Merge branch 'master' into renesas_ra_hs_rebased

This commit is contained in:
hathach
2023-07-27 16:50:34 +07:00
67 changed files with 1550 additions and 856 deletions

View File

@@ -51,7 +51,7 @@ extern int8_t board_ft9xx_vbus(void);
extern int board_uart_write(void const *buf, int len);
// Static array to store an incoming SETUP request for processing by tinyusb.
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN
CFG_TUD_MEM_SECTION CFG_TUSB_MEM_ALIGN
static uint8_t _ft9xx_setup_packet[8];
struct ft9xx_xfer_state

View File

@@ -116,7 +116,7 @@ typedef struct
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
// BDT(Buffer Descriptor Table) must be 256-byte aligned
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(512) static dcd_data_t _dcd;
CFG_TUD_MEM_SECTION TU_ATTR_ALIGNED(512) static dcd_data_t _dcd;
TU_VERIFY_STATIC( sizeof(_dcd.bdt) == 512, "size is not correct" );

View File

@@ -68,25 +68,34 @@ TU_ATTR_ALWAYS_INLINE static inline bool imxrt_is_cache_mem(uintptr_t addr) {
return !(0x20000000 <= addr && addr < 0x20100000);
}
TU_ATTR_ALWAYS_INLINE static inline void imxrt_dcache_clean(void const* addr, uint32_t data_size) {
TU_ATTR_ALWAYS_INLINE static inline bool imxrt_dcache_clean(void const* addr, uint32_t data_size) {
const uintptr_t addr32 = (uintptr_t) addr;
if (imxrt_is_cache_mem(addr32)) {
TU_ASSERT(tu_is_aligned32(addr32));
SCB_CleanDCache_by_Addr((uint32_t *) addr32, (int32_t) data_size);
}
return true;
}
TU_ATTR_ALWAYS_INLINE static inline void imxrt_dcache_invalidate(void const* addr, uint32_t data_size) {
TU_ATTR_ALWAYS_INLINE static inline bool imxrt_dcache_invalidate(void const* addr, uint32_t data_size) {
const uintptr_t addr32 = (uintptr_t) addr;
if (imxrt_is_cache_mem(addr32)) {
// Invalidating does not push cached changes back to RAM so we need to be
// *very* careful when we do it. If we're not aligned, then we risk resetting
// values back to their RAM state.
TU_ASSERT(tu_is_aligned32(addr32));
SCB_InvalidateDCache_by_Addr((void*) addr32, (int32_t) data_size);
}
return true;
}
TU_ATTR_ALWAYS_INLINE static inline void imxrt_dcache_clean_invalidate(void const* addr, uint32_t data_size) {
TU_ATTR_ALWAYS_INLINE static inline bool imxrt_dcache_clean_invalidate(void const* addr, uint32_t data_size) {
const uintptr_t addr32 = (uintptr_t) addr;
if (imxrt_is_cache_mem(addr32)) {
TU_ASSERT(tu_is_aligned32(addr32));
SCB_CleanInvalidateDCache_by_Addr((uint32_t *) addr32, (int32_t) data_size);
}
return true;
}
#endif

View File

@@ -175,7 +175,7 @@ typedef struct {
dcd_qtd_t qtd[TUP_DCD_ENDPOINT_MAX][2] TU_ATTR_ALIGNED(32);
}dcd_data_t;
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(2048)
CFG_TUD_MEM_SECTION TU_ATTR_ALIGNED(2048)
static dcd_data_t _dcd_data;
//--------------------------------------------------------------------+

View File

@@ -41,16 +41,16 @@
#if CFG_TUSB_MCU == OPT_MCU_MIMXRT1XXX
#include "ci_hs_imxrt.h"
void hcd_dcache_clean(void const* addr, uint32_t data_size) {
imxrt_dcache_clean(addr, data_size);
bool hcd_dcache_clean(void const* addr, uint32_t data_size) {
return imxrt_dcache_clean(addr, data_size);
}
void hcd_dcache_invalidate(void const* addr, uint32_t data_size) {
imxrt_dcache_invalidate(addr, data_size);
bool hcd_dcache_invalidate(void const* addr, uint32_t data_size) {
return imxrt_dcache_invalidate(addr, data_size);
}
void hcd_dcache_clean_invalidate(void const* addr, uint32_t data_size) {
imxrt_dcache_clean_invalidate(addr, data_size);
bool hcd_dcache_clean_invalidate(void const* addr, uint32_t data_size) {
return imxrt_dcache_clean_invalidate(addr, data_size);
}
#elif TU_CHECK_MCU(OPT_MCU_LPC18XX, OPT_MCU_LPC43XX)

