Merge pull request #2750 from hathach/fix-ch32v203-setup

rework fsdev driver, fix ch32v203 race condition and stability issue
This commit is contained in:
Ha Thach
2024-08-08 22:41:26 +07:00
committed by GitHub
15 changed files with 662 additions and 657 deletions

View File

@@ -1201,7 +1201,6 @@ TU_ATTR_FAST_FUNC void dcd_event_handler(dcd_event_t const* event, bool in_isr)
break;
case DCD_EVENT_SETUP_RECEIVED:
// TU_ASSERT(event->setup_received.bRequest != 0,); // for catching issue with ch32v203 and windows with -O0/-Og
_usbd_queued_setup++;
send = true;
break;

View File

@@ -4,7 +4,6 @@
* Copyright (c) 2019 Nathan Conrad
*
* Portions:
* Copyright (c) 2016 STMicroelectronics
* Copyright (c) 2019 Ha Thach (tinyusb.org)
* Copyright (c) 2022 Simon Küppers (skuep)
* Copyright (c) 2022 HiFiPhile
@@ -114,8 +113,6 @@
#include "device/dcd.h"
#if defined(TUP_USBIP_FSDEV_STM32)
// Undefine to reduce the dependence on HAL
#undef USE_HAL_DRIVER
#include "fsdev_stm32.h"
#elif defined(TUP_USBIP_FSDEV_CH32)
#include "fsdev_ch32.h"
@@ -125,12 +122,6 @@
#include "fsdev_type.h"
//--------------------------------------------------------------------+
// Configuration
//--------------------------------------------------------------------+
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
@@ -155,7 +146,6 @@ typedef struct {
static xfer_ctl_t xfer_status[CFG_TUD_ENDPPOINT_MAX][2];
static ep_alloc_t ep_alloc_status[FSDEV_EP_COUNT];
static uint8_t remoteWakeCountdown; // When wake is requested
//--------------------------------------------------------------------+
@@ -179,6 +169,10 @@ static bool dcd_read_packet_memory_ff(tu_fifo_t *ff, uint16_t src, uint16_t wNBy
static void edpt0_open(uint8_t rhport);
TU_ATTR_ALWAYS_INLINE static inline void edpt0_prepare_setup(void) {
btable_set_rx_bufsize(0, BTABLE_BUF_RX, 8);
}
//--------------------------------------------------------------------+
// Inline helper
//--------------------------------------------------------------------+
@@ -220,10 +214,11 @@ void dcd_init(uint8_t rhport) {
// Reset endpoints to disabled
for (uint32_t i = 0; i < FSDEV_EP_COUNT; i++) {
// This doesn't clear all bits since some bits are "toggle", but does set the type to DISABLED.
ep_write(i, 0u);
ep_write(i, 0u, false);
}
FSDEV_REG->CNTR |= USB_CNTR_RESETM | USB_CNTR_ESOFM | USB_CNTR_CTRM | USB_CNTR_SUSPM | USB_CNTR_WKUPM;
FSDEV_REG->CNTR |= USB_CNTR_RESETM | USB_CNTR_ESOFM | USB_CNTR_CTRM |
USB_CNTR_SUSPM | USB_CNTR_WKUPM | USB_CNTR_PMAOVRM;
handle_bus_reset(rhport);
// Enable pull-up if supported
@@ -279,13 +274,10 @@ static void handle_bus_reset(uint8_t rhport) {
// Handle CTR interrupt for the TX/IN direction
static void handle_ctr_tx(uint32_t ep_id) {
uint32_t ep_reg = ep_read(ep_id) & USB_EPREG_MASK;
// Verify the CTR bit is set. This was in the ST Micro code, but I'm not sure it's actually necessary?
TU_VERIFY(ep_reg & USB_EP_CTR_TX, );
uint32_t ep_reg = ep_read(ep_id) | USB_EP_CTR_TX | USB_EP_CTR_RX;
ep_reg &= USB_EPREG_MASK;
uint8_t const ep_num = ep_reg & USB_EPADDR_FIELD;
uint8_t ep_addr = (ep_reg & USB_EPADDR_FIELD) | TUSB_DIR_IN_MASK;
xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, TUSB_DIR_IN);
if (ep_is_iso(ep_reg)) {
@@ -301,123 +293,79 @@ static void handle_ctr_tx(uint32_t ep_id) {
}
if (xfer->total_len != xfer->queued_len) {
dcd_transmit_packet(xfer, ep_id); // also clear CTR bit
dcd_transmit_packet(xfer, ep_id);
} else {
dcd_event_xfer_complete(0, ep_addr, xfer->total_len, XFER_RESULT_SUCCESS, true);
dcd_event_xfer_complete(0, ep_num | TUSB_DIR_IN_MASK, xfer->queued_len, XFER_RESULT_SUCCESS, true);
}
}
// Clear CTR TX and reserved CTR RX
ep_reg = (ep_reg & ~USB_EP_CTR_TX) | USB_EP_CTR_RX;
static void handle_ctr_setup(uint32_t ep_id) {
uint16_t rx_count = btable_get_count(ep_id, BTABLE_BUF_RX);
uint16_t rx_addr = btable_get_addr(ep_id, BTABLE_BUF_RX);
uint8_t setup_packet[8] TU_ATTR_ALIGNED(4);
ep_write(ep_id, ep_reg);
dcd_read_packet_memory(setup_packet, rx_addr, rx_count);
// Clear CTR RX if another setup packet arrived before this, it will be discarded
ep_write_clear_ctr(ep_id, TUSB_DIR_OUT);
// Setup packet should always be 8 bytes. If not, we probably missed the packet
if (rx_count == 8) {
dcd_event_setup_received(0, (uint8_t*) setup_packet, true);
// Hardware should reset EP0 RX/TX to NAK and both toggle to 1
} else {
// Missed setup packet !!!
TU_BREAKPOINT();
edpt0_prepare_setup();
}
}
// Handle CTR interrupt for the RX/OUT direction
static void handle_ctr_rx(uint32_t ep_id) {
#ifdef FSDEV_BUS_32BIT
/* https://www.st.com/resource/en/errata_sheet/es0561-stm32h503cbebkbrb-device-errata-stmicroelectronics.pdf
* From STM32H503 errata 2.15.1: Buffer description table update completes after CTR interrupt triggers
* Description:
* - During OUT transfers, the correct transfer interrupt (CTR) is triggered a little before the last USB SRAM accesses
* have completed. If the software responds quickly to the interrupt, the full buffer contents may not be correct.
* Workaround:
* - Software should ensure that a small delay is included before accessing the SRAM contents. This delay
* should be 800 ns in Full Speed mode and 6.4 μs in Low Speed mode
* - Since H5 can run up to 250Mhz -> 1 cycle = 4ns. Per errata, we need to wait 200 cycles. Though executing code
* also takes time, so we'll wait 60 cycles (count = 20).
* - Since Low Speed mode is not supported/popular, we will ignore it for now.
*
* Note: this errata also seems to apply to G0, U5, H5 etc.
*/
volatile uint32_t cycle_count = 20; // defined as PCD_RX_PMA_CNT in stm32 hal_driver
while (cycle_count > 0U) {
cycle_count--; // each count take 3 cycles (1 for sub, jump, and compare)
}
#endif
uint32_t ep_reg = ep_read(ep_id);
// Verify the CTR bit is set. This was in the ST Micro code, but I'm not sure it's actually necessary?
