Merge pull request #1405 from gregdavill/ch32v307

Add WCH CH32V307 port
This commit is contained in:
Ha Thach
2023-01-12 17:51:56 +07:00
committed by GitHub
25 changed files with 2679 additions and 2 deletions

View File

@@ -0,0 +1,345 @@
#ifndef _USB_CH32_USBHS_REG_H
#define _USB_CH32_USBHS_REG_H
#include <ch32v30x.h>
/******************* GLOBAL ******************/
// USB CONTROL
#define USBHS_CONTROL_OFFSET 0x00
#define USBHS_DMA_EN (1 << 0)
#define USBHS_ALL_CLR (1 << 1)
#define USBHS_FORCE_RST (1 << 2)
#define USBHS_INT_BUSY_EN (1 << 3)
#define USBHS_DEV_PU_EN (1 << 4)
#define USBHS_SPEED_MASK (3 << 5)
#define USBHS_FULL_SPEED (0 << 5)
#define USBHS_HIGH_SPEED (1 << 5)
#define USBHS_LOW_SPEED (2 << 5)
#define USBHS_HOST_MODE (1 << 7)
// USB_INT_EN
#define USBHS_INT_EN_OFFSET 0x02
#define USBHS_BUS_RST_EN (1 << 0)
#define USBHS_DETECT_EN (1 << 0)
#define USBHS_TRANSFER_EN (1 << 1)
#define USBHS_SUSPEND_EN (1 << 2)
#define USBHS_SOF_ACT_EN (1 << 3)
#define USBHS_FIFO_OV_EN (1 << 4)
#define USBHS_SETUP_ACT_EN (1 << 5)
#define USBHS_ISO_ACT_EN (1 << 6)
#define USBHS_DEV_NAK_EN (1 << 7)
// USB DEV AD
#define USBHS_DEV_AD_OFFSET 0x03
// USB FRAME_NO
#define USBHS_FRAME_NO_OFFSET 0x04
// USB SUSPEND
#define USBHS_SUSPEND_OFFSET 0x06
#define USBHS_DEV_REMOTE_WAKEUP (1 << 2)
#define USBHS_LINESTATE_MASK (2 << 4) /* Read Only */
// RESERVED0
// USB SPEED TYPE
#define USBHS_SPEED_TYPE_OFFSET 0x08
#define USBSPEED_MASK (0x03)
// USB_MIS_ST
#define USBHS_MIS_ST_OFFSET 0x09
#define USBHS_SPLIT_CAN (1 << 0)
#define USBHS_ATTACH (1 << 1)
#define USBHS_SUSPEND (1 << 2)
#define USBHS_BUS_RESET (1 << 3)
#define USBHS_R_FIFO_RDY (1 << 4)
#define USBHS_SIE_FREE (1 << 5)
#define USBHS_SOF_ACT (1 << 6)
#define USBHS_SOF_PRES (1 << 7)
// INT_FLAG
#define USBHS_INT_FLAG_OFFSET 0x0A
#define USBHS_BUS_RST_FLAG (1 << 0)
#define USBHS_DETECT_FLAG (1 << 0)
#define USBHS_TRANSFER_FLAG (1 << 1)
#define USBHS_SUSPEND_FLAG (1 << 2)
#define USBHS_HST_SOF_FLAG (1 << 3)
#define USBHS_FIFO_OV_FLAG (1 << 4)
#define USBHS_SETUP_FLAG (1 << 5)
#define USBHS_ISO_ACT_FLAG (1 << 6)
// INT_ST
#define USBHS_INT_ST_OFFSET 0x0B
