/* * The MIT License (MIT) * * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. * Copyright (c) 2021 Ha Thach (tinyusb.org) for Double Buffered * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if CFG_TUSB_MCU == OPT_MCU_RP2040 #include #include "rp2040_usb.h" //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF PROTOTYPE //--------------------------------------------------------------------+ static void _hw_endpoint_xfer_sync(struct hw_endpoint* ep); #if TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX static bool e15_is_bulkin_ep(struct hw_endpoint* ep); static bool e15_is_critical_frame_period(struct hw_endpoint* ep); #else #define e15_is_bulkin_ep(x) (false) #define e15_is_critical_frame_period(x) (false) #endif // if usb hardware is in host mode TU_ATTR_ALWAYS_INLINE static inline bool is_host_mode(void) { return (usb_hw->main_ctrl & USB_MAIN_CTRL_HOST_NDEVICE_BITS) ? true : false; } //--------------------------------------------------------------------+ // Implementation //--------------------------------------------------------------------+ void rp2040_usb_init(void) { // Reset usb controller reset_block(RESETS_RESET_USBCTRL_BITS); unreset_block_wait(RESETS_RESET_USBCTRL_BITS); #ifdef __GNUC__ // Clear any previous state just in case #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Warray-bounds" #if __GNUC__ > 6 #pragma GCC diagnostic ignored "-Wstringop-overflow" #endif #endif memset(usb_hw, 0, sizeof(*usb_hw)); memset(usb_dpram, 0, sizeof(*usb_dpram)); #ifdef __GNUC__ #pragma GCC diagnostic pop #endif // Mux the controller to the onboard usb phy usb_hw->muxing = USB_USB_MUXING_TO_PHY_BITS | USB_USB_MUXING_SOFTCON_BITS; TU_LOG2_INT(sizeof(hw_endpoint_t)); } void __tusb_irq_path_func(hw_endpoint_reset_transfer)(struct hw_endpoint* ep) { ep->active = false; ep->remaining_len = 0; ep->xferred_len = 0; ep->user_buf = 0; } void __tusb_irq_path_func(_hw_endpoint_buffer_control_update32)(struct hw_endpoint* ep, uint32_t and_mask, uint32_t or_mask) { uint32_t value = 0; if (and_mask) { value = *ep->buffer_control & and_mask; } if (or_mask) { value |= or_mask; if (or_mask & USB_BUF_CTRL_AVAIL) { if (*ep->buffer_control & USB_BUF_CTRL_AVAIL) { panic("ep %02X was already available", ep->ep_addr); } *ep->buffer_control = value & ~USB_BUF_CTRL_AVAIL; // 4.1.2.5.1 Con-current access: 12 cycles (should be good for 48*12Mhz = 576Mhz) after write to buffer control // Don't need delay in host mode as host is in charge if ( !is_host_mode()) { busy_wait_at_least_cycles(12); } } } *ep->buffer_control = value; } // prepare buffer, return buffer control static uint32_t __tusb_irq_path_func(prepare_ep_buffer)(struct hw_endpoint* ep, uint8_t buf_id) { uint16_t const buflen = tu_min16(ep->remaining_len, ep->wMaxPacketSize); ep->remaining_len = (uint16_t) (ep->remaining_len - buflen); uint32_t buf_ctrl = buflen | USB_BUF_CTRL_AVAIL; // PID buf_ctrl |= ep->next_pid ? USB_BUF_CTRL_DATA1_PID : USB_BUF_CTRL_DATA0_PID; ep->next_pid ^= 1u; if (!ep->rx) { // Copy data from user buffer to hw buffer memcpy(ep->hw_data_buf + buf_id * 64, ep->user_buf, buflen); ep->user_buf += buflen; // Mark as full buf_ctrl |= USB_BUF_CTRL_FULL; } // Is this the last buffer? Only really matters for host mode. Will trigger // the trans complete irq but also stop it polling. We only really care about // trans complete for setup packets being sent if (ep->remaining_len == 0) { buf_ctrl |= USB_BUF_CTRL_LAST; } if (buf_id) buf_ctrl = buf_ctrl << 16; return buf_ctrl; } // Prepare buffer control register value void __tusb_irq_path_func(hw_endpoint_start_next_buffer)(struct hw_endpoint* ep) { uint32_t ep_ctrl = *ep->endpoint_control; // always compute and start with buffer 0 uint32_t buf_ctrl = prepare_ep_buffer(ep, 0) | USB_BUF_CTRL_SEL; // For now: skip double buffered for OUT endpoint in Device mode, since // host could send < 64 bytes and cause short packet on buffer0 // NOTE: this could happen to Host mode IN endpoint // Also, Host mode "interrupt" endpoint hardware is only single buffered, // NOTE2: Currently Host bulk is implemented using "interrupt" endpoint bool const is_host = is_host_mode(); bool const force_single = (!is_host && !tu_edpt_dir(ep->ep_addr)) || (is_host && tu_edpt_number(ep->ep_addr) != 0); if (ep->remaining_len && !force_single) { // Use buffer 1 (double buffered) if there is still data // TODO: Isochronous for buffer1 bit-field is different than CBI (control bulk, interrupt) buf_ctrl |= prepare_ep_buffer(ep, 1); // Set endpoint control double buffered bit if needed ep_ctrl &= ~EP_CTRL_INTERRUPT_PER_BUFFER; ep_ctrl |= EP_CTRL_DOUBLE_BUFFERED_BITS | EP_CTRL_INTERRUPT_PER_DOUBLE_BUFFER; } else { // Single buffered since 1 is enough ep_ctrl &= ~(EP_CTRL_DOUBLE_BUFFERED_BITS | EP_CTRL_INTERRUPT_PER_DOUBLE_BUFFER); ep_ctrl |= EP_CTRL_INTERRUPT_PER_BUFFER; } *ep->endpoint_control = ep_ctrl; TU_LOG(3, " Prepare BufCtrl: [0] = 0x%04x [1] = 0x%04x\r\n", tu_u32_low16(buf_ctrl), tu_u32_high16(buf_ctrl)); // Finally, write to buffer_control which will trigger the transfer // the next time the controller polls this dpram address _hw_endpoint_buffer_control_set_value32(ep, buf_ctrl); } void hw_endpoint_xfer_start(struct hw_endpoint* ep, uint8_t* buffer, uint16_t total_len) { hw_endpoint_lock_update(ep, 1); if (ep->active) { // TODO: Is this acceptable for interrupt packets? TU_LOG(1, "WARN: starting new transfer on already active ep %02X\r\n", ep->ep_addr); hw_endpoint_reset_transfer(ep); } // Fill in info now that we're kicking off the hw ep->remaining_len = total_len; ep->xferred_len = 0; ep->active = true; ep->user_buf = buffer; if (e15_is_bulkin_ep(ep)) { usb_hw_set->inte = USB_INTS_DEV_SOF_BITS; } if (e15_is_critical_frame_period(ep)) { ep->pending = 1; } else { hw_endpoint_start_next_buffer(ep); } hw_endpoint_lock_update(ep, -1); } // sync endpoint buffer and return transferred bytes static uint16_t __tusb_irq_path_func(sync_ep_buffer)(struct hw_endpoint* ep, uint8_t buf_id) { uint32_t buf_ctrl = _hw_endpoint_buffer_control_get_value32(ep); if (buf_id) buf_ctrl = buf_ctrl >> 16; uint16_t xferred_bytes = buf_ctrl & USB_BUF_CTRL_LEN_MASK; if (!ep->rx) { // We are continuing a transfer here. If we are TX, we have successfully // sent some data can increase the length we have sent assert(!(buf_ctrl & USB_BUF_CTRL_FULL)); ep->xferred_len = (uint16_t) (ep->xferred_len + xferred_bytes); } else { // If we have received some data, so can increase the length // we have received AFTER we have copied it to the user buffer at the appropriate offset assert(buf_ctrl & USB_BUF_CTRL_FULL); memcpy(ep->user_buf, ep->hw_data_buf + buf_id * 64, xferred_bytes); ep->xferred_len = (uint16_t) (ep->xferred_len + xferred_bytes); ep->user_buf += xferred_bytes; } // Short packet if (xferred_bytes < ep->wMaxPacketSize) { pico_trace(" Short packet on buffer %d with %u bytes\r\n", buf_id, xferred_bytes); // Reduce total length as this is last packet ep->remaining_len = 0; } return xferred_bytes; } static void __tusb_irq_path_func(_hw_endpoint_xfer_sync)(struct hw_endpoint* ep) { // Update hw endpoint struct with info from hardware // after a buff status interrupt uint32_t __unused buf_ctrl = _hw_endpoint_buffer_control_get_value32(ep); TU_LOG(3, " Sync BufCtrl: [0] = 0x%04x [1] = 0x%04x\r\n", tu_u32_low16(buf_ctrl), tu_u32_high16(buf_ctrl)); // always sync buffer 0 uint16_t buf0_bytes = sync_ep_buffer(ep, 0); // sync buffer 1 if double buffered if ((*ep->endpoint_control) & EP_CTRL_DOUBLE_BUFFERED_BITS) { if (buf0_bytes == ep->wMaxPacketSize) { // sync buffer 1 if not short packet sync_ep_buffer(ep, 1); } else { // short packet on buffer 0 // TODO couldn't figure out how to handle this case which happen with net_lwip_webserver example // At this time (currently trigger per 2 buffer), the buffer1 is probably filled with data from // the next transfer (not current one). For now we disable double buffered for device OUT // NOTE this could happen to Host IN #if 0 uint8_t const ep_num = tu_edpt_number(ep->ep_addr); uint8_t const dir = (uint8_t) tu_edpt_dir(ep->ep_addr); uint8_t const ep_id = 2*ep_num + (dir ? 