TU_VERIFY(ep_reg & USB_EP_CTR_RX, );
ep_reg = (ep_reg & ~USB_EP_CTR_RX) | USB_EP_CTR_TX; // Clear CTR RX and reserved CTR TX
uint32_t ep_reg = ep_read(ep_id) | USB_EP_CTR_TX | USB_EP_CTR_RX;
uint8_t const ep_num = ep_reg & USB_EPADDR_FIELD;
bool const is_iso = ep_is_iso(ep_reg);
xfer_ctl_t* xfer = xfer_ctl_ptr(ep_num, TUSB_DIR_OUT);
if (ep_reg & USB_EP_SETUP) {
uint32_t count = btable_get_count(ep_id, BTABLE_BUF_RX);
// Setup packet should always be 8 bytes. If not, ignore it, and try again.
if (count == 8) {
uint16_t rx_addr = btable_get_addr(ep_id, BTABLE_BUF_RX);
uint32_t setup_packet[2];
dcd_read_packet_memory(setup_packet, rx_addr, 8);
dcd_event_setup_received(0, (uint8_t*) setup_packet, true);
// Reset EP to NAK (in case it had been stalling)
ep_reg = ep_add_status(ep_reg, TUSB_DIR_IN, EP_STAT_NAK);
ep_reg = ep_add_status(ep_reg, TUSB_DIR_OUT, EP_STAT_NAK);
ep_reg = ep_add_dtog(ep_reg, TUSB_DIR_IN, 1);
ep_reg = ep_add_dtog(ep_reg, TUSB_DIR_OUT, 1);
} else {
ep_reg &= USB_EPREG_MASK; // reversed all toggle
}
uint8_t buf_id;
if (is_iso) {
buf_id = (ep_reg & USB_EP_DTOG_RX) ? 0 : 1; // ISO are double buffered
} else {
ep_reg &= USB_EPRX_STAT | USB_EPREG_MASK; // reversed all toggle except RX Status
bool const is_iso = ep_is_iso(ep_reg);
xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, TUSB_DIR_OUT);
uint8_t buf_id;
if (is_iso) {
buf_id = (ep_reg & USB_EP_DTOG_RX) ? 0 : 1; // ISO are double buffered
} else {
buf_id = BTABLE_BUF_RX;
}
uint32_t rx_count = btable_get_count(ep_id, buf_id);
uint16_t pma_addr = (uint16_t) btable_get_addr(ep_id, buf_id);
if (rx_count != 0) {
if (xfer->ff) {
dcd_read_packet_memory_ff(xfer->ff, pma_addr, rx_count);
} else {
dcd_read_packet_memory(xfer->buffer + xfer->queued_len, pma_addr, rx_count);
}
xfer->queued_len = (uint16_t)(xfer->queued_len + rx_count);
}
if ((rx_count < xfer->max_packet_size) || (xfer->queued_len == xfer->total_len)) {
uint8_t const ep_addr = ep_num;
// all bytes received or short packet
dcd_event_xfer_complete(0, ep_addr, xfer->queued_len, XFER_RESULT_SUCCESS, true);
if (ep_num == 0) {
// prepared for status packet
btable_set_rx_bufsize(ep_id, BTABLE_BUF_RX, CFG_TUD_ENDPOINT0_SIZE);
}
ep_reg = ep_add_status(ep_reg, TUSB_DIR_OUT, EP_STAT_NAK);
} else {
// Set endpoint active again for receiving more data. Note that isochronous endpoints stay active always
if (!is_iso) {
uint16_t const cnt = tu_min16(xfer->total_len - xfer->queued_len, xfer->max_packet_size);
btable_set_rx_bufsize(ep_id, BTABLE_BUF_RX, cnt);
}
ep_reg = ep_add_status(ep_reg, TUSB_DIR_OUT, EP_STAT_VALID);
}
buf_id = BTABLE_BUF_RX;
}
uint16_t const rx_count = btable_get_count(ep_id, buf_id);
uint16_t pma_addr = (uint16_t) btable_get_addr(ep_id, buf_id);
ep_write(ep_id, ep_reg);
if (xfer->ff) {
dcd_read_packet_memory_ff(xfer->ff, pma_addr, rx_count);
} else {
dcd_read_packet_memory(xfer->buffer + xfer->queued_len, pma_addr, rx_count);
}
xfer->queued_len += rx_count;
if ((rx_count < xfer->max_packet_size) || (xfer->queued_len >= xfer->total_len)) {
// all bytes received or short packet
dcd_event_xfer_complete(0, ep_num, xfer->queued_len, XFER_RESULT_SUCCESS, true);
// For ch32v203: reset rx bufsize to mps to prevent race condition to cause PMAOVR (occurs with msc write10)
// also ch32 seems to unconditionally accept ZLP on EP0 OUT, which can incorrectly use queued_len of previous
// transfer. So reset total_len and queued_len to 0.
btable_set_rx_bufsize(ep_id, BTABLE_BUF_RX, xfer->max_packet_size);
xfer->total_len = xfer->queued_len = 0;
} else {
// Set endpoint active again for receiving more data. Note that isochronous endpoints stay active always
if (!is_iso) {
uint16_t const cnt = tu_min16(xfer->total_len - xfer->queued_len, xfer->max_packet_size);
btable_set_rx_bufsize(ep_id, BTABLE_BUF_RX, cnt);
}
ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(TUSB_DIR_OUT); // will change RX Status, reserved other toggle bits
ep_change_status(&ep_reg, TUSB_DIR_OUT, EP_STAT_VALID);
ep_write(ep_id, ep_reg, false);
}
}
void dcd_int_handler(uint8_t rhport) {
uint32_t int_status = FSDEV_REG->ISTR;
// const uint32_t handled_ints = USB_ISTR_CTR | USB_ISTR_RESET | USB_ISTR_WKUP
// | USB_ISTR_SUSP | USB_ISTR_SOF | USB_ISTR_ESOF;
// unused IRQs: (USB_ISTR_PMAOVR | USB_ISTR_ERR | USB_ISTR_L1REQ )
// The ST driver loops here on the CTR bit, but that loop has been moved into the
// dcd_ep_ctr_handler(), so less need to loop here. The other interrupts shouldn't
// be triggered repeatedly.
/* Put SOF flag at the beginning of ISR in case to get least amount of jitter if it is used for timing purposes */
if (int_status & USB_ISTR_SOF) {
@@ -464,17 +412,52 @@ void dcd_int_handler(uint8_t rhport) {
FSDEV_REG->ISTR = (fsdev_bus_t)~USB_ISTR_ESOF;
}
// loop to handle all pending CTR interrupts
while (int_status & USB_ISTR_CTR) {
uint32_t const ep_id = int_status & USB_ISTR_EP_ID;
if (int_status & USB_ISTR_PMAOVR) {
TU_BREAKPOINT();
FSDEV_REG->ISTR = (fsdev_bus_t)~USB_ISTR_PMAOVR;
}
if ((int_status & USB_ISTR_DIR) == 0U) {
handle_ctr_tx(ep_id); // TX/IN
} else {
handle_ctr_rx(ep_id); // RX/OUT or both (RX/TX !!)