#define USBHS_DEV_UIS_IS_NAK (1 << 7)
#define USBHS_DEV_UIS_TOG_OK (1 << 6)
#define MASK_UIS_TOKEN (3 << 4)
#define MASK_UIS_ENDP (0x0F)
#define MASK_UIS_H_RES (0x0F)
#define USBHS_TOGGLE_OK (0x40)
#define USBHS_HOST_RES (0x0f)
//USB_RX_LEN
#define USBHS_RX_LEN_OFFSET 0x0C
/******************* DEVICE ******************/
//UEP_CONFIG
#define USBHS_UEP_CONFIG_OFFSET 0x10
#define USBHS_EP0_T_EN (1 << 0)
#define USBHS_EP0_R_EN (1 << 16)
#define USBHS_EP1_T_EN (1 << 1)
#define USBHS_EP1_R_EN (1 << 17)
#define USBHS_EP2_T_EN (1 << 2)
#define USBHS_EP2_R_EN (1 << 18)
#define USBHS_EP3_T_EN (1 << 3)
#define USBHS_EP3_R_EN (1 << 19)
#define USBHS_EP4_T_EN (1 << 4)
#define USBHS_EP4_R_EN (1 << 20)
#define USBHS_EP5_T_EN (1 << 5)
#define USBHS_EP5_R_EN (1 << 21)
#define USBHS_EP6_T_EN (1 << 6)
#define USBHS_EP6_R_EN (1 << 22)
#define USBHS_EP7_T_EN (1 << 7)
#define USBHS_EP7_R_EN (1 << 23)
#define USBHS_EP8_T_EN (1 << 8)
#define USBHS_EP8_R_EN (1 << 24)
#define USBHS_EP9_T_EN (1 << 9)
#define USBHS_EP9_R_EN (1 << 25)
#define USBHS_EP10_T_EN (1 << 10)
#define USBHS_EP10_R_EN (1 << 26)
#define USBHS_EP11_T_EN (1 << 11)
#define USBHS_EP11_R_EN (1 << 27)
#define USBHS_EP12_T_EN (1 << 12)
#define USBHS_EP12_R_EN (1 << 28)
#define USBHS_EP13_T_EN (1 << 13)
#define USBHS_EP13_R_EN (1 << 29)
#define USBHS_EP14_T_EN (1 << 14)
#define USBHS_EP14_R_EN (1 << 30)
#define USBHS_EP15_T_EN (1 << 15)
#define USBHS_EP15_R_EN (1 << 31)
//UEP_TYPE
#define USBHS_UEP_TYPE_OFFSET 0x14
#define USBHS_EP0_T_TYP (1 << 0)
#define USBHS_EP0_R_TYP (1 << 16)
#define USBHS_EP1_T_TYP (1 << 1)
#define USBHS_EP1_R_TYP (1 << 17)
#define USBHS_EP2_T_TYP (1 << 2)
#define USBHS_EP2_R_TYP (1 << 18)
#define USBHS_EP3_T_TYP (1 << 3)
#define USBHS_EP3_R_TYP (1 << 19)
#define USBHS_EP4_T_TYP (1 << 4)
#define USBHS_EP4_R_TYP (1 << 20)
#define USBHS_EP5_T_TYP (1 << 5)
#define USBHS_EP5_R_TYP (1 << 21)
#define USBHS_EP6_T_TYP (1 << 6)
#define USBHS_EP6_R_TYP (1 << 22)
#define USBHS_EP7_T_TYP (1 << 7)
#define USBHS_EP7_R_TYP (1 << 23)
#define USBHS_EP8_T_TYP (1 << 8)
#define USBHS_EP8_R_TYP (1 << 24)
#define USBHS_EP9_T_TYP (1 << 8)
#define USBHS_EP9_R_TYP (1 << 25)
