/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if (CFG_TUH_ENABLED && CFG_TUH_MIDI) #include "host/usbh.h" #include "host/usbh_pvt.h" #include "midi_host.h" // Level where CFG_TUSB_DEBUG must be at least for this driver is logged #ifndef CFG_TUH_MIDI_LOG_LEVEL #define CFG_TUH_MIDI_LOG_LEVEL CFG_TUH_LOG_LEVEL #endif #define TU_LOG_DRV(...) TU_LOG(CFG_TUH_MIDI_LOG_LEVEL, __VA_ARGS__) //--------------------------------------------------------------------+ // Weak stubs: invoked if no strong implementation is available //--------------------------------------------------------------------+ TU_ATTR_WEAK void tuh_midi_descriptor_cb(uint8_t idx, const tuh_midi_descriptor_cb_t * desc_cb_data) { (void) idx; (void) desc_cb_data; } TU_ATTR_WEAK void tuh_midi_mount_cb(uint8_t idx, const tuh_midi_mount_cb_t* mount_cb_data) { (void) idx; (void) mount_cb_data; } TU_ATTR_WEAK void tuh_midi_umount_cb(uint8_t idx) { (void) idx; } TU_ATTR_WEAK void tuh_midi_rx_cb(uint8_t idx, uint32_t xferred_bytes) { (void) idx; (void) xferred_bytes; } TU_ATTR_WEAK void tuh_midi_tx_cb(uint8_t idx, uint32_t xferred_bytes) { (void) idx; (void) xferred_bytes; } //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ typedef struct { uint8_t daddr; uint8_t bInterfaceNumber; // interface number of MIDI streaming uint8_t iInterface; uint8_t itf_count; // number of interface including Audio Control + MIDI streaming uint8_t ep_in; // IN endpoint address uint8_t ep_out; // OUT endpoint address uint8_t rx_cable_count; // IN endpoint CS descriptor bNumEmbMIDIJack value uint8_t tx_cable_count; // OUT endpoint CS descriptor bNumEmbMIDIJack value #if CFG_TUH_MIDI_STREAM_API // For Stream read()/write() API // Messages are always 4 bytes long, queue them for reading and writing so the // callers can use the Stream interface with single-byte read/write calls. midi_driver_stream_t stream_write; midi_driver_stream_t stream_read; #endif // Endpoint stream struct { tu_edpt_stream_t tx; tu_edpt_stream_t rx; uint8_t rx_ff_buf[CFG_TUH_MIDI_RX_BUFSIZE]; uint8_t tx_ff_buf[CFG_TUH_MIDI_TX_BUFSIZE]; } ep_stream; bool mounted; }midih_interface_t; typedef struct { TUH_EPBUF_DEF(tx, TUH_EPSIZE_BULK_MPS); TUH_EPBUF_DEF(rx, TUH_EPSIZE_BULK_MPS); } midih_epbuf_t; static midih_interface_t _midi_host[CFG_TUH_MIDI]; CFG_TUH_MEM_SECTION static midih_epbuf_t _midi_epbuf[CFG_TUH_MIDI]; //--------------------------------------------------------------------+ // Helper //--------------------------------------------------------------------+ TU_ATTR_ALWAYS_INLINE static inline uint8_t find_new_midi_index(void) { for (uint8_t idx = 0; idx < CFG_TUH_MIDI; idx++) { if (_midi_host[idx].daddr == 0) { return idx; } } return TUSB_INDEX_INVALID_8; } static inline uint8_t get_idx_by_ep_addr(uint8_t daddr, uint8_t ep_addr) { for (uint8_t idx = 0; idx < CFG_TUH_MIDI; idx++) { const midih_interface_t *p_midi = &_midi_host[idx]; if ((p_midi->daddr == daddr) && (ep_addr == p_midi->ep_stream.rx.ep_addr || ep_addr == p_midi->ep_stream.tx.ep_addr)) { return idx; } } return TUSB_INDEX_INVALID_8; } //--------------------------------------------------------------------+ // USBH API //--------------------------------------------------------------------+ bool midih_init(void) { tu_memclr(&_midi_host, sizeof(_midi_host)); for (int inst = 0; inst < CFG_TUH_MIDI; inst++) { midih_interface_t *p_midi_host = &_midi_host[inst]; tu_edpt_stream_init(&p_midi_host->ep_stream.rx, true, false, false, p_midi_host->ep_stream.rx_ff_buf, CFG_TUH_MIDI_RX_BUFSIZE, _midi_epbuf->rx, TUH_EPSIZE_BULK_MPS); tu_edpt_stream_init(&p_midi_host->ep_stream.tx, true, true, false, p_midi_host->ep_stream.tx_ff_buf, CFG_TUH_MIDI_TX_BUFSIZE, _midi_epbuf->tx, TUH_EPSIZE_BULK_MPS); } return true; } bool midih_deinit(void) { for (size_t i = 0; i < CFG_TUH_MIDI; i++) { midih_interface_t* p_midi = &_midi_host[i]; tu_edpt_stream_deinit(&p_midi->ep_stream.rx); tu_edpt_stream_deinit(&p_midi->ep_stream.tx); } return true; } void midih_close(uint8_t daddr) { for (uint8_t idx = 0; idx < CFG_TUH_MIDI; idx++) { midih_interface_t* p_midi = &_midi_host[idx]; if (p_midi->daddr == daddr) { TU_LOG_DRV(" MIDI close addr = %u index = %u\r\n", daddr, idx); tuh_midi_umount_cb(idx); p_midi->ep_in = 0; p_midi->ep_out = 0; p_midi->bInterfaceNumber = 0; p_midi->rx_cable_count = 0; p_midi->tx_cable_count = 0; p_midi->daddr = 0; p_midi->mounted = false; #if CFG_TUH_MIDI_STREAM_API tu_memclr(&p_midi->stream_read, sizeof(p_midi->stream_read)); tu_memclr(&p_midi->stream_write, sizeof(p_midi->stream_write)); #endif tu_edpt_stream_close(&p_midi->ep_stream.rx); tu_edpt_stream_close(&p_midi->ep_stream.tx); } } } bool midih_xfer_cb(uint8_t dev_addr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) { (void) result; const uint8_t idx = get_idx_by_ep_addr(dev_addr, ep_addr); TU_VERIFY(idx < CFG_TUH_MIDI); midih_interface_t *p_midi = &_midi_host[idx]; if (ep_addr == p_midi->ep_stream.rx.ep_addr) { // receive new data, put it into FIFO and invoke callback if available // Note: some devices send back all zero packets even if there is no data ready if (xferred_bytes && !tu_mem_is_zero(p_midi->ep_stream.rx.ep_buf, xferred_bytes)) { tu_edpt_stream_read_xfer_complete(&p_midi->ep_stream.rx, xferred_bytes); tuh_midi_rx_cb(idx, xferred_bytes); } tu_edpt_stream_read_xfer(dev_addr, &p_midi->ep_stream.rx); // prepare for next transfer } else if (ep_addr == p_midi->ep_stream.tx.ep_addr) { tuh_midi_tx_cb(idx, xferred_bytes); if (0 == tu_edpt_stream_write_xfer(dev_addr, &p_midi->ep_stream.tx)) { // If there is no data left, a ZLP should be sent if // xferred_bytes is multiple of EP size and not zero tu_edpt_stream_write_zlp_if_needed(dev_addr, &p_midi->ep_stream.tx, xferred_bytes); } } return true; } //--------------------------------------------------------------------+ // Enumeration //--------------------------------------------------------------------+ bool midih_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_interface_t const *desc_itf, uint16_t