// loop to handle all pending CTR interrupts
while (FSDEV_REG->ISTR & USB_ISTR_CTR) {
// skip DIR bit, and use CTR TX/RX instead, since there is chance we have both TX/RX completed in one interrupt
uint32_t const ep_id = FSDEV_REG->ISTR & USB_ISTR_EP_ID;
uint32_t const ep_reg = ep_read(ep_id);
if (ep_reg & USB_EP_CTR_RX) {
#ifdef FSDEV_BUS_32BIT
/* https://www.st.com/resource/en/errata_sheet/es0561-stm32h503cbebkbrb-device-errata-stmicroelectronics.pdf
* https://www.st.com/resource/en/errata_sheet/es0587-stm32u535xx-and-stm32u545xx-device-errata-stmicroelectronics.pdf
* From H503/U535 errata: Buffer description table update completes after CTR interrupt triggers
* Description:
* - During OUT transfers, the correct transfer interrupt (CTR) is triggered a little before the last USB SRAM accesses
* have completed. If the software responds quickly to the interrupt, the full buffer contents may not be correct.
* Workaround:
* - Software should ensure that a small delay is included before accessing the SRAM contents. This delay
* should be 800 ns in Full Speed mode and 6.4 μs in Low Speed mode
* - Since H5 can run up to 250Mhz -> 1 cycle = 4ns. Per errata, we need to wait 200 cycles. Though executing code
* also takes time, so we'll wait 60 cycles (count = 20).
* - Since Low Speed mode is not supported/popular, we will ignore it for now.
*
* Note: this errata may also apply to G0, U5, H5 etc.
*/
volatile uint32_t cycle_count = 20; // defined as PCD_RX_PMA_CNT in stm32 hal_driver
while (cycle_count > 0U) {
cycle_count--; // each count take 3 cycles (1 for sub, jump, and compare)
}
#endif
if (ep_reg & USB_EP_SETUP) {
handle_ctr_setup(ep_id); // CTR will be clear after copied setup packet
} else {
ep_write_clear_ctr(ep_id, TUSB_DIR_OUT);
handle_ctr_rx(ep_id);
}
}
int_status = FSDEV_REG->ISTR;
if (ep_reg & USB_EP_CTR_TX) {
ep_write_clear_ctr(ep_id, TUSB_DIR_IN);
handle_ctr_tx(ep_id);
}
}
}
@@ -493,6 +476,8 @@ void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const *req
uint8_t const dev_addr = (uint8_t)request->wValue;
FSDEV_REG->DADDR = (USB_DADDR_EF | dev_addr);
}
edpt0_prepare_setup();
}
/***
@@ -577,16 +562,14 @@ void edpt0_open(uint8_t rhport) {
btable_set_addr(0, BTABLE_BUF_RX, pma_addr0);
btable_set_addr(0, BTABLE_BUF_TX, pma_addr1);
uint32_t ep_reg = FSDEV_REG->ep[0].reg & ~USB_EPREG_MASK;
uint32_t ep_reg = ep_read(0) & ~USB_EPREG_MASK; // only get toggle bits
ep_reg |= USB_EP_CONTROL;
ep_reg = ep_add_status(ep_reg, TUSB_DIR_IN, EP_STAT_NAK);
ep_reg = ep_add_status(ep_reg, TUSB_DIR_OUT, EP_STAT_NAK);
ep_change_status(&ep_reg, TUSB_DIR_IN, EP_STAT_NAK);
ep_change_status(&ep_reg, TUSB_DIR_OUT, EP_STAT_NAK);
// no need to explicitly set DTOG bits since we aren't masked DTOG bit
// prepare for setup packet
btable_set_rx_bufsize(0, BTABLE_BUF_RX, CFG_TUD_ENDPOINT0_SIZE);
ep_write(0, ep_reg);
edpt0_prepare_setup(); // prepare for setup packet
ep_write(0, ep_reg, false);
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *desc_ep) {
@@ -598,8 +581,8 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *desc_ep) {
uint8_t const ep_idx = dcd_ep_alloc(ep_addr, desc_ep->bmAttributes.xfer);
TU_ASSERT(ep_idx < FSDEV_EP_COUNT);
uint32_t ep_reg = FSDEV_REG->ep[ep_idx].reg & ~USB_EPREG_MASK;
ep_reg |= tu_edpt_number(ep_addr) | USB_EP_CTR_RX | USB_EP_CTR_TX;
uint32_t ep_reg = ep_read(ep_idx) & ~USB_EPREG_MASK;
ep_reg |= tu_edpt_number(ep_addr) | USB_EP_CTR_TX | USB_EP_CTR_RX;
// Set type
switch (desc_ep->bmAttributes.xfer) {
@@ -623,8 +606,8 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *desc_ep) {
xfer->max_packet_size = packet_size;
xfer->ep_idx = ep_idx;
ep_reg = ep_add_status(ep_reg, dir, EP_STAT_NAK);
ep_reg = ep_add_dtog(ep_reg, dir, 0);
ep_change_status(&ep_reg, dir, EP_STAT_NAK);
ep_change_dtog(&ep_reg, dir, 0);
// reserve other direction toggle bits
if (dir == TUSB_DIR_IN) {
@@ -633,18 +616,17 @@ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *desc_ep) {
ep_reg &= ~(USB_EPTX_STAT | USB_EP_DTOG_TX);
}
ep_write(ep_idx, ep_reg);
ep_write(ep_idx, ep_reg, true);
return true;
}
void dcd_edpt_close_all(uint8_t rhport)
{
(void)rhport;
void dcd_edpt_close_all(uint8_t rhport) {
dcd_int_disable(rhport);
for (uint32_t i = 1; i < FSDEV_EP_COUNT; i++) {
// Reset endpoint
ep_write(i, 0);
ep_write(i, 0, false);
// Clear EP allocation status
ep_alloc_status[i].ep_num = 0xFF;
ep_alloc_status[i].ep_type = 0xFF;
@@ -652,6 +634,8 @@ void dcd_edpt_close_all(uint8_t rhport)
ep_alloc_status[i].allocated[1] = false;
}
dcd_int_enable(rhport);
// Reset PMA allocation
ep_buf_ptr = FSDEV_BTABLE_BASE + 8 * CFG_TUD_ENDPPOINT_MAX + 2 * CFG_TUD_ENDPOINT0_SIZE;
}
@@ -692,14 +676,14 @@ bool dcd_edpt_iso_activate(uint8_t rhport, tusb_desc_endpoint_t const *desc_ep)
xfer->max_packet_size = tu_edpt_packet_size(desc_ep);
uint32_t ep_reg = FSDEV_REG->ep[0].reg & ~USB_EPREG_MASK;
ep_reg |= tu_edpt_number(ep_addr) | USB_EP_ISOCHRONOUS | USB_EP_CTR_RX | USB_EP_CTR_TX;
ep_reg = ep_add_status(ep_reg, TUSB_DIR_IN, EP_STAT_DISABLED);
ep_reg = ep_add_status(ep_reg, TUSB_DIR_OUT, EP_STAT_DISABLED);
ep_reg = ep_add_dtog(ep_reg, dir, 0);
ep_reg = ep_add_dtog(ep_reg, 1-dir, 1);
uint32_t ep_reg = ep_read(ep_idx) & ~USB_EPREG_MASK;
ep_reg |= tu_edpt_number(ep_addr) | USB_EP_ISOCHRONOUS | USB_EP_CTR_TX | USB_EP_CTR_RX;
ep_change_status(&ep_reg, TUSB_DIR_IN, EP_STAT_DISABLED);