#define USBHS_EP10_T_TYP (1 << 10)
#define USBHS_EP10_R_TYP (1 << 26)
#define USBHS_EP11_T_TYP (1 << 11)
#define USBHS_EP11_R_TYP (1 << 27)
#define USBHS_EP12_T_TYP (1 << 12)
#define USBHS_EP12_R_TYP (1 << 28)
#define USBHS_EP13_T_TYP (1 << 13)
#define USBHS_EP13_R_TYP (1 << 29)
#define USBHS_EP14_T_TYP (1 << 14)
#define USBHS_EP14_R_TYP (1 << 30)
#define USBHS_EP15_T_TYP (1 << 15)
#define USBHS_EP15_R_TYP (1 << 31)
/* BUF_MOD UEP1~15 */
#define USBHS_BUF_MOD_OFFSET 0x18
#define USBHS_EP0_BUF_MOD (1 << 0)
#define USBHS_EP0_ISO_BUF_MOD (1 << 16)
#define USBHS_EP1_BUF_MOD (1 << 1)
#define USBHS_EP1_ISO_BUF_MOD (1 << 17)
#define USBHS_EP2_BUF_MOD (1 << 2)
#define USBHS_EP2_ISO_BUF_MOD (1 << 18)
#define USBHS_EP3_BUF_MOD (1 << 3)
#define USBHS_EP3_ISO_BUF_MOD (1 << 19)
#define USBHS_EP4_BUF_MOD (1 << 4)
#define USBHS_EP4_ISO_BUF_MOD (1 << 20)
#define USBHS_EP5_BUF_MOD (1 << 5)
#define USBHS_EP5_ISO_BUF_MOD (1 << 21)
#define USBHS_EP6_BUF_MOD (1 << 6)
#define USBHS_EP6_ISO_BUF_MOD (1 << 22)
#define USBHS_EP7_BUF_MOD (1 << 7)
#define USBHS_EP7_ISO_BUF_MOD (1 << 23)
#define USBHS_EP8_BUF_MOD (1 << 8)
#define USBHS_EP8_ISO_BUF_MOD (1 << 24)
#define USBHS_EP9_BUF_MOD (1 << 9)
#define USBHS_EP9_ISO_BUF_MOD (1 << 25)
#define USBHS_EP10_BUF_MOD (1 << 10)
#define USBHS_EP10_ISO_BUF_MOD (1 << 26)
#define USBHS_EP11_BUF_MOD (1 << 11)
#define USBHS_EP11_ISO_BUF_MOD (1 << 27)
#define USBHS_EP12_BUF_MOD (1 << 12)
#define USBHS_EP12_ISO_BUF_MOD (1 << 28)
#define USBHS_EP13_BUF_MOD (1 << 13)
#define USBHS_EP13_ISO_BUF_MOD (1 << 29)
#define USBHS_EP14_BUF_MOD (1 << 14)
#define USBHS_EP14_ISO_BUF_MOD (1 << 30)
#define USBHS_EP15_BUF_MOD (1 << 15)
#define USBHS_EP15_ISO_BUF_MOD (1 << 31)
//USBHS_EPn_T_EN USBHS_EPn_R_EN USBHS_EPn_BUF_MOD Description: Arrange from low to high with UEPn_DMA as the starting address
// 0 0 x The endpoint is disabled and the UEPn_*_DMA buffers are not used.
// 1 0 0 The first address of the receive (OUT) buffer is UEPn_RX_DMA
// 1 0 1 RB_UEPn_RX_TOG[0]=0, use buffer UEPn_RX_DMA RB_UEPn_RX_TOG[0]=1, use buffer UEPn_TX_DMA
// 0 1 0 The first address of the transmit (IN) buffer is UEPn_TX_DMA.
