT0_MODE
#define CFG_TUSB_RHPORT0_MODE OPT_MODE_NONE
#endif
#ifndef CFG_TUSB_RHPORT1_MODE
#define CFG_TUSB_RHPORT1_MODE OPT_MODE_NONE
#endif
#if ((CFG_TUSB_RHPORT0_MODE & OPT_MODE_HOST) && (CFG_TUSB_RHPORT1_MODE & OPT_MODE_HOST)) || \
#if ((CFG_TUSB_RHPORT0_MODE & OPT_MODE_HOST ) && (CFG_TUSB_RHPORT1_MODE & OPT_MODE_HOST )) || \
((CFG_TUSB_RHPORT0_MODE & OPT_MODE_DEVICE) && (CFG_TUSB_RHPORT1_MODE & OPT_MODE_DEVICE))
#error "tinyusb does not support same modes on more than 1 roothub port"
#error "TinyUSB currently does not support same modes on more than 1 roothub port"
#endif
// Which roothub port is configured as host
@@ -160,7 +164,6 @@
#define TUSB_OPT_DEVICE_ENABLED ( TUD_OPT_RHPORT >= 0 )
//--------------------------------------------------------------------+
// COMMON OPTIONS
//--------------------------------------------------------------------+
@@ -172,15 +175,15 @@
// place data in accessible RAM for usb controller
#ifndef CFG_TUSB_MEM_SECTION
#define CFG_TUSB_MEM_SECTION
#define CFG_TUSB_MEM_SECTION
#endif
#ifndef CFG_TUSB_MEM_ALIGN
#define CFG_TUSB_MEM_ALIGN TU_ATTR_ALIGNED(4)
#define CFG_TUSB_MEM_ALIGN TU_ATTR_ALIGNED(4)
#endif
#ifndef CFG_TUSB_OS
#define CFG_TUSB_OS OPT_OS_NONE
#define CFG_TUSB_OS OPT_OS_NONE
#endif
//--------------------------------------------------------------------
@@ -188,7 +191,7 @@
//--------------------------------------------------------------------
#ifndef CFG_TUD_ENDPOINT0_SIZE
#define CFG_TUD_ENDPOINT0_SIZE 64
#define CFG_TUD_ENDPOINT0_SIZE 64
#endif
#ifndef CFG_TUD_CDC