View File

@@ -48,8 +48,8 @@
#ifdef TUP_USBIP_CHIPIDEA_HS
// NXP Transdimension: 8 elements
#define FRAMELIST_SIZE_BIT_VALUE 7u
#define FRAMELIST_SIZE_USBCMD_VALUE (((FRAMELIST_SIZE_BIT_VALUE & 3) << EHCI_USBCMD_POS_FRAMELIST_SIZE) | \
((FRAMELIST_SIZE_BIT_VALUE >> 2) << EHCI_USBCMD_POS_NXP_FRAMELIST_SIZE_MSB))
#define FRAMELIST_SIZE_USBCMD_VALUE (((FRAMELIST_SIZE_BIT_VALUE & 3) << EHCI_USBCMD_FRAMELIST_SIZE_SHIFT) | \
((FRAMELIST_SIZE_BIT_VALUE >> 2) << EHCI_USBCMD_CHIPIDEA_FRAMELIST_SIZE_MSB_SHIFT))
#else
// STD EHCI: 256 elements
#define FRAMELIST_SIZE_BIT_VALUE 2u
@@ -126,52 +126,50 @@ static inline void print_intr(uint32_t intr) {
//--------------------------------------------------------------------+
// PROTOTYPE
//--------------------------------------------------------------------+
static inline ehci_link_t* get_period_head(uint8_t rhport, uint32_t interval_ms)
{
(void) rhport;
return (ehci_link_t*) &ehci_data.period_head_arr[ tu_log2( tu_min32(FRAMELIST_SIZE, interval_ms) ) ];
}
static inline ehci_qhd_t* qhd_control(uint8_t dev_addr)
{
return &ehci_data.control[dev_addr].qhd;
}
// weak dcache for non-cacheable MCU
TU_ATTR_WEAK bool hcd_dcache_clean(void const* addr, uint32_t data_size) { (void) addr; (void) data_size; return true; }
TU_ATTR_WEAK bool hcd_dcache_invalidate(void const* addr, uint32_t data_size) { (void) addr; (void) data_size; return true; }
TU_ATTR_WEAK bool hcd_dcache_clean_invalidate(void const* addr, uint32_t data_size) { (void) addr; (void) data_size; return true; }
static inline ehci_qhd_t* qhd_async_head(uint8_t rhport)
{
(void) rhport;
// control qhd of dev0 is used as async head
return qhd_control(0);
}
static inline ehci_qtd_t* qtd_control(uint8_t dev_addr)
{
return &ehci_data.control[dev_addr].qtd;
}
static inline ehci_qhd_t* qhd_next (ehci_qhd_t const * p_qhd);
static inline ehci_qhd_t* qhd_find_free (void);
static inline ehci_qhd_t* qhd_get_from_addr (uint8_t dev_addr, uint8_t ep_addr);
TU_ATTR_ALWAYS_INLINE static inline ehci_qhd_t* qhd_control(uint8_t dev_addr);
TU_ATTR_ALWAYS_INLINE static inline ehci_qhd_t* qhd_next (ehci_qhd_t const * p_qhd);
TU_ATTR_ALWAYS_INLINE static inline ehci_qhd_t* qhd_find_free (void);
static ehci_qhd_t* qhd_get_from_addr (uint8_t dev_addr, uint8_t ep_addr);
static void qhd_init(ehci_qhd_t *p_qhd, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc);
static void qhd_attach_qtd(ehci_qhd_t *qhd, ehci_qtd_t *qtd);
static void qhd_remove_qtd(ehci_qhd_t *qhd);
static inline ehci_qtd_t* qtd_find_free (void);
TU_ATTR_ALWAYS_INLINE static inline ehci_qtd_t* qtd_control(uint8_t dev_addr);
TU_ATTR_ALWAYS_INLINE static inline ehci_qtd_t* qtd_find_free (void);
static void qtd_init (ehci_qtd_t* qtd, void const* buffer, uint16_t total_bytes);
static inline void list_insert (ehci_link_t *current, ehci_link_t *new, uint8_t new_type);
static inline ehci_link_t* list_next (ehci_link_t const *p_link);
TU_ATTR_ALWAYS_INLINE static inline ehci_link_t* list_get_period_head(uint8_t rhport, uint32_t interval_ms);
TU_ATTR_ALWAYS_INLINE static inline ehci_qhd_t* list_get_async_head(uint8_t rhport);
TU_ATTR_ALWAYS_INLINE static inline void list_insert (ehci_link_t *current, ehci_link_t *new, uint8_t new_type);
TU_ATTR_ALWAYS_INLINE static inline ehci_link_t* list_next (ehci_link_t const *p_link);
static void list_remove_qhd_by_daddr(ehci_link_t* list_head, uint8_t dev_addr);
TU_ATTR_WEAK void hcd_dcache_clean(void const* addr, uint32_t data_size) {
(void) addr; (void) data_size;
static void ehci_disable_schedule(ehci_registers_t* regs, bool is_period) {
// maybe have a timeout for status
if (is_period) {
regs->command_bm.periodic_enable = 0;
while(regs->status_bm.periodic_status) {}
} else {
regs->command_bm.async_enable = 0;
while(regs->status_bm.async_status) {} // should have a timeout
}
}
TU_ATTR_WEAK void hcd_dcache_invalidate(void const* addr, uint32_t data_size) {
(void) addr; (void) data_size;
}
TU_ATTR_WEAK void hcd_dcache_clean_invalidate(void const* addr, uint32_t data_size) {
(void) addr; (void) data_size;
static void ehci_enable_schedule(ehci_registers_t* regs, bool is_period) {
// maybe have a timeout for status
if (is_period) {
regs->command_bm.periodic_enable = 1;
while ( 0 == regs->status_bm.periodic_status ) {}
} else {
regs->command_bm.async_enable = 1;
while( 0 == regs->status_bm.async_status ) {}
}
}
//--------------------------------------------------------------------+
@@ -228,43 +226,6 @@ tusb_speed_t hcd_port_speed_get(uint8_t rhport)
return (tusb_speed_t) ehci_data.regs->portsc_bm.nxp_port_speed; // NXP specific port speed
}
static void list_remove_qhd_by_daddr(ehci_link_t* list_head, uint8_t dev_addr) {
ehci_link_t* prev = list_head;
while (prev && !prev->terminate) {
ehci_qhd_t* qhd = (ehci_qhd_t*) (uintptr_t) list_next(prev);
// done if loop back to head
if ( (uintptr_t) qhd == (uintptr_t) list_head) {
break;
}
if ( qhd->dev_addr == dev_addr ) {
// TODO deactivate all TD, wait for QHD to inactive before removal
prev->address = qhd->next.address;
// EHCI 4.8.2 link the removed qhd's next to async head (which always reachable by Host Controller)
qhd->next.address = ((uint32_t) list_head) | (EHCI_QTYPE_QHD << 1);
if ( qhd->int_smask )
{
// period list queue element is guarantee to be free in the next frame (1 ms)
qhd->used = 0;
}else
{
// async list use async advance handshake
// mark as removing, will completely re-usable when async advance isr occurs
qhd->removing = 1;
}
hcd_dcache_clean(qhd, sizeof(ehci_qhd_t));
hcd_dcache_clean(prev, sizeof(ehci_qhd_t));
}else {
prev = list_next(prev);
}
}
}
// Close all opened endpoint belong to this device
void hcd_device_close(uint8_t rhport, uint8_t daddr)
{
@@ -274,7 +235,7 @@ void hcd_device_close(uint8_t rhport, uint8_t daddr)
