/* SPID and SPIX Sections here are maximum possible sizes */ /* If used, they should be adjusted for the external Flash/RAM size */ MEMORY { SPIX (rx) : ORIGIN = 0x08000000, LENGTH = 0x08000000 FLASH (rx) : ORIGIN = 0x10000000, LENGTH = 0x00100000 SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x0008C000 SPID (rw) : ORIGIN = 0x80000000, LENGTH = 512M } /* Sections Definitions */ SECTIONS { .text : { _text = .; KEEP(*(.isr_vector)) *(.text*) /* program code */ *(.rodata*) /* read-only data: "const" */ KEEP(*(.init)) KEEP(*(.fini)) /* .ctors */ *crtbegin.o(.ctors) *crtbegin?.o(.ctors) *(EXCLUDE_FILE(*crtend?.o *crtend.o) .ctors) *(SORT(.ctors.*)) *(.ctors) /* .dtors */ *crtbegin.o(.dtors) *crtbegin?.o(.dtors) *(EXCLUDE_FILE(*crtend?.o *crtend.o) .dtors) *(SORT(.dtors.*)) *(.dtors) /* C++ Exception handling */ KEEP(*(.eh_frame*)) _etext = .; } > FLASH .ARM.extab : { *(.ARM.extab* .gnu.linkonce.armextab.*) } > FLASH /* This section will keep the SPIX data until loaded into the external device */ /* Upon initialization of SPIX (user code needs to do this) */ .xip_section : { KEEP(*(.xip_section*)) } > SPIX AT>FLASH __load_start_xip = LOADADDR(.xip_section); __load_length_xip = SIZEOF(.xip_section); /* it's used for C++ exception handling */ /* we need to keep this to avoid overlapping */ .ARM.exidx : { __exidx_start = .; *(.ARM.exidx* .gnu.linkonce.armexidx.*) __exidx_end = .; } > FLASH .data : { _data = ALIGN(., 4); *(vtable) *(.data*) /*read-write initialized data: initialized global variable*/ *(.spix_config*) /* SPIX configuration functions need to be run from SRAM */ *(.flashprog*) /* Flash program */ /* These array sections are used by __libc_init_array to call static C++ constructors */ . = ALIGN(4); /* preinit data */ PROVIDE_HIDDEN (__preinit_array_start = .); KEEP(*(.preinit_array)) PROVIDE_HIDDEN (__preinit_array_end = .); . = ALIGN(4); /* init data */ PROVIDE_HIDDEN (__init_array_start = .); KEEP(*(SORT(.init_array.*))) KEEP(*(.init_array)) PROVIDE_HIDDEN (__init_array_end = .); . = ALIGN(4); /* finit data */ PROVIDE_HIDDEN (__fini_array_start = .); KEEP(*(SORT(.fini_array.*))) KEEP(*(.fini_array)) PROVIDE_HIDDEN (__fini_array_end = .); _edata = ALIGN(., 4); } > SRAM AT>FLASH __load_data = LOADADDR(.data); .bss : { . = ALIGN(4); _bss = .; *(.bss*) /*read-write zero initialized data: uninitialized global variable*/ *(COMMON) _ebss = ALIGN(., 4); } > SRAM /* Setup the stack for Core 1, it will only be used if the user code * includes a definition of Stack_Size_Core1, which defines the space * reserved above the main core's stack for core 1's stack */ __StackTop_Core1 = ORIGIN(SRAM) + LENGTH(SRAM); __StackLimit_Core1 = DEFINED(Stack_Size_Core1) ? __StackTop_Core1 - Stack_Size_Core1 : __StackTop_Core1; /* Set stack top to end of RAM, and stack limit move down by Stack_Size. * If core 1 is used, set the stack to the bottom of Core 1's stack region */ __StackTop = DEFINED(Stack_Size_Core1) ? __StackLimit_Core1 : ORIGIN(SRAM) + LENGTH(SRAM); __StackLimit = __StackTop - Stack_Size; .heap (COPY): { . = ALIGN(4); PROVIDE ( end = . ); PROVIDE ( _end = . ); *(.heap*) __HeapLimit = ABSOLUTE(__StackLimit); } > SRAM PROVIDE(__stack = __StackTop); /* Check if data + heap + stack(s) exceeds RAM limit */ ASSERT(__StackLimit >= _ebss, "region RAM overflowed with stack") }