ep_change_status(&ep_reg, TUSB_DIR_OUT, EP_STAT_DISABLED);
ep_change_dtog(&ep_reg, dir, 0);
ep_change_dtog(&ep_reg, 1 - dir, 1);
ep_write(ep_idx, ep_reg);
ep_write(ep_idx, ep_reg, true);
return true;
}
@@ -707,7 +691,9 @@ bool dcd_edpt_iso_activate(uint8_t rhport, tusb_desc_endpoint_t const *desc_ep)
// Currently, single-buffered, and only 64 bytes at a time (max)
static void dcd_transmit_packet(xfer_ctl_t *xfer, uint16_t ep_ix) {
uint16_t len = tu_min16(xfer->total_len - xfer->queued_len, xfer->max_packet_size);
uint16_t ep_reg = ep_read(ep_ix) | EP_CTR_TXRX;
uint32_t ep_reg = ep_read(ep_ix) | USB_EP_CTR_TX | USB_EP_CTR_RX; // reserve CTR
ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(TUSB_DIR_IN); // only change TX Status, reserve other toggle bits
bool const is_iso = ep_is_iso(ep_reg);
uint8_t buf_id;
@@ -717,25 +703,21 @@ static void dcd_transmit_packet(xfer_ctl_t *xfer, uint16_t ep_ix) {
buf_id = BTABLE_BUF_TX;
}
uint16_t addr_ptr = (uint16_t) btable_get_addr(ep_ix, buf_id);
btable_set_count(ep_ix, buf_id, len);
if (xfer->ff) {
dcd_write_packet_memory_ff(xfer->ff, addr_ptr, len);
} else {
dcd_write_packet_memory(addr_ptr, &(xfer->buffer[xfer->queued_len]), len);
}
xfer->queued_len = (uint16_t)(xfer->queued_len + len);
xfer->queued_len += len;
ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(TUSB_DIR_IN);
ep_reg = ep_add_status(ep_reg, TUSB_DIR_IN, EP_STAT_VALID);
ep_reg = ep_clear_ctr(ep_reg, TUSB_DIR_IN);
btable_set_count(ep_ix, buf_id, len);
ep_change_status(&ep_reg, TUSB_DIR_IN, EP_STAT_VALID);
dcd_int_disable(0);
ep_write(ep_ix, ep_reg);
if (is_iso) {
xfer->iso_in_sending = true;
}
dcd_int_enable(0);
ep_write(ep_ix, ep_reg, true);
}
static bool edpt_xfer(uint8_t rhport, uint8_t ep_num, uint8_t dir) {
@@ -747,10 +729,10 @@ static bool edpt_xfer(uint8_t rhport, uint8_t ep_num, uint8_t dir) {
if (dir == TUSB_DIR_IN) {
dcd_transmit_packet(xfer, ep_idx);
} else {
uint32_t cnt = (uint32_t) tu_min16(xfer->total_len, xfer->max_packet_size);
uint16_t ep_reg = ep_read(ep_idx) | USB_EP_CTR_TX;
ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(dir); // keep CTR TX, clear CTR RX
ep_reg = ep_add_status(ep_reg, dir, EP_STAT_VALID);
uint32_t ep_reg = ep_read(ep_idx) | USB_EP_CTR_TX | USB_EP_CTR_RX; // reserve CTR
ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(dir);
uint16_t cnt = tu_min16(xfer->total_len, xfer->max_packet_size);
if (ep_is_iso(ep_reg)) {
btable_set_rx_bufsize(ep_idx, 0, cnt);
@@ -759,7 +741,8 @@ static bool edpt_xfer(uint8_t rhport, uint8_t ep_num, uint8_t dir) {
btable_set_rx_bufsize(ep_idx, BTABLE_BUF_RX, cnt);
}
ep_write(ep_idx, ep_reg);
ep_change_status(&ep_reg, dir, EP_STAT_VALID);
ep_write(ep_idx, ep_reg, true);
}
return true;
@@ -798,12 +781,11 @@ void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) {
xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, dir);
uint8_t const ep_idx = xfer->ep_idx;
uint32_t ep_reg = ep_read(ep_idx);
ep_reg |= USB_EP_CTR_RX | USB_EP_CTR_TX; // reserve CTR bits
uint32_t ep_reg = ep_read(ep_idx) | USB_EP_CTR_TX | USB_EP_CTR_RX; // reserve CTR bits
ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(dir);
ep_reg = ep_add_status(ep_reg, dir, EP_STAT_STALL);
ep_change_status(&ep_reg, dir, EP_STAT_STALL);
ep_write(ep_idx, ep_reg);
ep_write(ep_idx, ep_reg, true);
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
@@ -814,282 +796,173 @@ void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, dir);
uint8_t const ep_idx = xfer->ep_idx;
uint32_t ep_reg = ep_read(ep_idx) | EP_CTR_TXRX;
uint32_t ep_reg = ep_read(ep_idx) | USB_EP_CTR_TX | USB_EP_CTR_RX; // reserve CTR bits
ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(dir) | EP_DTOG_MASK(dir);
if (!ep_is_iso(ep_reg)) {
ep_reg = ep_add_status(ep_reg, dir, EP_STAT_NAK);
ep_change_status(&ep_reg, dir, EP_STAT_NAK);
}
ep_reg = ep_add_dtog(ep_reg, dir, 0); // Reset to DATA0
ep_write(ep_idx, ep_reg);
ep_change_dtog(&ep_reg, dir, 0); // Reset to DATA0
ep_write(ep_idx, ep_reg, true);
}
#ifdef FSDEV_BUS_32BIT
static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, uint16_t wNBytes) {
const uint8_t *src8 = src;
volatile uint32_t *pma32 = (volatile uint32_t *)(USB_PMAADDR + dst);
for (uint32_t n = wNBytes / 4; n > 0; --n) {
*pma32++ = tu_unaligned_read32(src8);
src8 += 4;
}
uint16_t odd = wNBytes & 0x03;
if (odd) {
uint32_t wrVal = *src8;
odd--;
if (odd) {
wrVal |= *++src8 << 8;
odd--;
if (odd) {
wrVal |= *++src8 << 16;
}
}
*pma32 = wrVal;
}
return true;
}
static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, uint16_t wNBytes) {
uint8_t *dst8 = dst;
volatile uint32_t *src32 = (volatile uint32_t *)(USB_PMAADDR + src);
for (uint32_t n = wNBytes / 4; n > 0; --n) {
tu_unaligned_write32(dst8, *src32++);
dst8 += 4;
}
uint16_t odd = wNBytes & 0x03;
if (odd) {
uint32_t rdVal = *src32;
*dst8 = tu_u32_byte0(rdVal);
odd--;
if (odd) {
*++dst8 = tu_u32_byte1(rdVal);
odd--;
if (odd) {
*++dst8 = tu_u32_byte2(rdVal);
}
}
}
return true;
}
#else
// Packet buffer access can only be 8- or 16-bit.
/**
* @brief Copy a buffer from user memory area to packet memory area (PMA).
* This uses un-aligned for user memory and 16-bit access for packet memory.
* @param dst, byte address in PMA; must be 16-bit aligned
* @param src pointer to user memory area.
* @param wPMABufAddr address into PMA.
* @param nbytes no. of bytes to be copied.