}
// Remove from async list
list_remove_qhd_by_daddr((ehci_link_t *) qhd_async_head(rhport), daddr);
list_remove_qhd_by_daddr((ehci_link_t *) list_get_async_head(rhport), daddr);
// Remove from all interval period list
for(uint8_t i = 0; i < TU_ARRAY_SIZE(ehci_data.period_head_arr); i++) {
@@ -286,37 +247,42 @@ void hcd_device_close(uint8_t rhport, uint8_t daddr)
}
static void init_periodic_list(uint8_t rhport) {
(void) rhport;
// Build the polling interval tree with 1 ms, 2 ms, 4 ms and 8 ms (framesize) only
for ( uint32_t i = 0; i < TU_ARRAY_SIZE(ehci_data.period_head_arr); i++ ) {
ehci_data.period_head_arr[i].int_smask = 1; // queue head in period list must have smask non-zero
ehci_data.period_head_arr[i].qtd_overlay.halted = 1; // dummy node, always inactive
}
ehci_link_t * const framelist = ehci_data.period_framelist;
ehci_link_t * const period_1ms = get_period_head(rhport, 1u);
// TODO EHCI_FRAMELIST_SIZE with other size than 8
// all links --> period_head_arr[0] (1ms)
// 0, 2, 4, 6 etc --> period_head_arr[1] (2ms)
// 1, 5 --> period_head_arr[2] (4ms)
// 3 --> period_head_arr[3] (8ms)
// TODO EHCI_FRAMELIST_SIZE with other size than 8
ehci_link_t * const framelist = ehci_data.period_framelist;
ehci_link_t * const head_1ms = (ehci_link_t *) &ehci_data.period_head_arr[0];
ehci_link_t * const head_2ms = (ehci_link_t *) &ehci_data.period_head_arr[1];
ehci_link_t * const head_4ms = (ehci_link_t *) &ehci_data.period_head_arr[2];
ehci_link_t * const head_8ms = (ehci_link_t *) &ehci_data.period_head_arr[3];
for (uint32_t i = 0; i < FRAMELIST_SIZE; i++) {
framelist[i].address = (uint32_t) period_1ms;
framelist[i].address = (uint32_t) head_1ms;
framelist[i].type = EHCI_QTYPE_QHD;
}
for (uint32_t i = 0; i < FRAMELIST_SIZE; i += 2) {
list_insert(framelist + i, get_period_head(rhport, 2u), EHCI_QTYPE_QHD);
list_insert(framelist + i, head_2ms, EHCI_QTYPE_QHD);
}
for (uint32_t i = 1; i < FRAMELIST_SIZE; i += 4) {
list_insert(framelist + i, get_period_head(rhport, 4u), EHCI_QTYPE_QHD);
list_insert(framelist + i, head_4ms, EHCI_QTYPE_QHD);
}
list_insert(framelist + 3, get_period_head(rhport, 8u), EHCI_QTYPE_QHD);
list_insert(framelist + 3, head_8ms, EHCI_QTYPE_QHD);
period_1ms->terminate = 1;
head_1ms->terminate = 1;
}
bool ehci_init(uint8_t rhport, uint32_t capability_reg, uint32_t operatial_reg)
@@ -341,18 +307,18 @@ bool ehci_init(uint8_t rhport, uint32_t capability_reg, uint32_t operatial_reg)
regs->status = (EHCI_INT_MASK_ALL & ~EHCI_INT_MASK_PORT_CHANGE);
// Enable interrupts
regs->inten = EHCI_INT_MASK_ERROR | EHCI_INT_MASK_PORT_CHANGE | EHCI_INT_MASK_ASYNC_ADVANCE |
EHCI_INT_MASK_NXP_PERIODIC | EHCI_INT_MASK_NXP_ASYNC | EHCI_INT_MASK_FRAMELIST_ROLLOVER;
regs->inten = EHCI_INT_MASK_USB | EHCI_INT_MASK_ERROR | EHCI_INT_MASK_PORT_CHANGE |
EHCI_INT_MASK_ASYNC_ADVANCE | EHCI_INT_MASK_FRAMELIST_ROLLOVER;
//------------- Asynchronous List -------------//
ehci_qhd_t * const async_head = qhd_async_head(rhport);
ehci_qhd_t * const async_head = list_get_async_head(rhport);
tu_memclr(async_head, sizeof(ehci_qhd_t));
async_head->next.address = (uint32_t) async_head; // circular list, next is itself
async_head->next.type = EHCI_QTYPE_QHD;
async_head->head_list_flag = 1;
async_head->qtd_overlay.halted = 1; // inactive most of time
async_head->qtd_overlay.next.terminate = 1; // TODO removed if verified
async_head->next.address = (uint32_t) async_head; // circular list, next is itself
async_head->next.type = EHCI_QTYPE_QHD;
async_head->head_list_flag = 1;
async_head->qtd_overlay.halted = 1; // inactive most of time
async_head->qtd_overlay.next.terminate = 1; // TODO removed if verified
regs->async_list_addr = (uint32_t) async_head;
@@ -366,8 +332,7 @@ bool ehci_init(uint8_t rhport, uint32_t capability_reg, uint32_t operatial_reg)
regs->nxp_tt_control = 0;
//------------- USB CMD Register -------------//
regs->command |= TU_BIT(EHCI_USBCMD_POS_RUN_STOP) | TU_BIT(EHCI_USBCMD_POS_ASYNC_ENABLE) |
TU_BIT(EHCI_USBCMD_POS_PERIOD_ENABLE) | // TODO enable period list only there is int/iso endpoint
regs->command |= EHCI_USBCMD_RUN_STOP | EHCI_USBCMD_PERIOD_SCHEDULE_ENABLE | EHCI_USBCMD_ASYNC_SCHEDULE_ENABLE |
FRAMELIST_SIZE_USBCMD_VALUE;
//------------- ConfigFlag Register (skip) -------------//
@@ -377,7 +342,7 @@ bool ehci_init(uint8_t rhport, uint32_t capability_reg, uint32_t operatial_reg)
if (ehci_data.cap_regs->hcsparams_bm.port_power_control) {
// mask out all change bits since they are Write 1 to clear
uint32_t portsc = (regs->portsc & ~EHCI_PORTSC_MASK_W1C);
portsc |= ECHI_PORTSC_MASK_PORT_POWER;
portsc |= EHCI_PORTSC_MASK_PORT_POWER;
regs->portsc = portsc;
}
@@ -426,11 +391,11 @@ bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const
{
case TUSB_XFER_CONTROL:
case TUSB_XFER_BULK:
list_head = (ehci_link_t*) qhd_async_head(rhport);
list_head = (ehci_link_t*) list_get_async_head(rhport);
break;
case TUSB_XFER_INTERRUPT:
list_head = get_period_head(rhport, p_qhd->interval_ms);
list_head = list_get_period_head(rhport, p_qhd->interval_ms);
break;
case TUSB_XFER_ISOCHRONOUS:
@@ -439,10 +404,8 @@ bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const
default: break;
}
TU_ASSERT(list_head);
// TODO might need to disable async/period list
list_insert(list_head, (ehci_link_t*) p_qhd, EHCI_QTYPE_QHD);
hcd_dcache_clean(p_qhd, sizeof(ehci_qhd_t));
@@ -476,20 +439,25 @@ bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t *
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
ehci_qhd_t* qhd;
ehci_qhd_t* qhd = qhd_get_from_addr(dev_addr, ep_addr);
ehci_qtd_t* qtd;
if (epnum == 0) {
qhd = qhd_control(dev_addr);
qtd = qtd_control(dev_addr);
// Control endpoint never be stalled. Skip reset Data Toggle since it is fixed per stage
