/* * The MIT License (MIT) * * Copyright (c) 2020 Koji Kitayama * Portions copyrighted (c) 2021 Roland Winistoerfer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" // Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval) // We disable SOF for now until needed later on #define USE_SOF 0 #if CFG_TUD_ENABLED && (TU_CHECK_MCU(OPT_MCU_RX63X, OPT_MCU_RX65X, OPT_MCU_RX72N) || \ TU_CHECK_MCU(OPT_MCU_RAXXX)) #include "device/dcd.h" #include "rusb2_type.h" #if !defined(CFG_TUSB_RHPORT0_MODE) && !defined(CFG_TUSB_RHPORT1_MODE) // fallback #define CFG_TUSB_RHPORT0_MODE OPT_MODE_DEVICE #define CFG_TUSB_RHPORT1_MODE 0 #endif #if TU_CHECK_MCU(OPT_MCU_RX63X, OPT_MCU_RX65X, OPT_MCU_RX72N) #include "rusb2_rx.h" #elif TU_CHECK_MCU(OPT_MCU_RAXXX) #include "rusb2_ra.h" #if defined(RENESAS_CORTEX_M23) #define D0FIFO CFIFO #define D0FIFOSEL CFIFOSEL #define D0FIFOSEL_b CFIFOSEL_b #define D1FIFOSEL CFIFOSEL #define D1FIFOSEL_b CFIFOSEL_b #define D0FIFOCTR CFIFOCTR #define D0FIFOCTR_b CFIFOCTR_b #endif #else #error "Unsupported MCU" #endif //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM //--------------------------------------------------------------------+ /* LINK core registers */ #if defined(__CCRX__) #define RUSB2 ((RUSB2_REG_t __evenaccess*) RUSB2_REG_BASE) #elif (CFG_TUSB_RHPORT1_MODE & OPT_MODE_DEVICE) #define RUSB2 ((R_USB_HS0_Type*)R_USB_HS0_BASE) #else #define RUSB2 ((R_USB_FS0_Type*)R_USB_FS0_BASE) #endif /* Start of definition of packed structs (used by the CCRX toolchain) */ TU_ATTR_PACKED_BEGIN TU_ATTR_BIT_FIELD_ORDER_BEGIN typedef struct TU_ATTR_PACKED { union { struct { uint16_t : 8; uint16_t TRCLR: 1; uint16_t TRENB: 1; uint16_t : 0; }; uint16_t TRE; }; uint16_t TRN; } reg_pipetre_t; typedef union TU_ATTR_PACKED { struct { volatile uint16_t u8: 8; volatile uint16_t : 0; }; volatile uint16_t u16; } hw_fifo_t; typedef union TU_ATTR_PACKED { struct { volatile uint32_t : 24; volatile uint32_t u8: 8; }; struct { volatile uint32_t : 16; volatile uint32_t u16: 16; }; volatile uint32_t u32; } hw_fifo32_t; typedef struct TU_ATTR_PACKED { void *buf; /* the start address of a transfer data buffer */ uint16_t length; /* the number of bytes in the buffer */ uint16_t remaining; /* the number of bytes remaining in the buffer */ struct { uint32_t ep : 8; /* an assigned endpoint address */ uint32_t ff : 1; /* `buf` is TU_FUFO or POD */ uint32_t : 0; }; } pipe_state_t; TU_ATTR_PACKED_END // End of definition of packed structs (used by the CCRX toolchain) TU_ATTR_BIT_FIELD_ORDER_END typedef struct { pipe_state_t pipe[10]; uint8_t ep[2][16]; /* a lookup table for a pipe index from an endpoint address */ } dcd_data_t; //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ static dcd_data_t _dcd; #ifndef FIRST_BULK_PIPE #define FIRST_BULK_PIPE 3 #endif static unsigned find_pipe(unsigned xfer) { switch (xfer) { case