* @retval None
*/
// Write to packet memory area (PMA) from user memory
// - Packet memory must be either strictly 16-bit or 32-bit depending on FSDEV_BUS_32BIT
// - Uses unaligned for RAM (since M0 cannot access unaligned address)
static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, uint16_t nbytes) {
uint32_t n16 = (uint32_t)nbytes >> 1U;
const uint8_t *src8 = src;
fsdev_pma16_t* pma16 = (fsdev_pma16_t*) (USB_PMAADDR + FSDEV_PMA_STRIDE * dst);
if (nbytes == 0) return true;
uint32_t n_write = nbytes / FSDEV_BUS_SIZE;
while (n16--) {
pma16->u16 = tu_unaligned_read16(src8);
src8 += 2;
pma16++;
fsdev_pma_buf_t* pma_buf = PMA_BUF_AT(dst);
const uint8_t *src8 = src;
while (n_write--) {
pma_buf->value = fsdevbus_unaligned_read(src8);
src8 += FSDEV_BUS_SIZE;
pma_buf++;
}
if (nbytes & 0x01) {
pma16->u16 = (uint16_t) *src8;
// odd bytes e.g 1 for 16-bit or 1-3 for 32-bit
uint16_t odd = nbytes & (FSDEV_BUS_SIZE - 1);
if (odd) {
fsdev_bus_t temp = 0;
for(uint16_t i = 0; i < odd; i++) {
temp |= *src8++ << (i * 8);
}
pma_buf->value = temp;
}
return true;
}
/**
* @brief Copy a buffer from packet memory area (PMA) to user memory area.
* Uses unaligned for system memory and 16-bit access of packet memory
* @param nbytes no. of bytes to be copied.
* @retval None
*/
// Read from packet memory area (PMA) to user memory.
// - Packet memory must be either strictly 16-bit or 32-bit depending on FSDEV_BUS_32BIT
// - Uses unaligned for RAM (since M0 cannot access unaligned address)
static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, uint16_t nbytes) {
uint32_t n16 = (uint32_t)nbytes >> 1U;
fsdev_pma16_t* pma16 = (fsdev_pma16_t*) (USB_PMAADDR + FSDEV_PMA_STRIDE * src);
if (nbytes == 0) return true;
uint32_t n_read = nbytes / FSDEV_BUS_SIZE;
fsdev_pma_buf_t* pma_buf = PMA_BUF_AT(src);
uint8_t *dst8 = (uint8_t *)dst;
while (n16--) {
uint16_t temp16 = pma16->u16;
tu_unaligned_write16(dst8, temp16);
dst8 += 2;
pma16++;
while (n_read--) {
fsdevbus_unaligned_write(dst8, (fsdev_bus_t ) pma_buf->value);
dst8 += FSDEV_BUS_SIZE;
pma_buf++;
}
if (nbytes & 0x01) {
*dst8++ = tu_u16_low(pma16->u16);
// odd bytes e.g 1 for 16-bit or 1-3 for 32-bit
uint16_t odd = nbytes & (FSDEV_BUS_SIZE - 1);
if (odd) {
fsdev_bus_t temp = pma_buf->value;
while (odd--) {
*dst8++ = (uint8_t) (temp & 0xfful);
temp >>= 8;
}
}
return true;
}
#endif
/**
* @brief Copy from FIFO to packet memory area (PMA).
* Uses byte-access of system memory and 16-bit access of packet memory
* @param wNBytes no. of bytes to be copied.
* @retval None
*/
// Write to PMA from FIFO
static bool dcd_write_packet_memory_ff(tu_fifo_t *ff, uint16_t dst, uint16_t wNBytes) {
if (wNBytes == 0) return true;
// Since we copy from a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies
tu_fifo_buffer_info_t info;
tu_fifo_get_read_info(ff, &info);
uint16_t cnt_lin = TU_MIN(wNBytes, info.len_lin);
uint16_t cnt_wrap = TU_MIN(wNBytes - cnt_lin, info.len_wrap);
uint16_t cnt_lin = tu_min16(wNBytes, info.len_lin);
uint16_t cnt_wrap = tu_min16(wNBytes - cnt_lin, info.len_wrap);
uint16_t const cnt_total = cnt_lin + cnt_wrap;
// We want to read from the FIFO and write it into the PMA, if LIN part is ODD and has WRAPPED part,
// last lin byte will be combined with wrapped part
// To ensure PMA is always access aligned (dst aligned to 16 or 32 bit)
#ifdef FSDEV_BUS_32BIT
if ((cnt_lin & 0x03) && cnt_wrap) {
// Copy first linear part
dcd_write_packet_memory(dst, info.ptr_lin, cnt_lin & ~0x03);
dst += cnt_lin & ~0x03;
// last lin byte will be combined with wrapped part To ensure PMA is always access aligned
uint16_t lin_even = cnt_lin & ~(FSDEV_BUS_SIZE - 1);
uint16_t lin_odd = cnt_lin & (FSDEV_BUS_SIZE - 1);
uint8_t const *src8 = (uint8_t const*) info.ptr_lin;
// Copy last linear bytes & first wrapped bytes to buffer
uint32_t i;
uint8_t tmp[4];
for (i = 0; i < (cnt_lin & 0x03); i++) {
tmp[i] = ((uint8_t *)info.ptr_lin)[(cnt_lin & ~0x03) + i];
}
uint32_t wCnt = cnt_wrap;
for (; i < 4 && wCnt > 0; i++, wCnt--) {
tmp[i] = *(uint8_t *)info.ptr_wrap;
info.ptr_wrap = (uint8_t *)info.ptr_wrap + 1;
// write even linear part
dcd_write_packet_memory(dst, src8, lin_even);
dst += lin_even;
src8 += lin_even;
if (lin_odd == 0) {
src8 = (uint8_t const*) info.ptr_wrap;
} else {
// Combine last linear bytes + first wrapped bytes to form fsdev bus width data
fsdev_bus_t temp = 0;
uint16_t i;
for(i = 0; i < lin_odd; i++) {
temp |= *src8++ << (i * 8);
}
// Write unaligned buffer
dcd_write_packet_memory(dst, &tmp, 4);
dst += 4;
// Copy rest of wrapped byte
if (wCnt) {
dcd_write_packet_memory(dst, info.ptr_wrap, wCnt);
src8 = (uint8_t const*) info.ptr_wrap;
for(; i < FSDEV_BUS_SIZE && cnt_wrap > 0; i++, cnt_wrap--) {
temp |= *src8++ << (i * 8);
}
}
#else
if ((cnt_lin & 0x01) && cnt_wrap) {
// Copy first linear part
dcd_write_packet_memory(dst, info.ptr_lin, cnt_lin & ~0x01);
dst += cnt_lin & ~0x01;
// Copy last linear byte & first wrapped byte
uint16_t tmp = ((uint8_t *)info.ptr_lin)[cnt_lin - 1] | ((uint16_t)(((uint8_t *)info.ptr_wrap)[0]) << 8U);
dcd_write_packet_memory(dst, &tmp, 2);
dst += 2;
// Copy rest of wrapped byte
dcd_write_packet_memory(dst, ((uint8_t *)info.ptr_wrap) + 1, cnt_wrap - 1);
}
#endif
else {
// Copy linear part
dcd_write_packet_memory(dst, info.ptr_lin, cnt_lin);
dst += info.len_lin;
if (info.len_wrap) {
// Copy wrapped byte
dcd_write_packet_memory(dst, info.ptr_wrap, cnt_wrap);
}
dcd_write_packet_memory(dst, &temp, FSDEV_BUS_SIZE);
dst += FSDEV_BUS_SIZE;
}
tu_fifo_advance_read_pointer(ff, cnt_lin + cnt_wrap);
// write the rest of the wrapped part
dcd_write_packet_memory(dst, src8, cnt_wrap);
tu_fifo_advance_read_pointer(ff, cnt_total);
return true;
}
/**
* @brief Copy a buffer from user packet memory area (PMA) to FIFO.