if (qhd->qtd_overlay.halted) {
qhd->qtd_overlay.halted = false;
}
qtd = qtd_control(dev_addr);
qtd_init(qtd, buffer, buflen);
// first data toggle is always 1 (data & setup stage)
qtd->data_toggle = 1;
qtd->pid = dir ? EHCI_PID_IN : EHCI_PID_OUT;
} else {
qhd = qhd_get_from_addr(dev_addr, ep_addr);
// skip if endpoint is halted
TU_VERIFY(!qhd->qtd_overlay.halted);
qtd = qtd_find_free();
TU_ASSERT(qtd);
@@ -510,12 +478,45 @@ bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t *
return true;
}
bool hcd_edpt_clear_stall(uint8_t daddr, uint8_t ep_addr)
{
bool hcd_edpt_abort_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
(void) rhport;
// TODO ISO not supported yet
ehci_qhd_t* qhd = qhd_get_from_addr(dev_addr, ep_addr);
ehci_qtd_t * volatile qtd = qhd->attached_qtd;
TU_VERIFY(qtd != NULL); // no queued transfer
hcd_dcache_invalidate(qtd, sizeof(ehci_qtd_t));
TU_VERIFY(qtd->active); // transfer is already complete
// HC is still processing, disable HC list schedule before making changes
bool const is_period = (qhd->interval_ms > 0);
ehci_disable_schedule(ehci_data.regs, is_period);
// check active bit again just in case HC has just processed the TD
bool const still_active = qtd->active;
if (still_active) {
// remove TD from QH overlay
qhd->qtd_overlay.next.terminate = 1;
hcd_dcache_clean(qhd, sizeof(ehci_qhd_t));
// remove TD from QH software list
qhd_remove_qtd(qhd);
}
ehci_enable_schedule(ehci_data.regs, is_period);
return still_active; // true if removed an active transfer
}
bool hcd_edpt_clear_stall(uint8_t rhport, uint8_t daddr, uint8_t ep_addr) {
(void) rhport;
ehci_qhd_t *qhd = qhd_get_from_addr(daddr, ep_addr);
qhd->qtd_overlay.halted = 0;
qhd->qtd_overlay.data_toggle = 0;
hcd_dcache_clean_invalidate(qhd, sizeof(ehci_qhd_t));
// TODO reset data toggle ?
return true;
}
@@ -541,71 +542,77 @@ void async_advance_isr(uint8_t rhport)
}
TU_ATTR_ALWAYS_INLINE static inline
void port_connect_status_change_isr(uint8_t rhport)
{
void port_connect_status_change_isr(uint8_t rhport) {
// NOTE There is an sequence plug->unplug->…..-> plug if device is powering with pre-plugged device
if (ehci_data.regs->portsc_bm.current_connect_status)
{
if ( ehci_data.regs->portsc_bm.current_connect_status ) {
hcd_port_reset(rhport);
hcd_event_device_attach(rhport, true);
}else // device unplugged
} else // device unplugged
{
hcd_event_device_remove(rhport, true);
}
}
// Check queue head for potential transfer complete (successful or error)
TU_ATTR_ALWAYS_INLINE static inline
void qhd_xfer_complete_isr(ehci_qhd_t * qhd) {
// examine TD attached to queue head
ehci_qtd_t * volatile qtd = (ehci_qtd_t * volatile) qhd->attached_qtd;
if (qtd == NULL) return; // no TD attached
hcd_dcache_invalidate(qtd, sizeof(ehci_qtd_t));
hcd_dcache_invalidate(qhd, sizeof(ehci_qhd_t)); // HC may have updated the overlay
volatile ehci_qtd_t *qtd_overlay = &qhd->qtd_overlay;
// TD is still active, no need to process
if (qtd->active) {
return;
}
// process non-active (completed) QHD with attached (scheduled) TD
if ( !qtd_overlay->active && qhd->attached_qtd != NULL ) {
xfer_result_t xfer_result;
uint8_t dir = (qtd->pid == EHCI_PID_IN) ? 1 : 0;
uint32_t const xferred_bytes = qtd->expected_bytes - qtd->total_bytes;
// invalidate dcache if IN transfer
if (dir == 1 && qhd->attached_buffer != 0 && xferred_bytes > 0) {
hcd_dcache_invalidate((void*) qhd->attached_buffer, xferred_bytes);
}
// remove and free TD before invoking callback
qhd->attached_qtd = NULL;
qhd->attached_buffer = 0;
qtd->used = 0; // free QTD
// notify usbh
uint8_t const ep_addr = tu_edpt_addr(qhd->ep_number, dir);
hcd_event_xfer_complete(qhd->dev_addr, ep_addr, xferred_bytes, XFER_RESULT_SUCCESS, true);
}
TU_ATTR_ALWAYS_INLINE static inline
void async_list_xfer_complete_isr(ehci_qhd_t * const async_head)
{
ehci_qhd_t *p_qhd = async_head;
do
{
hcd_dcache_invalidate(p_qhd, sizeof(ehci_qhd_t));
// halted or error is processed in error isr
if ( !p_qhd->qtd_overlay.halted ) {
qhd_xfer_complete_isr(p_qhd);
if ( qtd_overlay->halted ) {
if (qtd_overlay->xact_err || qtd_overlay->err_count == 0 || qtd_overlay->buffer_err || qtd_overlay->babble_err) {
// Error count = 0 often occurs when device disconnected, or other bus-related error
xfer_result = XFER_RESULT_FAILED;
TU_LOG3(" QHD xfer err count: %d\n", qtd_overlay->err_count);
// TU_BREAKPOINT(); // TODO skip unplugged device
}else {
// no error bits are set, endpoint is halted due to STALL
xfer_result = XFER_RESULT_STALLED;
}
} else {
xfer_result = XFER_RESULT_SUCCESS;
}
p_qhd = qhd_next(p_qhd);
}while(p_qhd != async_head); // async list traversal, stop if loop around
ehci_qtd_t * volatile qtd = qhd->attached_qtd;
hcd_dcache_invalidate(qtd, sizeof(ehci_qtd_t)); // HC may have written back TD
uint8_t const dir = (qtd->pid == EHCI_PID_IN) ? 1 : 0;
uint32_t const xferred_bytes = qtd->expected_bytes - qtd->total_bytes;
// invalidate dcache if IN transfer with data
if (dir == 1 && qhd->attached_buffer != 0 && xferred_bytes > 0) {
hcd_dcache_invalidate((void*) qhd->attached_buffer, xferred_bytes);
}
// remove and free TD before invoking callback
qhd_remove_qtd(qhd);
// notify usbh
uint8_t const ep_addr = tu_edpt_addr(qhd->ep_number, dir);
hcd_event_xfer_complete(qhd->dev_addr, ep_addr, xferred_bytes, xfer_result, true);
}
}
TU_ATTR_ALWAYS_INLINE static inline
void period_list_xfer_complete_isr(uint8_t rhport, uint32_t interval_ms)
void proccess_async_xfer_isr(ehci_qhd_t * const list_head)
{
uint32_t const period_1ms_addr = (uint32_t) get_period_head(rhport, 1u);
ehci_link_t next_link = * get_period_head(rhport, interval_ms);
ehci_qhd_t *qhd = list_head;
do {
qhd_xfer_complete_isr(qhd);
qhd = qhd_next(qhd);
} while ( qhd != list_head ); // async list traversal, stop if loop around