// 0 1 1 RB_UEPn_TX_TOG[0]=0, use buffer UEPn_TX_DMA RB_UEPn_TX_TOG[0]=1, use buffer UEPn_RX_DMA
/* USB0_DMA */
#define USBHS_UEP0_DMA_OFFSET(n) (0x1C) // endpoint 0 DMA buffer address
/* USBX_RX_DMA */
#define USBHS_UEPx_RX_DMA_OFFSET(n) (0x1C + 4 * (n)) // endpoint x DMA buffer address
#define USBHS_UEPx_TX_DMA_OFFSET(n) (0x58 + 4 * (n)) // endpoint x DMA buffer address
#define USBHS_UEPx_MAX_LEN_OFFSET(n) (0x98 + 4 * (n)) // endpoint x DMA buffer address
#define USBHS_UEPx_T_LEN_OFFSET(n) (0xD8 + 4 * (n)) // endpoint x DMA buffer address
#define USBHS_UEPx_TX_CTRL_OFFSET(n) (0xD8 + 4 * (n) + 2) // endpoint x DMA buffer address
#define USBHS_UEPx_RX_CTRL_OFFSET(n) (0xD8 + 4 * (n) + 3) // endpoint x DMA buffer address
// UEPn_T_LEN
#define USBHS_EP_T_LEN_MASK (0x7FF)
//UEPn_TX_CTRL
#define USBHS_EP_T_RES_MASK (3 << 0)
#define USBHS_EP_T_RES_ACK (0 << 0)
#define USBHS_EP_T_RES_NYET (1 << 0)
#define USBHS_EP_T_RES_NAK (2 << 0)
#define USBHS_EP_T_RES_STALL (3 << 0)
#define USBHS_EP_T_TOG_MASK (3 << 3)
#define USBHS_EP_T_TOG_0 (0 << 3)
#define USBHS_EP_T_TOG_1 (1 << 3)
#define USBHS_EP_T_TOG_2 (2 << 3)
#define USBHS_EP_T_TOG_M (3 << 3)
#define USBHS_EP_T_AUTOTOG (1 << 5)
//UEPn_RX_CTRL
#define USBHS_EP_R_RES_MASK (3 << 0)
#define USBHS_EP_R_RES_ACK (0 << 0)
#define USBHS_EP_R_RES_NYET (1 << 0)
#define USBHS_EP_R_RES_NAK (2 << 0)
#define USBHS_EP_R_RES_STALL (3 << 0)
#define USBHS_EP_R_TOG_MASK (3 << 3)
#define USBHS_EP_R_TOG_0 (0 << 3)
#define USBHS_EP_R_TOG_1 (1 << 3)
#define USBHS_EP_R_TOG_2 (2 << 3)
#define USBHS_EP_R_TOG_M (3 << 3)
#define USBHS_EP_R_AUTOTOG (1 << 5)
#define USBHS_TOG_MATCH (1 << 6)
/******************* HOST ******************/
// USB HOST_CTRL
#define USBHS_SEND_BUS_RESET (1 << 0)
#define USBHS_SEND_BUS_SUSPEND (1 << 1)
#define USBHS_SEND_BUS_RESUME (1 << 2)
#define USBHS_REMOTE_WAKE (1 << 3)
#define USBHS_PHY_SUSPENDM (1 << 4)
#define USBHS_UH_SOFT_FREE (1 << 6)
#define USBHS_SEND_SOF_EN (1 << 7)
//UH_CONFIG
#define USBHS_HOST_TX_EN (1 << 3)
#define USBHS_HOST_RX_EN (1 << 18)
// HOST_EP_TYPE
#define USBHS_ENDP_TX_ISO (1 << 3)
#define USBHS_ENDP_RX_ISO (1 << (16 + 2))
// R32_UH_EP_PID
#define USBHS_HOST_MASK_TOKEN (0x0f)
#define USBHS_HOST_MASK_ENDP (0x0f << 4)
//R8_UH_RX_CTRL
#define USBHS_EP_R_RES_MASK (3 << 0)
#define USBHS_EP_R_RES_ACK (0 << 0)
#define USBHS_EP_R_RES_NYET (1 << 0)
#define USBHS_EP_R_RES_NAK (2 << 0)
#define USBHS_EP_R_RES_STALL (3 << 0)
#define USBHS_UH_R_RES_NO (1 << 2)
#define USBHS_UH_R_TOG_1 (1 << 3)
#define USBHS_UH_R_TOG_2 (2 << 3)
#define USBHS_UH_R_TOG_3 (3 << 3)