* Uses byte-access of system memory and 16-bit access of packet memory
* @param wNBytes no. of bytes to be copied.
* @retval None
*/
// Read from PMA to FIFO
static bool dcd_read_packet_memory_ff(tu_fifo_t *ff, uint16_t src, uint16_t wNBytes) {
if (wNBytes == 0) return true;
// Since we copy into a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies
// Check for first linear part
tu_fifo_buffer_info_t info;
tu_fifo_get_write_info(ff, &info); // We want to read from the FIFO
uint16_t cnt_lin = TU_MIN(wNBytes, info.len_lin);
uint16_t cnt_wrap = TU_MIN(wNBytes - cnt_lin, info.len_wrap);
uint16_t cnt_lin = tu_min16(wNBytes, info.len_lin);
uint16_t cnt_wrap = tu_min16(wNBytes - cnt_lin, info.len_wrap);
uint16_t cnt_total = cnt_lin + cnt_wrap;
// We want to read from PMA and write it into the FIFO, if LIN part is ODD and has WRAPPED part,
// last lin byte will be combined with wrapped part
// To ensure PMA is always access aligned (src aligned to 16 or 32 bit)
#ifdef FSDEV_BUS_32BIT
if ((cnt_lin & 0x03) && cnt_wrap) {
// Copy first linear part
dcd_read_packet_memory(info.ptr_lin, src, cnt_lin & ~0x03);
src += cnt_lin & ~0x03;
// We want to read from the FIFO and write it into the PMA, if LIN part is ODD and has WRAPPED part,
// last lin byte will be combined with wrapped part To ensure PMA is always access aligned
// Copy last linear bytes & first wrapped bytes
uint8_t tmp[4];
dcd_read_packet_memory(tmp, src, 4);
src += 4;
uint16_t lin_even = cnt_lin & ~(FSDEV_BUS_SIZE - 1);
uint16_t lin_odd = cnt_lin & (FSDEV_BUS_SIZE - 1);
uint8_t *dst8 = (uint8_t *) info.ptr_lin;
uint32_t i;
for (i = 0; i < (cnt_lin & 0x03); i++) {
((uint8_t *)info.ptr_lin)[(cnt_lin & ~0x03) + i] = tmp[i];
}
uint32_t wCnt = cnt_wrap;
for (; i < 4 && wCnt > 0; i++, wCnt--) {
*(uint8_t *)info.ptr_wrap = tmp[i];
info.ptr_wrap = (uint8_t *)info.ptr_wrap + 1;
// read even linear part
dcd_read_packet_memory(dst8, src, lin_even);
dst8 += lin_even;
src += lin_even;
if (lin_odd == 0) {
dst8 = (uint8_t *) info.ptr_wrap;
} else {
// Combine last linear bytes + first wrapped bytes to form fsdev bus width data
fsdev_bus_t temp;
dcd_read_packet_memory(&temp, src, FSDEV_BUS_SIZE);
src += FSDEV_BUS_SIZE;
uint16_t i;
for (i = 0; i < lin_odd; i++) {
*dst8++ = (uint8_t) (temp & 0xfful);
temp >>= 8;
}
// Copy rest of wrapped byte
if (wCnt) {
dcd_read_packet_memory(info.ptr_wrap, src, wCnt);
}
}
#else
if ((cnt_lin & 0x01) && cnt_wrap) {
// Copy first linear part
dcd_read_packet_memory(info.ptr_lin, src, cnt_lin & ~0x01);
src += cnt_lin & ~0x01;
// Copy last linear byte & first wrapped byte
uint8_t tmp[2];
dcd_read_packet_memory(tmp, src, 2);
src += 2;
((uint8_t *)info.ptr_lin)[cnt_lin - 1] = tmp[0];
((uint8_t *)info.ptr_wrap)[0] = tmp[1];
// Copy rest of wrapped byte
dcd_read_packet_memory(((uint8_t *)info.ptr_wrap) + 1, src, cnt_wrap - 1);
}
#endif
else {
// Copy linear part
dcd_read_packet_memory(info.ptr_lin, src, cnt_lin);
src += cnt_lin;
if (info.len_wrap) {
// Copy wrapped byte
dcd_read_packet_memory(info.ptr_wrap, src, cnt_wrap);
dst8 = (uint8_t *) info.ptr_wrap;
for (; i < FSDEV_BUS_SIZE && cnt_wrap > 0; i++, cnt_wrap--) {
*dst8++ = (uint8_t) (temp & 0xfful);
temp >>= 8;
}
}
tu_fifo_advance_write_pointer(ff, cnt_lin + cnt_wrap);
// read the rest of the wrapped part
dcd_read_packet_memory(dst8, src, cnt_wrap);
tu_fifo_advance_write_pointer(ff, cnt_total);
return true;
}

View File

@@ -54,22 +54,8 @@
#endif
#define FSDEV_PMA_SIZE (512u)
#define FSDEV_REG_BASE 0x40005C00UL
#define USB_BASE (APB1PERIPH_BASE + 0x00005C00UL) /*!< USB_IP Peripheral Registers base address */
#define USB_PMAADDR (APB1PERIPH_BASE + 0x00006000UL) /*!< USB_IP Packet Memory Area base address */
#define USB ((USB_TypeDef *)USB_BASE)
/******************************************************************************/
/* */
/* USB Device General registers */
/* */
/******************************************************************************/
#define USB_CNTR (USB_BASE + 0x40U) /*!< Control register */
#define USB_ISTR (USB_BASE + 0x44U) /*!< Interrupt status register */
#define USB_FNR (USB_BASE + 0x48U) /*!< Frame number register */
#define USB_DADDR (USB_BASE + 0x4CU) /*!< Device address register */
#define USB_BTABLE (USB_BASE + 0x50U) /*!< Buffer Table address register */
#define FSDEV_REG_BASE (APB1PERIPH_BASE + 0x00005C00UL)
#define FSDEV_PMA_BASE (APB1PERIPH_BASE + 0x00006000UL)
/**************************** ISTR interrupt events *************************/
#define USB_ISTR_CTR ((uint16_t)0x8000U) /*!< Correct TRansfer (clear-only bit) */

View File

@@ -82,12 +82,9 @@
#elif CFG_TUSB_MCU == OPT_MCU_STM32G0
#include "stm32g0xx.h"
#define FSDEV_BUS_32BIT
#define FSDEV_PMA_SIZE (2048u)
#undef USB_PMAADDR
#define USB_PMAADDR USB_DRD_PMAADDR
#define USB_TypeDef USB_DRD_TypeDef
#define EP0R CHEP0R
#define USB USB_DRD_FS
#define USB_EP_CTR_RX USB_EP_VTRX