max_len) { (void) rhport; TU_VERIFY(TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass); const uint8_t *p_end = ((const uint8_t *) desc_itf) + max_len; const uint8_t *p_desc = (const uint8_t *) desc_itf; const uint8_t idx = find_new_midi_index(); TU_VERIFY(idx < CFG_TUH_MIDI); midih_interface_t *p_midi = &_midi_host[idx]; p_midi->itf_count = 0; tuh_midi_descriptor_cb_t desc_cb = { 0 }; desc_cb.jack_num = 0; // There can be just a MIDI or an Audio + MIDI interface // If there is Audio Control Interface + Audio Header descriptor, then skip it. // If there is an Audio Control Interface + Audio Streaming Interface, then // ignore the Audio Streaming Interface. // Future: // Note that if this driver is used with an USB Audio Streaming host driver, // then call that driver first. If the MIDI interface comes before the // audio streaming interface, then the audio driver will have to call this // driver after parsing the audio control interface and then resume parsing // the streaming audio interface. if (AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass) { TU_VERIFY(max_len > 2*sizeof(tusb_desc_interface_t) + sizeof(audio_desc_cs_ac_interface_t)); p_desc = tu_desc_next(p_desc); TU_VERIFY(tu_desc_type(p_desc) == TUSB_DESC_CS_INTERFACE && tu_desc_subtype(p_desc) == AUDIO_CS_AC_INTERFACE_HEADER); desc_cb.desc_audio_control = desc_itf; p_desc = tu_desc_next(p_desc); desc_itf = (const tusb_desc_interface_t *)p_desc; p_midi->itf_count = 1; // See issue #3159 while ((p_desc < p_end) && (tu_desc_next(p_desc) <= p_end) && (desc_itf->bDescriptorType != TUSB_DESC_INTERFACE || (desc_itf->bInterfaceClass == TUSB_CLASS_AUDIO && desc_itf->bInterfaceSubClass != AUDIO_SUBCLASS_MIDI_STREAMING))) { if (desc_itf->bDescriptorType == TUSB_DESC_INTERFACE && desc_itf->bAlternateSetting == 0) { p_midi->itf_count++; } p_desc = tu_desc_next(p_desc); desc_itf = (tusb_desc_interface_t const *)p_desc; } TU_VERIFY(p_desc < p_end); // If MIDI interface comes after Audio Streaming, then max_len did not include the MIDI interface descriptor TU_VERIFY(TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass); } TU_VERIFY(AUDIO_SUBCLASS_MIDI_STREAMING == desc_itf->bInterfaceSubClass); p_midi->bInterfaceNumber = desc_itf->bInterfaceNumber; p_midi->iInterface = desc_itf->iInterface; p_midi->itf_count++; desc_cb.desc_midi = desc_itf; p_desc = tu_desc_next(p_desc); // next to CS Header bool found_new_interface = false; while ((p_desc < p_end) && (tu_desc_next(p_desc) <= p_end) && !found_new_interface) { switch (tu_desc_type(p_desc)) { case TUSB_DESC_INTERFACE: found_new_interface = true; break; case TUSB_DESC_CS_INTERFACE: switch (tu_desc_subtype(p_desc)) { case MIDI_CS_INTERFACE_HEADER: TU_LOG_DRV(" Interface Header descriptor\r\n"); desc_cb.desc_header = p_desc; break; case MIDI_CS_INTERFACE_IN_JACK: case MIDI_CS_INTERFACE_OUT_JACK: { TU_LOG_DRV(" Jack %s %s descriptor \r\n", tu_desc_subtype(p_desc) == MIDI_CS_INTERFACE_IN_JACK ? "IN" : "OUT", p_desc[3] == MIDI_JACK_EXTERNAL ? "External" : "Embedded"); if (desc_cb.jack_num < TU_ARRAY_SIZE(desc_cb.desc_jack)) { desc_cb.desc_jack[desc_cb.jack_num++] = p_desc; } break; } case MIDI_CS_INTERFACE_ELEMENT: TU_LOG_DRV(" Element descriptor\r\n"); desc_cb.desc_element = p_desc; break; default: TU_LOG_DRV(" Unknown CS Interface sub-type %u\r\n", tu_desc_subtype(p_desc)); break; } break; case TUSB_DESC_ENDPOINT: { const tusb_desc_endpoint_t *p_ep = (const tusb_desc_endpoint_t *) p_desc; p_desc = tu_desc_next(p_desc); // next to CS endpoint TU_VERIFY(p_desc < p_end && tu_desc_next(p_desc) <= p_end); const midi_desc_cs_endpoint_t *p_csep = (const midi_desc_cs_endpoint_t *) p_desc; TU_LOG_DRV(" Endpoint and CS_Endpoint descriptor %02x\r\n", p_ep->bEndpointAddress); if (tu_edpt_dir(p_ep->bEndpointAddress) == TUSB_DIR_OUT) { p_midi->ep_out = p_ep->bEndpointAddress; p_midi->tx_cable_count = p_csep->bNumEmbMIDIJack; desc_cb.desc_epout = p_ep; TU_ASSERT(tuh_edpt_open(dev_addr, p_ep)); tu_edpt_stream_open(&p_midi->ep_stream.tx, p_ep); } else { p_midi->ep_in = p_ep->bEndpointAddress; p_midi->rx_cable_count = p_csep->bNumEmbMIDIJack; desc_cb.desc_epin = p_ep; TU_ASSERT(tuh_edpt_open(dev_addr, p_ep)); tu_edpt_stream_open(&p_midi->ep_stream.rx, p_ep); } break; } default: break; // skip unknown descriptor } p_desc = tu_desc_next(p_desc); } desc_cb.desc_midi_total_len = (uint16_t) ((uintptr_t)p_desc - (uintptr_t) desc_itf); p_midi->daddr = dev_addr; tuh_midi_descriptor_cb(idx, &desc_cb); return true; } bool midih_set_config(uint8_t dev_addr, uint8_t itf_num) { uint8_t idx = tuh_midi_itf_get_index(dev_addr, itf_num); TU_ASSERT(idx < CFG_TUH_MIDI); midih_interface_t *p_midi = &_midi_host[idx]; p_midi->mounted = true; const tuh_midi_mount_cb_t mount_cb_data = { .daddr = dev_addr, .bInterfaceNumber = itf_num, .rx_cable_count = p_midi->rx_cable_count, .tx_cable_count = p_midi->tx_cable_count, }; tuh_midi_mount_cb(idx, &mount_cb_data); tu_edpt_stream_read_xfer(dev_addr, &p_midi->ep_stream.rx); // prepare for incoming data // No special config things to do for MIDI usbh_driver_set_config_complete(dev_addr, p_midi->bInterfaceNumber); return true; } //--------------------------------------------------------------------+ // API //--------------------------------------------------------------------+ bool tuh_midi_mounted(uint8_t idx) { TU_VERIFY(idx < CFG_TUH_MIDI); midih_interface_t *p_midi = &_midi_host[idx]; return p_midi->mounted; } uint8_t tuh_midi_itf_get_index(uint8_t daddr, uint8_t itf_num) { for (uint8_t idx = 0; idx < CFG_TUH_MIDI; idx++) { const midih_interface_t *p_midi = &_midi_host[idx]; if (p_midi->daddr == daddr && (p_midi->bInterfaceNumber == itf_num || p_midi->bInterfaceNumber == (uint8_t) (itf_num + p_midi->itf_count - 1))) { return idx; } } return TUSB_INDEX_INVALID_8; } bool tuh_midi_itf_get_info(uint8_t idx, tuh_itf_info_t* info) { midih_interface_t* p_midi = &_midi_host[idx]; TU_VERIFY(p_midi && info); info->daddr = p_midi->daddr; // re-construct descriptor tusb_desc_interface_t* desc = &info->desc; desc->bLength = sizeof(tusb_desc_interface_t); desc->bDescriptorType = TUSB_DESC_INTERFACE; desc->bInterfaceNumber = p_midi->bInterfaceNumber; desc->bAlternateSetting = 0; desc->bNumEndpoints = (uint8_t)((p_midi->ep_in != 0 ? 