0 : 1); // abort queued transfer on buffer 1 usb_hw->abort |= TU_BIT(ep_id); while ( !(usb_hw->abort_done & TU_BIT(ep_id)) ) {} uint32_t ep_ctrl = *ep->endpoint_control; ep_ctrl &= ~(EP_CTRL_DOUBLE_BUFFERED_BITS | EP_CTRL_INTERRUPT_PER_DOUBLE_BUFFER); ep_ctrl |= EP_CTRL_INTERRUPT_PER_BUFFER; _hw_endpoint_buffer_control_set_value32(ep, 0); usb_hw->abort &= ~TU_BIT(ep_id); TU_LOG(3, "----SHORT PACKET buffer0 on EP %02X:\r\n", ep->ep_addr); TU_LOG(3, " BufCtrl: [0] = 0x%04x [1] = 0x%04x\r\n", tu_u32_low16(buf_ctrl), tu_u32_high16(buf_ctrl)); #endif } } } // Returns true if transfer is complete bool __tusb_irq_path_func(hw_endpoint_xfer_continue)(struct hw_endpoint* ep) { hw_endpoint_lock_update(ep, 1); // Part way through a transfer if (!ep->active) { panic("Can't continue xfer on inactive ep %02X", ep->ep_addr); } // Update EP struct from hardware state _hw_endpoint_xfer_sync(ep); // Now we have synced our state with the hardware. Is there more data to transfer? // If we are done then notify tinyusb if (ep->remaining_len == 0) { pico_trace("Completed transfer of %d bytes on ep %02X\r\n", ep->xferred_len, ep->ep_addr); // Notify caller we are done so it can notify the tinyusb stack hw_endpoint_lock_update(ep, -1); return true; } else { if (e15_is_critical_frame_period(ep)) { ep->pending = 1; } else { hw_endpoint_start_next_buffer(ep); } } hw_endpoint_lock_update(ep, -1); // More work to do return false; } //--------------------------------------------------------------------+ // Errata 15 //--------------------------------------------------------------------+ #if TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX /* Don't mark IN buffers as available during the last 200us of a full-speed frame. This avoids a situation seen with the USB2.0 hub on a Raspberry Pi 4 where a late IN token before the next full-speed SOF can cause port babble and a corrupt ACK packet. The nature of the data corruption has a chance to cause device lockup. Use the next SOF to mark delayed buffers as available. This reduces available Bulk IN bandwidth by approximately 20%, and requires that the SOF interrupt is enabled while these transfers are ongoing. Inherit the top-level enable from the corresponding Pico-SDK flag. Applications that will not use the device in a situation where it could be plugged into a Pi 4 or Pi 400 (for example, when directly connected to a commodity hub or other host) can turn off the flag in the SDK. */ volatile uint32_t e15_last_sof = 0; // check if Errata 15 is needed for this endpoint i.e device bulk-in static bool __tusb_irq_path_func(e15_is_bulkin_ep)(struct hw_endpoint* ep) { return (!is_host_mode() && tu_edpt_dir(ep->ep_addr) == TUSB_DIR_IN && ep->transfer_type == TUSB_XFER_BULK); } // check if we need to apply Errata 15 workaround : i.e // Endpoint is BULK IN and is currently in critical frame period i.e 20% of last usb frame static bool __tusb_irq_path_func(e15_is_critical_frame_period)(struct hw_endpoint* ep) { TU_VERIFY(e15_is_bulkin_ep(ep)); /* Avoid the last 200us (uframe 6.5-7) of a frame, up to the EOF2 point. * The device state machine cannot recover from receiving an incorrect PID * when it is expecting an ACK. */ uint32_t delta = time_us_32() - e15_last_sof; if (delta < 800 || delta > 998) { return false; } TU_LOG(3, "Avoiding sof %lu now %lu last %lu\r\n", (usb_hw->sof_rd + 1) & USB_SOF_RD_BITS, time_us_32(), e15_last_sof); return true; } #endif // TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX #endif