#define USBHS_UH_R_TOG_AUTO (1 << 5)
#define USBHS_UH_R_DATA_NO (1 << 6)
//R8_UH_TX_CTRL
#define USBHS_UH_T_RES_MASK (3 << 0)
#define USBHS_UH_T_RES_ACK (0 << 0)
#define USBHS_UH_T_RES_NYET (1 << 0)
#define USBHS_UH_T_RES_NAK (2 << 0)
#define USBHS_UH_T_RES_STALL (3 << 0)
#define USBHS_UH_T_RES_NO (1 << 2)
#define USBHS_UH_T_TOG_1 (1 << 3)
#define USBHS_UH_T_TOG_2 (2 << 3)
#define USBHS_UH_T_TOG_3 (3 << 3)
#define USBHS_UH_T_TOG_AUTO (1 << 5)
#define USBHS_UH_T_DATA_NO (1 << 6)
// 00: OUT, 01:SOF, 10:IN, 11:SETUP
#define PID_OUT 0
#define PID_SOF 1
#define PID_IN 2
#define PID_SETUP 3
#endif

View File

@@ -0,0 +1,391 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2022 Greg Davill
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUD_ENABLED && (CFG_TUSB_MCU == OPT_MCU_CH32V307)
#include "device/dcd.h"
#include "ch32_usbhs_reg.h"
#include "core_riscv.h"
// Max number of bi-directional endpoints including EP0
#define EP_MAX 16
typedef struct {
uint8_t *buffer;
// tu_fifo_t * ff; // TODO support dcd_edpt_xfer_fifo API
uint16_t total_len;
uint16_t queued_len;
uint16_t max_size;
bool short_packet;
} xfer_ctl_t;
#define XFER_CTL_BASE(_ep, _dir) &xfer_status[_ep][_dir]
static xfer_ctl_t xfer_status[EP_MAX][2];
#define EP_TX_LEN(ep) *(volatile uint16_t *)((volatile uint16_t *)&(USBHSD->UEP0_TX_LEN) + (ep)*2)
#define EP_TX_CTRL(ep) *(volatile uint8_t *)((volatile uint8_t *)&(USBHSD->UEP0_TX_CTRL) + (ep)*4)
#define EP_RX_CTRL(ep) *(volatile uint8_t *)((volatile uint8_t *)&(USBHSD->UEP0_RX_CTRL) + (ep)*4)
#define EP_RX_MAX_LEN(ep) *(volatile uint16_t *)((volatile uint16_t *)&(USBHSD->UEP0_MAX_LEN) + (ep)*2)
#define EP_TX_DMA_ADDR(ep) *(volatile uint32_t *)((volatile uint32_t *)&(USBHSD->UEP1_TX_DMA) + (ep - 1))
#define EP_RX_DMA_ADDR(ep) *(volatile uint32_t *)((volatile uint32_t *)&(USBHSD->UEP1_RX_DMA) + (ep - 1))
/* Endpoint Buffer */
TU_ATTR_ALIGNED(4) uint8_t EP0_DatabufHD[64]; // ep0(64)
volatile uint8_t USBHS_Dev_Endp0_Tog = 0x01;
void dcd_init(uint8_t rhport) {
(void)rhport;
memset(&xfer_status, 0, sizeof(xfer_status));
USBHSD->HOST_CTRL = 0x00;
USBHSD->HOST_CTRL = USBHS_PHY_SUSPENDM;
USBHSD->CONTROL = 0;
#if TUD_OPT_HIGH_SPEED
USBHSD->CONTROL = USBHS_DMA_EN | USBHS_INT_BUSY_EN | USBHS_HIGH_SPEED;
#else
#error OPT_MODE_FULL_SPEED not currently supported on CH32V307
USBHSD->CONTROL = USBHS_DMA_EN | USBHS_INT_BUSY_EN | USBHS_FULL_SPEED;
#endif
USBHSD->INT_EN = 0;
USBHSD->INT_EN = USBHS_SETUP_ACT_EN | USBHS_TRANSFER_EN | USBHS_DETECT_EN | USBHS_SUSPEND_EN;
/* ALL endpoint enable */