}
TU_ATTR_ALWAYS_INLINE static inline
void process_period_xfer_isr(uint8_t rhport, uint32_t interval_ms)
{
uint32_t const period_1ms_addr = (uint32_t) list_get_period_head(rhport, 1u);
ehci_link_t next_link = *list_get_period_head(rhport, interval_ms);
while (!next_link.terminate) {
if (interval_ms > 1 && period_1ms_addr == tu_align32(next_link.address)) {
@@ -618,22 +625,13 @@ void period_list_xfer_complete_isr(uint8_t rhport, uint32_t interval_ms)
switch (next_link.type) {
case EHCI_QTYPE_QHD: {
ehci_qhd_t *qhd = (ehci_qhd_t *) entry_addr;
hcd_dcache_invalidate(qhd, sizeof(ehci_qhd_t));
if (!qhd->qtd_overlay.halted) {
qhd_xfer_complete_isr(qhd);
}
qhd_xfer_complete_isr(qhd);
}
break;
// TODO support hs/fs ISO
case EHCI_QTYPE_ITD:
// TODO support hs ISO
break;
case EHCI_QTYPE_SITD:
// TODO support split ISO
break;
case EHCI_QTYPE_FSTN:
default:
break;
@@ -643,108 +641,6 @@ void period_list_xfer_complete_isr(uint8_t rhport, uint32_t interval_ms)
}
}
// TODO merge with qhd_xfer_complete_isr()
TU_ATTR_ALWAYS_INLINE static inline
void qhd_xfer_error_isr(ehci_qhd_t * qhd)
{
volatile ehci_qtd_t *qtd_overlay = &qhd->qtd_overlay;
// TD has error
if (qtd_overlay->halted) {
xfer_result_t xfer_result;
if (qtd_overlay->xact_err || qtd_overlay->err_count == 0 || qtd_overlay->buffer_err || qtd_overlay->babble_err) {
// Error count = 0 often occurs when device disconnected, or other bus-related error
xfer_result = XFER_RESULT_FAILED;
}else {
// no error bits are set, endpoint is halted due to STALL
xfer_result = XFER_RESULT_STALLED;
}
// if (XFER_RESULT_FAILED == xfer_result ) {
// TU_LOG1(" QHD xfer err count: %d\n", qtd_overlay->err_count);
// TU_BREAKPOINT(); // TODO skip unplugged device
// }
ehci_qtd_t * volatile qtd = (ehci_qtd_t * volatile) qhd->attached_qtd;
TU_ASSERT(qtd, ); // No TD yet, probably a race condition or cache issue !?
hcd_dcache_invalidate(qtd, sizeof(ehci_qtd_t));
uint8_t dir = (qtd->pid == EHCI_PID_IN) ? 1 : 0;
uint32_t const xferred_bytes = qtd->expected_bytes - qtd->total_bytes;
// invalidate dcache if IN transfer
if (dir == 1 && qhd->attached_buffer != 0 && xferred_bytes > 0) {
hcd_dcache_invalidate((void*) qhd->attached_buffer, xferred_bytes);
}
// remove and free TD before invoking callback
qhd->attached_qtd = NULL;
qhd->attached_buffer = 0;
qtd->used = 0; // free QTD
if (0 == qhd->ep_number ) {
// control cannot be halted
qhd->qtd_overlay.next.terminate = 1;
qhd->qtd_overlay.alternate.terminate = 1;
qhd->qtd_overlay.halted = 0;
hcd_dcache_clean(qhd, sizeof(ehci_qhd_t));
}
// notify usbh
uint8_t const ep_addr = tu_edpt_addr(qhd->ep_number, dir);
hcd_event_xfer_complete(qhd->dev_addr, ep_addr, xferred_bytes, xfer_result, true);
}
}
TU_ATTR_ALWAYS_INLINE static inline
void xfer_error_isr(uint8_t rhport)
{
//------------- async list -------------//
ehci_qhd_t * const async_head = qhd_async_head(rhport);
ehci_qhd_t *p_qhd = async_head;
do
{
hcd_dcache_invalidate(p_qhd, sizeof(ehci_qhd_t));
qhd_xfer_error_isr( p_qhd );
p_qhd = qhd_next(p_qhd);
}while(p_qhd != async_head); // async list traversal, stop if loop around
//------------- TODO refractor period list -------------//
uint32_t const period_1ms_addr = (uint32_t) get_period_head(rhport, 1u);
for (uint32_t interval_ms=1; interval_ms <= FRAMELIST_SIZE; interval_ms *= 2)
{
ehci_link_t next_item = * get_period_head(rhport, interval_ms);
// TODO abstract max loop guard for period
while( !next_item.terminate &&
!(interval_ms > 1 && period_1ms_addr == tu_align32(next_item.address)) )
{
switch ( next_item.type )
{
case EHCI_QTYPE_QHD:
{
ehci_qhd_t *p_qhd_int = (ehci_qhd_t *) tu_align32(next_item.address);
hcd_dcache_invalidate(p_qhd_int, sizeof(ehci_qhd_t));
qhd_xfer_error_isr(p_qhd_int);
}
break;
// TODO support hs/fs ISO
case EHCI_QTYPE_ITD:
case EHCI_QTYPE_SITD:
case EHCI_QTYPE_FSTN:
default: break;
}
next_item = *list_next(&next_item);
}
}
}
//------------- Host Controller Driver's Interrupt Handler -------------//
void hcd_int_handler(uint8_t rhport)
{
@@ -776,29 +672,16 @@ void hcd_int_handler(uint8_t rhport)
regs->status = EHCI_INT_MASK_PORT_CHANGE; // Acknowledge
}
if (int_status & EHCI_INT_MASK_ERROR) {
xfer_error_isr(rhport);
regs->status = EHCI_INT_MASK_ERROR; // Acknowledge
}
// A USB transfer is completed (OK or error)
uint32_t const usb_int = int_status & (EHCI_INT_MASK_USB | EHCI_INT_MASK_ERROR);
if (usb_int) {
proccess_async_xfer_isr(list_get_async_head(rhport));
//------------- some QTD/SITD/ITD with IOC set is completed -------------//
if (int_status & EHCI_INT_MASK_NXP_ASYNC) {
async_list_xfer_complete_isr(qhd_async_head(rhport));
regs->status = EHCI_INT_MASK_NXP_ASYNC; // Acknowledge
}
if (int_status & EHCI_INT_MASK_NXP_PERIODIC)
{
for (uint32_t i=1; i <= FRAMELIST_SIZE; i *= 2)
{
period_list_xfer_complete_isr(rhport, i);
for ( uint32_t i = 1; i <= FRAMELIST_SIZE; i *= 2 ) {
process_period_xfer_isr(rhport, i);
}
regs->status = EHCI_INT_MASK_NXP_PERIODIC; // Acknowledge
}
if (int_status & EHCI_INT_MASK_USB) {
// TODO standard EHCI xfer complete
regs->status = EHCI_INT_MASK_USB; // Acknowledge
regs->status = usb_int; // Acknowledge
}
//------------- There is some removed async previously -------------//
@@ -810,35 +693,103 @@ void hcd_int_handler(uint8_t rhport)
}
//--------------------------------------------------------------------+
// HELPER
// List Managing Helper
//--------------------------------------------------------------------+
// Get head of periodic list
TU_ATTR_ALWAYS_INLINE static inline ehci_link_t* list_get_period_head(uint8_t rhport, uint32_t interval_ms) {
(void) rhport;
return (ehci_link_t*) &ehci_data.period_head_arr[ tu_log2( tu_min32(FRAMELIST_SIZE, interval_ms) ) ];
}
//------------- queue head helper -------------//