1:0) + (p_midi->ep_out != 0 ? 1:0)); desc->bInterfaceClass = TUSB_CLASS_AUDIO; desc->bInterfaceSubClass = AUDIO_SUBCLASS_MIDI_STREAMING; desc->bInterfaceProtocol = 0; desc->iInterface = p_midi->iInterface; return true; } uint8_t tuh_midi_get_tx_cable_count (uint8_t idx) { TU_VERIFY(idx < CFG_TUH_MIDI); midih_interface_t *p_midi = &_midi_host[idx]; TU_VERIFY(p_midi->ep_stream.tx.ep_addr != 0, 0); return p_midi->tx_cable_count; } uint8_t tuh_midi_get_rx_cable_count (uint8_t idx) { TU_VERIFY(idx < CFG_TUH_MIDI); midih_interface_t *p_midi = &_midi_host[idx]; TU_VERIFY(p_midi->ep_stream.rx.ep_addr != 0, 0); return p_midi->rx_cable_count; } uint32_t tuh_midi_read_available(uint8_t idx) { TU_VERIFY(idx < CFG_TUH_MIDI); midih_interface_t *p_midi = &_midi_host[idx]; return tu_edpt_stream_read_available(&p_midi->ep_stream.rx); } uint32_t tuh_midi_write_flush(uint8_t idx) { TU_VERIFY(idx < CFG_TUH_MIDI); midih_interface_t *p_midi = &_midi_host[idx]; return tu_edpt_stream_write_xfer(p_midi->daddr, &p_midi->ep_stream.tx); } //--------------------------------------------------------------------+ // Packet API //--------------------------------------------------------------------+ uint32_t tuh_midi_packet_read_n(uint8_t idx, uint8_t* buffer, uint32_t bufsize) { TU_VERIFY(idx < CFG_TUH_MIDI && buffer && bufsize > 0, 0); midih_interface_t *p_midi = &_midi_host[idx]; uint32_t count4 = tu_min32(bufsize, tu_edpt_stream_read_available(&p_midi->ep_stream.rx)); count4 = tu_align4(count4); // round down to multiple of 4 TU_VERIFY(count4 > 0, 0); return tu_edpt_stream_read(p_midi->daddr, &p_midi->ep_stream.rx, buffer, count4); } uint32_t tuh_midi_packet_write_n(uint8_t idx, const uint8_t* buffer, uint32_t bufsize) { TU_VERIFY(idx < CFG_TUH_MIDI && buffer && bufsize > 0, 0); midih_interface_t *p_midi = &_midi_host[idx]; const uint32_t bufsize4 = tu_align4(bufsize); TU_VERIFY(bufsize4 > 0, 0); return tu_edpt_stream_write(p_midi->daddr, &p_midi->ep_stream.tx, buffer, bufsize4); } //--------------------------------------------------------------------+ // Stream API //--------------------------------------------------------------------+ #if CFG_TUH_MIDI_STREAM_API uint32_t tuh_midi_stream_write(uint8_t idx, uint8_t cable_num, uint8_t const *buffer, uint32_t bufsize) { TU_VERIFY(idx < CFG_TUH_MIDI && buffer && bufsize > 0); midih_interface_t *p_midi = &_midi_host[idx]; TU_VERIFY(cable_num < p_midi->tx_cable_count); midi_driver_stream_t *stream = &p_midi->stream_write; uint32_t byte_count = 0; while ((byte_count < bufsize) && (tu_edpt_stream_write_available(p_midi->daddr, &p_midi->ep_stream.tx) >= 4)) { uint8_t const data = buffer[byte_count]; byte_count++; if (data >= MIDI_STATUS_SYSREAL_TIMING_CLOCK) { // real-time messages need to be