#define USB_EP_CTR_TX USB_EP_VTTX
#define USB_EP_T_FIELD USB_CHEP_UTYPE
@@ -100,7 +97,6 @@
#define USB_EPRX_DTOG2 USB_CHEP_RX_DTOG2
#define USB_EPRX_STAT USB_CH_RX_VALID
#define USB_EPKIND_MASK USB_EP_KIND_MASK
#define USB USB_DRD_FS
#define USB_CNTR_FRES USB_CNTR_USBRST
#define USB_CNTR_RESUME USB_CNTR_L2RES
#define USB_ISTR_EP_ID USB_ISTR_IDN
@@ -110,17 +106,9 @@
#elif CFG_TUSB_MCU == OPT_MCU_STM32H5
#include "stm32h5xx.h"
#define FSDEV_BUS_32BIT
#if !defined(USB_DRD_BASE) && defined(USB_DRD_FS_BASE)
#define USB_DRD_BASE USB_DRD_FS_BASE
#endif
#define FSDEV_PMA_SIZE (2048u)
#undef USB_PMAADDR
#define USB_PMAADDR USB_DRD_PMAADDR
#define USB_TypeDef USB_DRD_TypeDef
#define EP0R CHEP0R
#define USB USB_DRD_FS
#define USB_EP_CTR_RX USB_EP_VTRX
#define USB_EP_CTR_TX USB_EP_VTTX
#define USB_EP_T_FIELD USB_CHEP_UTYPE
@@ -133,7 +121,6 @@
#define USB_EPRX_DTOG2 USB_CHEP_RX_DTOG2
#define USB_EPRX_STAT USB_CH_RX_VALID
#define USB_EPKIND_MASK USB_EP_KIND_MASK
#define USB USB_DRD_FS
#define USB_CNTR_FRES USB_CNTR_USBRST
#define USB_CNTR_RESUME USB_CNTR_L2RES
#define USB_ISTR_EP_ID USB_ISTR_IDN
@@ -144,9 +131,8 @@
#elif CFG_TUSB_MCU == OPT_MCU_STM32WB
#include "stm32wbxx.h"
#define FSDEV_PMA_SIZE (1024u)
/* ST provided header has incorrect value */
#undef USB_PMAADDR
#define USB_PMAADDR USB1_PMAADDR
/* ST provided header has incorrect value of USB_PMAADDR */
#define FSDEV_PMA_BASE USB1_PMAADDR
#elif CFG_TUSB_MCU == OPT_MCU_STM32L4
#include "stm32l4xx.h"
@@ -162,13 +148,9 @@
#elif CFG_TUSB_MCU == OPT_MCU_STM32U5
#include "stm32u5xx.h"
#define FSDEV_BUS_32BIT
#define FSDEV_PMA_SIZE (2048u)
#undef USB_PMAADDR
#define USB_PMAADDR USB_DRD_PMAADDR
#define USB_TypeDef USB_DRD_TypeDef
#define EP0R CHEP0R
#define USB USB_DRD_FS
#define USB_EP_CTR_RX USB_EP_VTRX
#define USB_EP_CTR_TX USB_EP_VTTX
#define USB_EP_T_FIELD USB_CHEP_UTYPE
@@ -181,7 +163,6 @@
#define USB_EPRX_DTOG2 USB_CHEP_RX_DTOG2
#define USB_EPRX_STAT USB_CH_RX_VALID
#define USB_EPKIND_MASK USB_EP_KIND_MASK
#define USB USB_DRD_FS
#define USB_CNTR_FRES USB_CNTR_USBRST
#define USB_CNTR_RESUME USB_CNTR_L2RES
#define USB_ISTR_EP_ID USB_ISTR_IDN
@@ -194,6 +175,10 @@
// This includes U0
#endif
//--------------------------------------------------------------------+
// Register and PMA Base Address
//--------------------------------------------------------------------+
#ifndef FSDEV_REG_BASE
#if defined(USB_BASE)
#define FSDEV_REG_BASE USB_BASE
#elif defined(USB_DRD_BASE)
@@ -203,6 +188,17 @@
#else
#error "FSDEV_REG_BASE not defined"
#endif
#endif
#ifndef FSDEV_PMA_BASE
#if defined(USB_PMAADDR)
#define FSDEV_PMA_BASE USB_PMAADDR
#elif defined(USB_DRD_PMAADDR)
#define FSDEV_PMA_BASE USB_DRD_PMAADDR
#else
#error "FSDEV_PMA_BASE not defined"
#endif
#endif
// This checks if the device has "LPM"
#if defined(USB_ISTR_L1REQ)

View File

@@ -1,9 +1,8 @@
/*
* The MIT License (MIT)
*
* Copyright(c) 2016 STMicroelectronics
* Copyright(c) N Conrad
* Copyright (c) 2024, hathach (tinyusb.org)
* Copyright(c) 2024, hathach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@@ -23,6 +22,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#ifndef TUSB_FSDEV_TYPE_H
@@ -49,19 +49,35 @@ TU_VERIFY_STATIC(FSDEV_BTABLE_BASE % 8 == 0, "BTABLE base must be aligned to 8 b
// For purposes of accessing the packet
#if FSDEV_PMA_SIZE == 512
#define FSDEV_PMA_STRIDE (2u) // 1x16 bit access scheme
#define pma_aligned TU_ATTR_ALIGNED(4)
// 1x16 bit / word access scheme
#define FSDEV_PMA_STRIDE 2
#define pma_access_scheme TU_ATTR_ALIGNED(4)
#elif FSDEV_PMA_SIZE == 1024
#define FSDEV_PMA_STRIDE (1u) // 2x16 bit access scheme
#define pma_aligned
// 2x16 bit / word access scheme
#define FSDEV_PMA_STRIDE 1
#define pma_access_scheme
#elif FSDEV_PMA_SIZE == 2048
#ifndef FSDEV_BUS_32BIT
#warning "FSDEV_PMA_SIZE is 2048, but FSDEV_BUS_32BIT is not defined"
#endif
#define FSDEV_PMA_STRIDE (1u) // 32 bit access scheme
#define pma_aligned
// 32 bit access scheme
#define FSDEV_BUS_32BIT
#define FSDEV_PMA_STRIDE 1
#define pma_access_scheme
#endif
// The fsdev_bus_t type can be used for both register and PMA access necessities
#ifdef FSDEV_BUS_32BIT
typedef uint32_t fsdev_bus_t;
#define fsdevbus_unaligned_read(_addr) tu_unaligned_read32(_addr)
#define fsdevbus_unaligned_write(_addr, _value) tu_unaligned_write32(_addr, _value)
#else
typedef uint16_t fsdev_bus_t;
#define fsdevbus_unaligned_read(_addr) tu_unaligned_read16(_addr)
#define fsdevbus_unaligned_write(_addr, _value) tu_unaligned_write16(_addr, _value)
#endif
enum {
FSDEV_BUS_SIZE = sizeof(fsdev_bus_t),
};
//--------------------------------------------------------------------+
// BTable Typedef
//--------------------------------------------------------------------+
@@ -75,13 +91,12 @@ enum {
// Buffer Table is located in Packet Memory Area (PMA) and therefore its address access is forced to either
// 16-bit or 32-bit depending on FSDEV_BUS_32BIT.