static inline ehci_qhd_t* qhd_find_free (void)
// Get head of async list
TU_ATTR_ALWAYS_INLINE static inline ehci_qhd_t* list_get_async_head(uint8_t rhport) {
(void) rhport;
return qhd_control(0); // control qhd of dev0 is used as async head
}
TU_ATTR_ALWAYS_INLINE static inline ehci_link_t* list_next(ehci_link_t const *p_link) {
return (ehci_link_t*) tu_align32(p_link->address);
}
TU_ATTR_ALWAYS_INLINE static inline void list_insert(ehci_link_t *current, ehci_link_t *new, uint8_t new_type)
{
for (uint32_t i=0; i<QHD_MAX; i++)
{
new->address = current->address;
current->address = ((uint32_t) new) | (new_type << 1);
}
// Remove all queue head belong to this device address
static void list_remove_qhd_by_daddr(ehci_link_t* list_head, uint8_t dev_addr) {
ehci_link_t* prev = list_head;
while (prev && !prev->terminate) {
ehci_qhd_t* qhd = (ehci_qhd_t*) (uintptr_t) list_next(prev);
// done if loop back to head
if ( (uintptr_t) qhd == (uintptr_t) list_head) {
break;
}
if ( qhd->dev_addr == dev_addr ) {
// TODO deactivate all TD, wait for QHD to inactive before removal
prev->address = qhd->next.address;
// EHCI 4.8.2 link the removed qhd's next to async head (which always reachable by Host Controller)
qhd->next.address = ((uint32_t) list_head) | (EHCI_QTYPE_QHD << 1);
if ( qhd->int_smask )
{
// period list queue element is guarantee to be free in the next frame (1 ms)
qhd->used = 0;
}else
{
// async list use async advance handshake
// mark as removing, will completely re-usable when async advance isr occurs
qhd->removing = 1;
}
hcd_dcache_clean(qhd, sizeof(ehci_qhd_t));
hcd_dcache_clean(prev, sizeof(ehci_qhd_t));
}else {
prev = list_next(prev);
}
}
}
//--------------------------------------------------------------------+
// Queue Header helper
//--------------------------------------------------------------------+
// Get queue head for control transfer (always available)
TU_ATTR_ALWAYS_INLINE static inline ehci_qhd_t* qhd_control(uint8_t dev_addr) {
return &ehci_data.control[dev_addr].qhd;
}
// Find a free queue head
TU_ATTR_ALWAYS_INLINE static inline ehci_qhd_t *qhd_find_free(void) {
for ( uint32_t i = 0; i < QHD_MAX; i++ ) {
if ( !ehci_data.qhd_pool[i].used ) return &ehci_data.qhd_pool[i];
}
return NULL;
}
static inline ehci_qhd_t* qhd_next(ehci_qhd_t const * p_qhd)
{
return (ehci_qhd_t*) tu_align32(p_qhd->next.address);
// Next queue head link
TU_ATTR_ALWAYS_INLINE static inline ehci_qhd_t *qhd_next(ehci_qhd_t const *p_qhd) {
return (ehci_qhd_t *) tu_align32(p_qhd->next.address);
}
static inline ehci_qhd_t* qhd_get_from_addr(uint8_t dev_addr, uint8_t ep_addr)
{
ehci_qhd_t* qhd_pool = ehci_data.qhd_pool;
// Get queue head from device + endpoint address
static ehci_qhd_t *qhd_get_from_addr(uint8_t dev_addr, uint8_t ep_addr) {
if ( 0 == tu_edpt_number(ep_addr) ) {
return qhd_control(dev_addr);
}
for(uint32_t i=0; i<QHD_MAX; i++)
{
ehci_qhd_t *qhd_pool = ehci_data.qhd_pool;
for ( uint32_t i = 0; i < QHD_MAX; i++ ) {
if ( (qhd_pool[i].dev_addr == dev_addr) &&
ep_addr == tu_edpt_addr(qhd_pool[i].ep_number, qhd_pool[i].pid) )
{
ep_addr == tu_edpt_addr(qhd_pool[i].ep_number, qhd_pool[i].pid) ) {
return &qhd_pool[i];
}
}
@@ -846,6 +797,7 @@ static inline ehci_qhd_t* qhd_get_from_addr(uint8_t dev_addr, uint8_t ep_addr)
return NULL;
}
// Init queue head with endpoint descriptor
static void qhd_init(ehci_qhd_t *p_qhd, uint8_t dev_addr, tusb_desc_endpoint_t const * ep_desc)
{
// address 0 is used as async head, which always on the list --> cannot be cleared (ehci halted otherwise)
@@ -920,6 +872,7 @@ static void qhd_init(ehci_qhd_t *p_qhd, uint8_t dev_addr, tusb_desc_endpoint_t c
}
}
// Attach a TD to queue head
static void qhd_attach_qtd(ehci_qhd_t *qhd, ehci_qtd_t *qtd) {
qhd->attached_qtd = qtd;
qhd->attached_buffer = qtd->buffer[0];
@@ -931,17 +884,35 @@ static void qhd_attach_qtd(ehci_qhd_t *qhd, ehci_qtd_t *qtd) {
hcd_dcache_clean_invalidate(qhd, sizeof(ehci_qhd_t));
}
// Remove an attached TD from queue head
static void qhd_remove_qtd(ehci_qhd_t *qhd) {
ehci_qtd_t * volatile qtd = qhd->attached_qtd;
//------------- TD helper -------------//
static inline ehci_qtd_t *qtd_find_free(void) {
qhd->attached_qtd = NULL;
qhd->attached_buffer = 0;
hcd_dcache_clean(qhd, sizeof(ehci_qhd_t));
qtd->used = 0; // free QTD
hcd_dcache_clean(qtd, sizeof(ehci_qtd_t));
}
//--------------------------------------------------------------------+
// Queue TD helper
//--------------------------------------------------------------------+
// Get TD for control transfer (always available)
TU_ATTR_ALWAYS_INLINE static inline ehci_qtd_t* qtd_control(uint8_t dev_addr) {
return &ehci_data.control[dev_addr].qtd;
}
TU_ATTR_ALWAYS_INLINE static inline ehci_qtd_t *qtd_find_free(void) {
for (uint32_t i = 0; i < QTD_MAX; i++) {
if (!ehci_data.qtd_pool[i].used) return &ehci_data.qtd_pool[i];
}
return NULL;
}
static void qtd_init(ehci_qtd_t* qtd, void const* buffer, uint16_t total_bytes)
{
static void qtd_init(ehci_qtd_t* qtd, void const* buffer, uint16_t total_bytes) {
tu_memclr(qtd, sizeof(ehci_qtd_t));
qtd->used = 1;
@@ -955,24 +926,9 @@ static void qtd_init(ehci_qtd_t* qtd, void const* buffer, uint16_t total_bytes)
qtd->expected_bytes = total_bytes;
qtd->buffer[0] = (uint32_t) buffer;
for(uint8_t i=1; i<5; i++)
{
for(uint8_t i=1; i<5; i++) {
qtd->buffer[i] |= tu_align4k(qtd->buffer[i - 1] ) + 4096;
}
}
//------------- List Managing Helper -------------//
// insert at head
static inline void list_insert(ehci_link_t *current, ehci_link_t *new, uint8_t new_type)
{
new->address = current->address;
current->address = ((uint32_t) new) | (new_type << 1);
}
static inline ehci_link_t* list_next(ehci_link_t const *p_link)
{
return (ehci_link_t*) tu_align32(p_link->address);
}
#endif