sent right away midi_driver_stream_t streamrt; streamrt.buffer[0] = MIDI_CIN_SYSEX_END_1BYTE; streamrt.buffer[1] = data; streamrt.index = 2; streamrt.total = 2; uint32_t const count = tu_edpt_stream_write(p_midi->daddr, &p_midi->ep_stream.tx, streamrt.buffer, 4); TU_ASSERT(count == 4, byte_count); // Check FIFO overflown, since we already check fifo remaining. It is probably race condition } else if (stream->index == 0) { //------------- New event packet -------------// uint8_t const msg = data >> 4; stream->index = 2; stream->buffer[1] = data; // Check to see if we're still in a SysEx transmit. if (stream->buffer[0] == MIDI_CIN_SYSEX_START) { if (data == MIDI_STATUS_SYSEX_END) { stream->buffer[0] = MIDI_CIN_SYSEX_END_1BYTE; stream->total = 2; } else { stream->total = 4; } } else if ((msg >= 0x8 && msg <= 0xB) || msg == 0xE) { // Channel Voice Messages stream->buffer[0] = (uint8_t) ((cable_num << 4) | msg); stream->total = 4; } else if (msg == 0xC || msg == 0xD) { // Channel Voice Messages, two-byte variants (Program Change and Channel Pressure) stream->buffer[0] = (uint8_t) ((cable_num << 4) | msg); stream->total = 3; } else if (msg == 0xf) { // System message if (data == MIDI_STATUS_SYSEX_START) { stream->buffer[0] = MIDI_CIN_SYSEX_START; stream->total = 4; } else if (data == MIDI_STATUS_SYSCOM_TIME_CODE_QUARTER_FRAME || data == MIDI_STATUS_SYSCOM_SONG_SELECT) { stream->buffer[0] = MIDI_CIN_SYSCOM_2BYTE; stream->total = 3; } else if (data == MIDI_STATUS_SYSCOM_SONG_POSITION_POINTER) { stream->buffer[0] = MIDI_CIN_SYSCOM_3BYTE; stream->total = 4; } else { stream->buffer[0] = MIDI_CIN_SYSEX_END_1BYTE; stream->total = 2; } } else { // Pack individual bytes if we don't support packing them into words. stream->buffer[0] = (uint8_t) (cable_num << 4 | 0xf); stream->buffer[2] = 0; stream->buffer[3] = 0; stream->index = 2; stream->total = 2; } } else { //------------- On-going (buffering) packet -------------// TU_ASSERT(stream->index < 4, byte_count); stream->buffer[stream->index] = data; stream->index++; // See if this byte ends a SysEx. if (stream->buffer[0] == MIDI_CIN_SYSEX_START && data == MIDI_STATUS_SYSEX_END) { stream->buffer[0] = MIDI_CIN_SYSEX_START + (stream->index - 1); stream->total = stream->index; } } // Send out packet if (stream->index >= 2 && stream->index == stream->total) { // zeroes unused bytes for (uint8_t i = stream->total; i < 4; i++) { stream->buffer[i] = 0; } TU_LOG3_MEM(stream->buffer, 4, 2); const uint32_t count = tu_edpt_stream_write(p_midi->daddr, &p_midi->ep_stream.tx, stream->buffer, 4); // complete current event packet, reset stream stream->index = 0; stream->total = 0; // FIFO overflown, since we already check fifo remaining. It is probably race condition TU_ASSERT(count == 4, byte_count); } } return byte_count; } uint32_t tuh_midi_stream_read(uint8_t idx, uint8_t *p_cable_num, uint8_t *p_buffer, uint16_t bufsize) { TU_VERIFY(idx < CFG_TUH_MIDI && p_cable_num && p_buffer && bufsize > 0); midih_interface_t *p_midi = &_midi_host[idx]; uint32_t bytes_buffered = 0; uint8_t one_byte; if (!tu_edpt_stream_peek(&p_midi->ep_stream.rx, &one_byte)) { return 0; } *p_cable_num = (one_byte >> 4) & 0xf; uint32_t nread = tu_edpt_stream_read(p_midi->daddr, &p_midi->ep_stream.rx, p_midi->stream_read.buffer, 4); static uint16_t cable_sysex_in_progress;// bit i is set if received MIDI_STATUS_SYSEX_START but not MIDI_STATUS_SYSEX_END while (nread == 4 && bytes_buffered < bufsize) { *p_cable_num = (p_midi->stream_read.buffer[0] >> 4) & 0x0f; uint8_t bytes_to_add_to_stream = 0; if (*p_cable_num < p_midi->rx_cable_count) { // ignore the CIN field; too many devices out there encode this wrong uint8_t status = p_midi->stream_read.buffer[1]; uint16_t cable_mask = (uint16_t) (1 << *p_cable_num); if (status <= MIDI_MAX_DATA_VAL || status == MIDI_STATUS_SYSEX_START) { if (status == MIDI_STATUS_SYSEX_START) { cable_sysex_in_progress |= cable_mask; } // only add the packet if a sysex message is in progress if (cable_sysex_in_progress & cable_mask) { ++bytes_to_add_to_stream; for (uint8_t i = 2; i < 4; i++) { if (p_midi->stream_read.buffer[i] <= MIDI_MAX_DATA_VAL) { ++bytes_to_add_to_stream; } else if (p_midi->stream_read.buffer[i] == MIDI_STATUS_SYSEX_END) { ++bytes_to_add_to_stream; cable_sysex_in_progress &= (uint16_t) ~cable_mask; i = 4;// force the loop to exit; I hate break statements in loops } } } } else if (status < MIDI_STATUS_SYSEX_START) { // then it is a channel message either three bytes or two uint8_t fake_cin = (status & 0xf0) >> 4; switch (fake_cin) { case MIDI_CIN_NOTE_OFF: case MIDI_CIN_NOTE_ON: case MIDI_CIN_POLY_KEYPRESS: case MIDI_CIN_CONTROL_CHANGE: case MIDI_CIN_PITCH_BEND_CHANGE: bytes_to_add_to_stream = 3; break; case MIDI_CIN_PROGRAM_CHANGE: case MIDI_CIN_CHANNEL_PRESSURE: bytes_to_add_to_stream = 2; break; default: break;// Should not get this } cable_sysex_in_progress &= (uint16_t) ~cable_mask; } else if (status < MIDI_STATUS_SYSREAL_TIMING_CLOCK) { switch (status) { case MIDI_STATUS_SYSCOM_TIME_CODE_QUARTER_FRAME: case MIDI_STATUS_SYSCOM_SONG_SELECT: bytes_to_add_to_stream = 2; break; case MIDI_STATUS_SYSCOM_SONG_POSITION_POINTER: bytes_to_add_to_stream = 3; break; case MIDI_STATUS_SYSCOM_TUNE_REQUEST: case MIDI_STATUS_SYSEX_END: bytes_to_add_to_stream = 1; break; default: break; } cable_sysex_in_progress &= (uint16_t) ~cable_mask; } else { // Real-time message: can be inserted into a sysex message, // so do don't clear cable_sysex_in_progress bit bytes_to_add_to_stream = 1; } } for (uint8_t i = 1; i <= bytes_to_add_to_stream; i++) { *p_buffer++ = p_midi->stream_read.buffer[i]; } bytes_buffered += bytes_to_add_to_stream; nread = 0; if (tu_edpt_stream_peek(&p_midi->ep_stream.rx, &one_byte)) { uint8_t new_cable = (one_byte >> 4) & 0xf; if (new_cable == *p_cable_num) { // still on the same cable. Continue reading the stream nread = tu_edpt_stream_read(p_midi->daddr, &p_midi->ep_stream.rx, p_midi->stream_read.buffer, 4); } } } return bytes_buffered; } #endif #endif