USBHSD->ENDP_CONFIG = 0xffffffff;
USBHSD->ENDP_CONFIG = USBHS_EP0_T_EN | USBHS_EP0_R_EN;
USBHSD->ENDP_TYPE = 0x00;
USBHSD->BUF_MODE = 0x00;
USBHSD->UEP0_MAX_LEN = 64;
USBHSD->UEP0_DMA = (uint32_t)EP0_DatabufHD;
USBHSD->UEP0_TX_LEN = 0;
USBHSD->UEP0_TX_CTRL = USBHS_EP_T_RES_NAK;
USBHSD->UEP0_RX_CTRL = USBHS_EP_R_RES_ACK;
for (int ep = 1; ep < EP_MAX; ep++) {
EP_TX_LEN(ep) = 0;
EP_TX_CTRL(ep) = USBHS_EP_T_AUTOTOG | USBHS_EP_T_RES_NAK;
EP_RX_CTRL(ep) = USBHS_EP_R_AUTOTOG | USBHS_EP_R_RES_NAK;
EP_RX_MAX_LEN(ep) = 512;
}
USBHSD->DEV_AD = 0;
USBHSD->CONTROL |= USBHS_DEV_PU_EN;
}
void dcd_int_enable(uint8_t rhport) {
(void)rhport;
NVIC_EnableIRQ(USBHS_IRQn);
}
void dcd_int_disable(uint8_t rhport) {
(void)rhport;
NVIC_DisableIRQ(USBHS_IRQn);
}
void dcd_edpt_close_all(uint8_t rhport) {
(void)rhport;
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr) {
(void)dev_addr;
// Response with zlp status
dcd_edpt_xfer(rhport, 0x80, NULL, 0);
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
}
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const *request) {
(void)rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS) {
USBHSD->DEV_AD = (uint8_t)request->wValue;
}
EP_TX_CTRL(0) = USBHS_EP_T_RES_NAK;
EP_RX_CTRL(0) = USBHS_EP_R_RES_ACK;
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *desc_edpt) {
(void)rhport;
uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(desc_edpt->bEndpointAddress);
TU_ASSERT(epnum < EP_MAX);
xfer_ctl_t *xfer = XFER_CTL_BASE(epnum, dir);
xfer->max_size = tu_edpt_packet_size(desc_edpt);
if (epnum != 0) {
if (tu_edpt_dir(desc_edpt->bEndpointAddress) == TUSB_DIR_OUT) {
EP_RX_CTRL(epnum) = USBHS_EP_R_AUTOTOG | USBHS_EP_R_RES_ACK;
} else {
EP_TX_LEN(epnum) = 0;
EP_TX_CTRL(epnum) = USBHS_EP_T_AUTOTOG | USBHS_EP_T_RES_NAK | USBHS_EP_T_TOG_0;
}
}
return true;
}
int usbd_ep_close(const uint8_t ep) {
(void)ep;
return 0;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) {
(void)rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
if (epnum == 0) {
if (dir == TUSB_DIR_OUT) {
USBHSD->UEP0_RX_CTRL = USBHS_EP_R_RES_STALL;
} else {
USBHSD->UEP0_TX_LEN = 0;
USBHSD->UEP0_TX_CTRL = USBHS_EP_T_RES_STALL;
}
} else {
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(epnum) = (EP_RX_CTRL(epnum) & ~USBHS_EP_R_RES_MASK) | USBHS_EP_R_RES_STALL;
} else {
EP_TX_CTRL(epnum) = (EP_TX_CTRL(epnum) & ~USBHS_EP_T_RES_MASK) | USBHS_EP_T_RES_STALL;
}
}
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
(void)rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
if (epnum == 0) {
if (dir == TUSB_DIR_OUT) {