// 0: TX (IN), 1: RX (OUT)
typedef union {
// 0: TX (IN), 1: RX (OUT)
// strictly 16-bit access (could be 32-bit aligned)
// data is strictly 16-bit access (address could be 32-bit aligned)
struct {
volatile pma_aligned uint16_t addr;
volatile pma_aligned uint16_t count;
volatile pma_access_scheme uint16_t addr;
volatile pma_access_scheme uint16_t count;
} ep16[FSDEV_EP_COUNT][2];
// strictly 32-bit access
@@ -93,11 +108,13 @@ typedef union {
TU_VERIFY_STATIC(sizeof(fsdev_btable_t) == FSDEV_EP_COUNT*8*FSDEV_PMA_STRIDE, "size is not correct");
TU_VERIFY_STATIC(FSDEV_BTABLE_BASE + FSDEV_EP_COUNT*8 <= FSDEV_PMA_SIZE, "BTABLE does not fit in PMA RAM");
#define FSDEV_BTABLE ((volatile fsdev_btable_t*) (USB_PMAADDR+FSDEV_BTABLE_BASE))
#define FSDEV_BTABLE ((volatile fsdev_btable_t*) (FSDEV_PMA_BASE + FSDEV_PMA_STRIDE*(FSDEV_BTABLE_BASE)))
typedef struct {
volatile pma_aligned uint16_t u16;
} fsdev_pma16_t;
volatile pma_access_scheme fsdev_bus_t value;
} fsdev_pma_buf_t;
#define PMA_BUF_AT(_addr) ((fsdev_pma_buf_t*) (FSDEV_PMA_BASE + FSDEV_PMA_STRIDE*(_addr)))
//--------------------------------------------------------------------+
// Registers Typedef
@@ -106,13 +123,6 @@ typedef struct {
// volatile 32-bit aligned
#define _va32 volatile TU_ATTR_ALIGNED(4)
// The fsdev_bus_t type can be used for both register and PMA access necessities
#ifdef FSDEV_BUS_32BIT
typedef uint32_t fsdev_bus_t;
#else
typedef uint16_t fsdev_bus_t;
#endif
typedef struct {
struct {
_va32 fsdev_bus_t reg;
@@ -154,9 +164,6 @@ TU_VERIFY_STATIC(sizeof(fsdev_regs_t) == 0x5C, "Size is not correct");
#define USB_EP_CTR_TX_Pos 7u
#endif
#define EP_CTR_TXRX (USB_EP_CTR_TX | USB_EP_CTR_RX)
typedef enum {
EP_STAT_DISABLED = 0,
EP_STAT_STALL = 1,
@@ -173,24 +180,36 @@ typedef enum {
// - DTOG and STAT are write 1 to toggle
//--------------------------------------------------------------------+
TU_ATTR_ALWAYS_INLINE static inline void ep_write(uint32_t ep_id, uint32_t value) {
FSDEV_REG->ep[ep_id].reg = (fsdev_bus_t) value;
}
TU_ATTR_ALWAYS_INLINE static inline uint32_t ep_read(uint32_t ep_id) {
return FSDEV_REG->ep[ep_id].reg;
}
TU_ATTR_ALWAYS_INLINE static inline uint32_t ep_add_status(uint32_t reg, tusb_dir_t dir, ep_stat_t state) {
return reg ^ (state << (USB_EPTX_STAT_Pos + (dir == TUSB_DIR_IN ? 0 : 8)));
TU_ATTR_ALWAYS_INLINE static inline void ep_write(uint32_t ep_id, uint32_t value, bool need_exclusive) {
if (need_exclusive) {
dcd_int_disable(0);
}
FSDEV_REG->ep[ep_id].reg = (fsdev_bus_t) value;
if (need_exclusive) {
dcd_int_enable(0);
}
}
TU_ATTR_ALWAYS_INLINE static inline uint32_t ep_add_dtog(uint32_t reg, tusb_dir_t dir, uint8_t state) {
return reg ^ (state << (USB_EP_DTOG_TX_Pos + (dir == TUSB_DIR_IN ? 0 : 8)));
TU_ATTR_ALWAYS_INLINE static inline void ep_write_clear_ctr(uint32_t ep_id, tusb_dir_t dir) {
uint32_t reg = FSDEV_REG->ep[ep_id].reg;
reg |= USB_EP_CTR_TX | USB_EP_CTR_RX;
reg &= USB_EPREG_MASK;
reg &= ~(1 << (USB_EP_CTR_TX_Pos + (dir == TUSB_DIR_IN ? 0 : 8)));
ep_write(ep_id, reg, false);
}
TU_ATTR_ALWAYS_INLINE static inline uint32_t ep_clear_ctr(uint32_t reg, tusb_dir_t dir) {
return reg & ~(1 << (USB_EP_CTR_TX_Pos + (dir == TUSB_DIR_IN ? 0 : 8)));
TU_ATTR_ALWAYS_INLINE static inline void ep_change_status(uint32_t* reg, tusb_dir_t dir, ep_stat_t state) {
*reg ^= (state << (USB_EPTX_STAT_Pos + (dir == TUSB_DIR_IN ? 0 : 8)));
}
TU_ATTR_ALWAYS_INLINE static inline void ep_change_dtog(uint32_t* reg, tusb_dir_t dir, uint8_t state) {
*reg ^= (state << (USB_EP_DTOG_TX_Pos + (dir == TUSB_DIR_IN ? 0 : 8)));
}
TU_ATTR_ALWAYS_INLINE static inline bool ep_is_iso(uint32_t reg) {
@@ -219,7 +238,7 @@ TU_ATTR_ALWAYS_INLINE static inline void btable_set_addr(uint32_t ep_id, uint8_t
#endif
}
TU_ATTR_ALWAYS_INLINE static inline uint32_t btable_get_count(uint32_t ep_id, uint8_t buf_id) {
TU_ATTR_ALWAYS_INLINE static inline uint16_t btable_get_count(uint32_t ep_id, uint8_t buf_id) {
uint16_t count;
#ifdef FSDEV_BUS_32BIT
count = (FSDEV_BTABLE->ep32[ep_id][buf_id].count_addr >> 16);
@@ -249,22 +268,26 @@ TU_ATTR_ALWAYS_INLINE static inline uint16_t pma_align_buffer_size(uint16_t size
if (size > 62) {
block_in_bytes = 32;
*blsize = 1;
*num_block = tu_div_ceil(size, 32);
} else {
block_in_bytes = 2;
*blsize = 0;
*num_block = tu_div_ceil(size, 2);
}
*num_block = tu_div_ceil(size, block_in_bytes);
return (*num_block) * block_in_bytes;
}
TU_ATTR_ALWAYS_INLINE static inline void btable_set_rx_bufsize(uint32_t ep_id, uint8_t buf_id, uint32_t wCount) {
TU_ATTR_ALWAYS_INLINE static inline void btable_set_rx_bufsize(uint32_t ep_id, uint8_t buf_id, uint16_t wCount) {
uint8_t blsize, num_block;
(void) pma_align_buffer_size(wCount, &blsize, &num_block);
/* Encode into register. When BLSIZE==1, we need to subtract 1 block count */
uint16_t bl_nb = (blsize << 15) | ((num_block - blsize) << 10);
if (bl_nb == 0) {
// zlp but 0 is invalid value, set num_block to 1 (2 bytes)
bl_nb = 1 << 10;
}
#ifdef FSDEV_BUS_32BIT
uint32_t count_addr = FSDEV_BTABLE->ep32[ep_id][buf_id].count_addr;
@@ -273,6 +296,7 @@ TU_ATTR_ALWAYS_INLINE static inline void btable_set_rx_bufsize(uint32_t ep_id, u
#else
FSDEV_BTABLE->ep16[ep_id][buf_id].count = bl_nb;
#endif
}
#ifdef __cplusplus