View File

@@ -278,23 +278,24 @@ enum {
EHCI_INT_MASK_PERIODIC_SCHED_STATUS = TU_BIT(14),
EHCI_INT_MASK_ASYNC_SCHED_STATUS = TU_BIT(15),
EHCI_INT_MASK_NXP_ASYNC = TU_BIT(18),
EHCI_INT_MASK_NXP_PERIODIC = TU_BIT(19),
EHCI_INT_MASK_ALL =
EHCI_INT_MASK_USB | EHCI_INT_MASK_ERROR | EHCI_INT_MASK_PORT_CHANGE |
EHCI_INT_MASK_FRAMELIST_ROLLOVER | EHCI_INT_MASK_PCI_HOST_SYSTEM_ERROR |
EHCI_INT_MASK_ASYNC_ADVANCE | EHCI_INT_MASK_NXP_SOF |
EHCI_INT_MASK_NXP_ASYNC | EHCI_INT_MASK_NXP_PERIODIC
EHCI_INT_MASK_ASYNC_ADVANCE | EHCI_INT_MASK_NXP_SOF
};
enum {
EHCI_USBCMD_POS_RUN_STOP = 0,
EHCI_USBCMD_POS_FRAMELIST_SIZE = 2,
EHCI_USBCMD_POS_PERIOD_ENABLE = 4,
EHCI_USBCMD_POS_ASYNC_ENABLE = 5,
EHCI_USBCMD_POS_NXP_FRAMELIST_SIZE_MSB = 15,
EHCI_USBCMD_POS_INTERRUPT_THRESHOLD = 16
EHCI_USBCMD_FRAMELIST_SIZE_SHIFT = 2, // [2..3]
EHCI_USBCMD_CHIPIDEA_FRAMELIST_SIZE_MSB_SHIFT = 15,
EHCI_USBCMD_INTERRUPT_THRESHOLD_SHIFT = 16
};
enum {
EHCI_USBCMD_RUN_STOP = TU_BIT(0), // [0..0] 1 = Run, 0 = Stop
EHCI_USBCMD_HCRESET = TU_BIT(1), // [1..1] SW write 1 to reset HC, clear by HC when complete
EHCI_USBCMD_PERIOD_SCHEDULE_ENABLE = TU_BIT(4), // [4..4] Enable periodic schedule
EHCI_USBCMD_ASYNC_SCHEDULE_ENABLE = TU_BIT(5), // [5..5] Enable async schedule
EHCI_USBCMD_INTR_ON_ASYNC_ADVANCE_DOORBELL = TU_BIT(6), // [6..6] Tell HC to interrupt next time it advances async list. Clear by HC
};
enum {
@@ -306,7 +307,7 @@ enum {
EHCI_PORTSC_MASK_FORCE_RESUME = TU_BIT(6),
EHCI_PORTSC_MASK_PORT_SUSPEND = TU_BIT(7),
EHCI_PORTSC_MASK_PORT_RESET = TU_BIT(8),
ECHI_PORTSC_MASK_PORT_POWER = TU_BIT(12),
EHCI_PORTSC_MASK_PORT_POWER = TU_BIT(12),
EHCI_PORTSC_MASK_W1C =
EHCI_PORTSC_MASK_CONNECT_STATUS_CHANGE |

View File

@@ -822,9 +822,17 @@ bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t *b
return ret;
}
bool hcd_edpt_abort_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
(void) rhport;
(void) dev_addr;
(void) ep_addr;
// TODO not implemented yet
return false;
}
// clear stall, data toggle is also reset to DATA0
bool hcd_edpt_clear_stall(uint8_t dev_addr, uint8_t ep_addr)
{
bool hcd_edpt_clear_stall(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
(void) rhport;
unsigned const pipenum = find_pipe(dev_addr, ep_addr);
if (!pipenum) return false;
hw_endpoint_t volatile *regs = edpt_regs(pipenum - 1);

View File

@@ -189,7 +189,7 @@ typedef struct
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
// BDT(Buffer Descriptor Table) must be 256-byte aligned
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(512) volatile static dcd_data_t _dcd;
CFG_TUD_MEM_SECTION TU_ATTR_ALIGNED(512) volatile static dcd_data_t _dcd;
#if TU_PIC_INT_SIZE == 4
TU_VERIFY_STATIC( sizeof(_dcd.bdt) == 512, "size is not correct" );

View File

@@ -77,7 +77,7 @@ static tusb_speed_t get_speed(void);
static void dcd_transmit_packet(xfer_ctl_t * xfer, uint8_t ep_ix);
// DMA descriptors shouldn't be placed in ITCM !
CFG_TUSB_MEM_SECTION static dma_desc_t dma_desc[6];
CFG_TUD_MEM_SECTION static dma_desc_t dma_desc[6];
static xfer_ctl_t xfer_status[EP_MAX];

View File

@@ -110,7 +110,7 @@ typedef struct
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
// BDT(Buffer Descriptor Table) must be 256-byte aligned
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(512) static dcd_data_t _dcd;
CFG_TUD_MEM_SECTION TU_ATTR_ALIGNED(512) static dcd_data_t _dcd;
TU_VERIFY_STATIC( sizeof(_dcd.bdt) == 512, "size is not correct" );