USBHSD->UEP0_RX_CTRL = USBHS_EP_R_RES_ACK;
} else {
}
} else {
if (dir == TUSB_DIR_OUT) {
EP_RX_CTRL(epnum) = (EP_RX_CTRL(epnum) & ~(USBHS_EP_R_RES_MASK | USBHS_EP_T_TOG_MASK)) | USBHS_EP_T_RES_ACK;
} else {
EP_TX_CTRL(epnum) = (EP_TX_CTRL(epnum) & ~(USBHS_EP_T_RES_MASK | USBHS_EP_T_TOG_MASK)) | USBHS_EP_T_RES_NAK;
}
}
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes) {
(void)rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t *xfer = XFER_CTL_BASE(epnum, dir);
xfer->buffer = buffer;
// xfer->ff = NULL; // TODO support dcd_edpt_xfer_fifo API
xfer->total_len = total_bytes;
xfer->queued_len = 0;
xfer->short_packet = false;
// uint16_t num_packets = (total_bytes / xfer->max_size);
uint16_t short_packet_size = total_bytes % (xfer->max_size + 1);
// Zero-size packet is special case.
if (short_packet_size == 0 || (total_bytes == 0)) {
xfer->short_packet = true;
}
if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) {
if (!total_bytes) {
xfer->short_packet = true;
if (epnum == 0) {
USBHSD->UEP0_TX_LEN = 0;
USBHSD->UEP0_TX_CTRL = USBHS_EP_T_RES_ACK | (USBHS_Dev_Endp0_Tog ? USBHS_EP_T_TOG_1 : USBHS_EP_T_TOG_0);
USBHS_Dev_Endp0_Tog ^= 1;
} else {
EP_TX_LEN(epnum) = 0;
EP_TX_CTRL(epnum) = (EP_TX_CTRL(epnum) & ~(USBHS_EP_T_RES_MASK)) | USBHS_EP_T_RES_ACK;
}
} else {
if (epnum == 0) {
xfer->queued_len += short_packet_size;
memcpy(&EP0_DatabufHD[0], buffer, short_packet_size);
USBHSD->UEP0_TX_LEN = short_packet_size;
USBHSD->UEP0_TX_CTRL = USBHS_EP_T_RES_ACK | (USBHS_Dev_Endp0_Tog ? USBHS_EP_T_TOG_1 : USBHS_EP_T_TOG_0);
USBHS_Dev_Endp0_Tog ^= 1;
} else {
xfer->queued_len += short_packet_size;
EP_TX_DMA_ADDR(epnum) = (uint32_t)buffer;
USBHSD->ENDP_CONFIG |= (USBHS_EP0_T_EN << epnum);
EP_TX_LEN(epnum) = short_packet_size;
EP_TX_CTRL(epnum) = (EP_TX_CTRL(epnum) & ~(USBHS_EP_T_RES_MASK)) | USBHS_EP_T_RES_ACK;
}
}
} else { /* TUSB_DIR_OUT */
if (epnum == 0) {
uint32_t read_count = USBHSD->RX_LEN;
read_count = TU_MIN(read_count, total_bytes);
if ((total_bytes == 8)) {
read_count = 8;
memcpy(buffer, &EP0_DatabufHD[0], 8);
} else {
memcpy(buffer, &EP0_DatabufHD[0], read_count);
}
} else {
EP_RX_DMA_ADDR(epnum) = (uint32_t)xfer->buffer;
USBHSD->ENDP_CONFIG |= (USBHS_EP0_R_EN << epnum);
}
// usbd_ep_read(ep_addr, buffer, total_bytes, &ret_bytes);
}
return true;
}
static void receive_packet(xfer_ctl_t *xfer, uint16_t xfer_size) {
// xfer->queued_len = xfer->total_len - remaining;
uint16_t remaining = xfer->total_len - xfer->queued_len;
uint16_t to_recv_size;
if (remaining <= xfer->max_size) {
// Avoid buffer overflow.