View File

@@ -114,7 +114,7 @@ typedef struct
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
// BDT(Buffer Descriptor Table) must be 256-byte aligned
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(512) static dcd_data_t _dcd;
CFG_TUD_MEM_SECTION TU_ATTR_ALIGNED(512) static dcd_data_t _dcd;
TU_VERIFY_STATIC( sizeof(_dcd.bdt) == 512, "size is not correct" );

View File

@@ -562,8 +562,16 @@ bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t *
return true;
}
bool hcd_edpt_clear_stall(uint8_t dev_addr, uint8_t ep_addr)
{
bool hcd_edpt_abort_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
(void) rhport;
(void) dev_addr;
(void) ep_addr;
// TODO not implemented yet
return false;
}
bool hcd_edpt_clear_stall(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
(void) rhport;
if (!tu_edpt_number(ep_addr)) return true;
int num = find_pipe(dev_addr, ep_addr);
if (num < 0) return false;

View File

@@ -92,7 +92,7 @@ typedef struct
} dcd_data_t;
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(128) static dcd_data_t _dcd;
CFG_TUD_MEM_SECTION TU_ATTR_ALIGNED(128) static dcd_data_t _dcd;
//--------------------------------------------------------------------+

View File

@@ -176,11 +176,11 @@ typedef struct
// EP list must be 256-byte aligned
// Some MCU controller may require this variable to be placed in specific SRAM region.
// For example: LPC55s69 port1 Highspeed must be USB_RAM (0x40100000)
// Use CFG_TUSB_MEM_SECTION to place it accordingly.
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(256) static dcd_data_t _dcd;
// Use CFG_TUD_MEM_SECTION to place it accordingly.
CFG_TUD_MEM_SECTION TU_ATTR_ALIGNED(256) static dcd_data_t _dcd;
// Dummy buffer to fix ZLPs overwriting the buffer (probably an USB/DMA controller bug)
CFG_TUSB_MEM_SECTION TU_ATTR_ALIGNED(64) static uint8_t dummy[8];
CFG_TUD_MEM_SECTION TU_ATTR_ALIGNED(64) static uint8_t dummy[8];
//--------------------------------------------------------------------+
// Multiple Controllers

View File

@@ -341,19 +341,24 @@ static void ed_init(ohci_ed_t *p_ed, uint8_t dev_addr, uint16_t ep_size, uint8_t
p_ed->is_interrupt_xfer = (xfer_type == TUSB_XFER_INTERRUPT ? 1 : 0);
}
static void gtd_init(ohci_gtd_t* p_td, uint8_t* data_ptr, uint16_t total_bytes)
{
static void gtd_init(ohci_gtd_t *p_td, uint8_t *data_ptr, uint16_t total_bytes) {
tu_memclr(p_td, sizeof(ohci_gtd_t));
p_td->used = 1;
p_td->expected_bytes = total_bytes;
p_td->used = 1;
p_td->expected_bytes = total_bytes;
p_td->buffer_rounding = 1; // less than queued length is not a error
p_td->delay_interrupt = OHCI_INT_ON_COMPLETE_NO;
p_td->condition_code = OHCI_CCODE_NOT_ACCESSED;
p_td->buffer_rounding = 1; // less than queued length is not a error
p_td->delay_interrupt = OHCI_INT_ON_COMPLETE_NO;
p_td->condition_code = OHCI_CCODE_NOT_ACCESSED;
p_td->current_buffer_pointer = _phys_addr(data_ptr);
p_td->buffer_end = total_bytes ? (_phys_addr(data_ptr + total_bytes - 1)) : (uint8_t *)p_td->current_buffer_pointer;
uint8_t *cbp = (uint8_t *) _phys_addr(data_ptr);
p_td->current_buffer_pointer = cbp;
if ( total_bytes ) {
p_td->buffer_end = _phys_addr(data_ptr + total_bytes - 1);
} else {
p_td->buffer_end = cbp;
}
}
static ohci_ed_t * ed_from_addr(uint8_t dev_addr, uint8_t ep_addr)
@@ -487,7 +492,7 @@ bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet
ohci_ed_t* ed = &ohci_data.control[dev_addr].ed;
ohci_gtd_t *qtd = &ohci_data.control[dev_addr].gtd;
gtd_init(qtd, (uint8_t*) setup_packet, 8);
gtd_init(qtd, (uint8_t*)(uintptr_t) setup_packet, 8);
qtd->index = dev_addr;
qtd->pid = PID_SETUP;
qtd->data_toggle = GTD_DT_DATA0;
@@ -543,8 +548,16 @@ bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t *
return true;
}
bool hcd_edpt_clear_stall(uint8_t dev_addr, uint8_t ep_addr)
{
bool hcd_edpt_abort_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
(void) rhport;
(void) dev_addr;
(void) ep_addr;
// TODO not implemented yet
return false;
}
bool hcd_edpt_clear_stall(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
(void) rhport;
ohci_ed_t * const p_ed = ed_from_addr(dev_addr, ep_addr);
p_ed->is_stalled = 0;

View File

@@ -138,6 +138,11 @@ bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t *
return pio_usb_host_endpoint_transfer(pio_rhport, dev_addr, ep_addr, buffer, buflen);
}
bool hcd_edpt_abort_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
uint8_t const pio_rhport = RHPORT_PIO(rhport);
return pio_usb_host_endpoint_abort_transfer(pio_rhport, dev_addr, ep_addr);
}
bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet[8])
{
uint8_t const pio_rhport = RHPORT_PIO(rhport);
@@ -158,8 +163,8 @@ bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet
// return busy;
//}
bool hcd_edpt_clear_stall(uint8_t dev_addr, uint8_t ep_addr)
{
bool hcd_edpt_clear_stall(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
(void) rhport;
(void) dev_addr;
(void) ep_addr;

View File

@@ -576,6 +576,14 @@ bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t *
return true;
}
bool hcd_edpt_abort_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
(void) rhport;
(void) dev_addr;
(void) ep_addr;
// TODO not implemented yet
return false;
}
bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet[8])
{
(void) rhport;
@@ -617,8 +625,8 @@ bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet
return true;
}
bool hcd_edpt_clear_stall(uint8_t dev_addr, uint8_t ep_addr)
{
bool hcd_edpt_clear_stall(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
(void) rhport;
(void) dev_addr;
(void) ep_addr;

View File

@@ -752,9 +752,15 @@ bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t *b
return r;
}
bool hcd_edpt_clear_stall(uint8_t dev_addr, uint8_t ep_addr)
{
uint8_t rhport = 0; // FIXME change API
bool hcd_edpt_abort_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
(void) rhport;
(void) dev_addr;
(void) ep_addr;
// TODO not implemented yet
return false;
}
bool hcd_edpt_clear_stall(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
uint16_t volatile *ctr = addr_to_pipectr(rhport, dev_addr, ep_addr);
TU_ASSERT(ctr);