to_recv_size = (xfer_size > remaining) ? remaining : xfer_size;
} else {
// Room for full packet, choose recv_size based on what the microcontroller
// claims.
to_recv_size = (xfer_size > xfer->max_size) ? xfer->max_size : xfer_size;
}
if (to_recv_size) {
}
xfer->queued_len += xfer_size;
// Per USB spec, a short OUT packet (including length 0) is always
// indicative of the end of a transfer (at least for ctl, bulk, int).
xfer->short_packet = (xfer_size < xfer->max_size);
}
void dcd_int_handler(uint8_t rhport) {
(void)rhport;
uint32_t end_num, rx_token;
uint8_t intflag = 0;
intflag = USBHSD->INT_FG;
if (intflag & USBHS_TRANSFER_FLAG) {
end_num = (USBHSD->INT_ST) & MASK_UIS_ENDP;
rx_token = (((USBHSD->INT_ST) & MASK_UIS_TOKEN) >> 4) & 0x03;
uint8_t endp = end_num | (rx_token == PID_IN ? TUSB_DIR_IN_MASK : 0);
xfer_ctl_t *xfer = XFER_CTL_BASE(end_num, tu_edpt_dir(endp));
if (rx_token == PID_OUT) {
uint16_t rx_len = USBHSD->RX_LEN;
receive_packet(xfer, rx_len);
if (xfer->short_packet || (xfer->queued_len == xfer->total_len)) {
xfer->short_packet = false;
dcd_event_xfer_complete(0, endp, xfer->queued_len, XFER_RESULT_SUCCESS, true);
}
if (end_num == 0) {
USBHSD->UEP0_RX_CTRL = USBHS_EP_R_RES_ACK | USBHS_EP_R_TOG_0;
}
} else if (rx_token == PID_IN) {
if (xfer->short_packet || (xfer->queued_len == xfer->total_len)) {
xfer->short_packet = false;
xfer->total_len = 0;
dcd_event_xfer_complete(0, endp, xfer->queued_len, XFER_RESULT_SUCCESS, true);
EP_TX_CTRL(end_num) = (EP_TX_CTRL(end_num) & ~(USBHS_EP_T_RES_MASK)) | USBHS_EP_T_RES_NAK;
if (end_num == 0) {
}
} else {
dcd_edpt_xfer(0, endp, xfer->buffer + xfer->queued_len, xfer->total_len - xfer->queued_len);
}
}
USBHSD->INT_FG = USBHS_TRANSFER_FLAG; /* Clear flag */
} else if (intflag & USBHS_SETUP_FLAG) {
USBHS_Dev_Endp0_Tog = 1;
dcd_event_setup_received(0, EP0_DatabufHD, true);
USBHSD->INT_FG = USBHS_SETUP_FLAG; /* Clear flag */
} else if (intflag & USBHS_DETECT_FLAG) {
USBHS_Dev_Endp0_Tog = 1;
xfer_status[0][TUSB_DIR_OUT].max_size = 64;
xfer_status[0][TUSB_DIR_IN].max_size = 64;
dcd_event_bus_reset(0, TUSB_SPEED_HIGH, true);
USBHSD->DEV_AD = 0;
USBHSD->UEP0_RX_CTRL = USBHS_EP_R_RES_ACK | USBHS_EP_R_TOG_0;
USBHSD->INT_FG = USBHS_DETECT_FLAG; /* Clear flag */
} else if (intflag & USBHS_SUSPEND_FLAG) {
dcd_event_t event = { .rhport = rhport, .event_id = DCD_EVENT_SUSPEND };
dcd_event_handler(&event, true);
USBHSD->INT_FG = USBHS_SUSPEND_FLAG; /* Clear flag */
}
}
#endif