TUSB_XFER_ISOCHRONOUS: for (int i = 1; i <= 2; ++i) { if (0 == _dcd.pipe[i].ep) return i; } break; case TUSB_XFER_BULK: for (int i = FIRST_BULK_PIPE; i <= 5; ++i) { if (0 == _dcd.pipe[i].ep) return i; } for (int i = 1; i <= 1; ++i) { if (0 == _dcd.pipe[i].ep) return i; } break; case TUSB_XFER_INTERRUPT: for (int i = 6; i <= 9; ++i) { if (0 == _dcd.pipe[i].ep) return i; } break; default: /* No support for control transfer */ break; } return 0; } static volatile uint16_t* get_pipectr(unsigned num) { if (num) { return (volatile uint16_t*)&(RUSB2->PIPE_CTR[num - 1]); } else { return (volatile uint16_t*)&(RUSB2->DCPCTR); } } static volatile reg_pipetre_t* get_pipetre(unsigned num) { volatile reg_pipetre_t* tre = NULL; if ((1 <= num) && (num <= 5)) { tre = (volatile reg_pipetre_t*)&(RUSB2->PIPE_TR[num - 1].E); } return tre; } static volatile uint16_t* ep_addr_to_pipectr(uint8_t rhport, unsigned ep_addr) { (void)rhport; const unsigned epn = tu_edpt_number(ep_addr); if (epn) { const unsigned dir = tu_edpt_dir(ep_addr); const unsigned num = _dcd.ep[dir][epn]; return get_pipectr(num); } else { return get_pipectr(0); } } static unsigned edpt0_max_packet_size(void) { return RUSB2->DCPMAXP_b.MXPS; } static unsigned edpt_max_packet_size(unsigned num) { RUSB2->PIPESEL = num; return RUSB2->PIPEMAXP; } static inline void pipe_wait_for_ready(unsigned num) { while (RUSB2->D0FIFOSEL_b.CURPIPE != num) ; while (!RUSB2->D0FIFOCTR_b.FRDY) ; } static void pipe_write_packet(void *buf, volatile void *fifo, unsigned len) { #if (CFG_TUSB_RHPORT1_MODE & OPT_MODE_DEVICE) volatile hw_fifo32_t *reg = (volatile hw_fifo32_t*) fifo; #else volatile hw_fifo_t *reg = (volatile hw_fifo_t*) fifo; #endif uintptr_t addr = (uintptr_t)buf; while (len >= 2) { reg->u16 = *(const uint16_t *)addr; addr += 2; len -= 2; } if (len > 0) { reg->u8 = *(const uint8_t *)addr; ++addr; } } static void pipe_read_packet(void *buf, volatile void *fifo, unsigned len) { uint8_t *p = (uint8_t*)buf; volatile uint8_t *reg = (volatile uint8_t*)fifo; /* byte access is always at base register address */ while (len--) *p++ = *reg; } static void pipe_read_write_packet_ff(tu_fifo_t *f, volatile void *fifo, unsigned len, unsigned dir) { static const struct { void (*tu_fifo_get_info)(tu_fifo_t *f, tu_fifo_buffer_info_t *info); void (*tu_fifo_advance)(tu_fifo_t *f, uint16_t n); void (*pipe_read_write)(void *buf, volatile void *fifo, unsigned len); } ops[] = { /* OUT */ {tu_fifo_get_write_info,tu_fifo_advance_write_pointer,pipe_read_packet}, /* IN */ {tu_fifo_get_read_info, tu_fifo_advance_read_pointer, pipe_write_packet}, }; tu_fifo_buffer_info_t info; ops[dir].tu_fifo_get_info(f, &info); unsigned total_len = len; len = TU_MIN(total_len, info.len_lin); ops[dir].pipe_read_write(info.ptr_lin, fifo, len); unsigned rem = total_len - len; if (rem) { len = TU_MIN(rem, info.len_wrap); ops[dir].pipe_read_write(info.ptr_wrap, fifo, len); rem -= len; } ops[dir].tu_fifo_advance(f, total_len - rem); } static bool pipe0_xfer_in(void) { pipe_state_t *pipe = &_dcd.pipe[0]; const unsigned rem = pipe->remaining; if (!rem) { pipe->buf = NULL; return true; } const unsigned mps = edpt0_max_packet_size(); const unsigned len = TU_MIN(mps, rem); void *buf = pipe->buf; if (len) { if (pipe->ff) { pipe_read_write_packet_ff((tu_fifo_t*)buf, (volatile void*)&RUSB2->CFIFO, len, TUSB_DIR_IN); } else { pipe_write_packet(buf, (volatile void*)&RUSB2->CFIFO, len); pipe->buf = (uint8_t*)buf + len; } } if (len < mps) { RUSB2->CFIFOCTR = RUSB2_CFIFOCTR_BVAL_Msk; } pipe->remaining = rem - len; return false; } static bool pipe0_xfer_out(void) { pipe_state_t *pipe = &_dcd.pipe[0]; const unsigned rem = pipe->remaining; const unsigned mps = edpt0_max_packet_size(); const unsigned vld = RUSB2->CFIFOCTR_b.DTLN; const unsigned len = TU_MIN(TU_MIN(rem, mps), vld); void *buf = pipe->buf; if (len) { if (pipe->ff) { pipe_read_write_packet_ff((tu_fifo_t*)buf, (volatile void*)&RUSB2->CFIFO, len, TUSB_DIR_OUT); } else { pipe_read_packet(buf, (volatile void*)&RUSB2->CFIFO, len); pipe->buf = (uint8_t*)buf + len; } } if (len < mps) { RUSB2->CFIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk; } pipe->remaining = rem - len; if ((len < mps) || (rem == len)) { pipe->buf = NULL; return true; } return false; } static bool pipe_xfer_in(unsigned num) { pipe_state_t *pipe = &_dcd.pipe[num]; const unsigned rem = pipe->remaining; if (!rem) { pipe->buf = NULL; return true; } RUSB2->D0FIFOSEL = num | RUSB2_FIFOSEL_MBW_16BIT | (TU_BYTE_ORDER == TU_BIG_ENDIAN ? RUSB2_FIFOSEL_BIGEND : 0); const unsigned mps = edpt_max_packet_size(num); pipe_wait_for_ready(num); const unsigned len = TU_MIN(rem, mps); void *buf = pipe->buf; if (len) { if (pipe->ff) { pipe_read_write_packet_ff((tu_fifo_t*)buf, (volatile void*)&RUSB2->D0FIFO, len, TUSB_DIR_IN); } else { pipe_write_packet(buf, (volatile void*)&RUSB2->D0FIFO, len); pipe->buf = (uint8_t*)buf + len; } } if (len < mps) { RUSB2->D0FIFOCTR = RUSB2_CFIFOCTR_BVAL_Msk; } RUSB2->D0FIFOSEL = 0; while (RUSB2->D0FIFOSEL_b.CURPIPE) {} /* if CURPIPE bits changes, check written value */ pipe->remaining = rem - len; return false; } static bool pipe_xfer_out(unsigned num) { pipe_state_t *pipe = &_dcd.pipe[num]; const unsigned rem = pipe->remaining; RUSB2->D0FIFOSEL = num | RUSB2_FIFOSEL_MBW_8BIT; const unsigned mps = edpt_max_packet_size(num); pipe_wait_for_ready(num); const unsigned vld = RUSB2->D0FIFOCTR_b.DTLN; const unsigned len = TU_MIN(TU_MIN(rem, mps), vld); void *buf = pipe->buf; if (len) { if (pipe->ff) { pipe_read_write_packet_ff((tu_fifo_t*)buf, (volatile void*)&RUSB2->D0FIFO, len, TUSB_DIR_OUT); } else { pipe_read_packet(buf, (volatile void*)&RUSB2->D0FIFO, len); pipe->buf = (uint8_t*)buf + len; } } if (len < mps) { RUSB2->D0FIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk; } RUSB2->D0FIFOSEL = 0; while (RUSB2->D0FIFOSEL_b.CURPIPE) {} /* if CURPIPE bits changes, check written value */ pipe->remaining = rem - len; if ((len < mps) || (rem == len)) { pipe->buf = NULL; return NULL != buf; } return false; } static void process_setup_packet(uint8_t rhport) { uint16_t setup_packet[4]; if (0 == (RUSB2->INTSTS0 & RUSB2_INTSTS0_VALID_Msk)) return; RUSB2->CFIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk; setup_packet[0] = tu_le16toh(RUSB2->USBREQ); setup_packet[1] = RUSB2->USBVAL; setup_packet[2] = RUSB2->USBINDX; setup_packet[3] = RUSB2->USBLENG; RUSB2->INTSTS0 = ~((uint16_t)RUSB2_INTSTS0_VALID_Msk); dcd_event_setup_received(rhport, (const uint8_t*)&setup_packet[0], true); } static void process_status_completion(uint8_t rhport) { uint8_t ep_addr; /* Check the data stage direction */ if (RUSB2->CFIFOSEL & RUSB2_CFIFOSEL_ISEL_WRITE) { /* IN transfer. */ ep_addr = tu_edpt_addr(0, TUSB_DIR_IN); } else { /* OUT transfer. */ ep_addr = tu_edpt_addr(0, TUSB_DIR_OUT); } dcd_event_xfer_complete(rhport, ep_addr, 0, XFER_RESULT_SUCCESS, true); } static bool process_pipe0_xfer(int buffer_type, uint8_t ep_addr, void* buffer, uint16_t total_bytes) { /* configure fifo direction and access unit settings */ if (ep_addr) { /* IN, 2 bytes */ RUSB2->CFIFOSEL = RUSB2_CFIFOSEL_ISEL_WRITE | RUSB2_FIFOSEL_MBW_16BIT | (TU_BYTE_ORDER == TU_BIG_ENDIAN ? RUSB2_FIFOSEL_BIGEND : 0); while (!(RUSB2->CFIFOSEL & RUSB2_CFIFOSEL_ISEL_WRITE)) ; } else { /* OUT, a byte */ RUSB2->CFIFOSEL = RUSB2_FIFOSEL_MBW_8BIT; while (RUSB2->CFIFOSEL & RUSB2_CFIFOSEL_ISEL_WRITE) ; } pipe_state_t *pipe = &_dcd.pipe[0]; pipe->ff = buffer_type; pipe->length = total_bytes; pipe->remaining = total_bytes; if (total_bytes) { pipe->buf = buffer; if (ep_addr) { /* IN */ TU_ASSERT(RUSB2->DCPCTR_b.BSTS && (RUSB2->USBREQ & 0x80)); pipe0_xfer_in(); } RUSB2->DCPCTR = RUSB2_PIPE_CTR_PID_BUF; } else { /* ZLP */ pipe->buf = NULL; RUSB2->DCPCTR = RUSB2_DCPCTR_CCPL_Msk | RUSB2_PIPE_CTR_PID_BUF; } return true; } static bool process_pipe_xfer(int buffer_type, uint8_t ep_addr, void* buffer, uint16_t total_bytes) { const unsigned epn = tu_edpt_number(ep_addr); const unsigned dir = tu_edpt_dir(ep_addr); const unsigned num = _dcd.ep[dir][epn]; TU_ASSERT(num); pipe_state_t *pipe = &_dcd.pipe[num]; pipe->ff = buffer_type; pipe->buf = buffer; pipe->length = total_bytes; pipe->remaining = total_bytes; if (dir) { /* IN */ if (total_bytes) { pipe_xfer_in(num); } else { /* ZLP */ RUSB2->D0FIFOSEL = num; pipe_wait_for_ready(num); RUSB2->D0FIFOCTR = RUSB2_CFIFOCTR_BVAL_Msk; RUSB2->D0FIFOSEL = 0; while (RUSB2->D0FIFOSEL_b.CURPIPE) ; /* if CURPIPE bits changes, check written value */ } } else { #if defined(__CCRX__) __evenaccess volatile reg_pipetre_t *pt = get_pipetre(num); #else volatile reg_pipetre_t *pt = get_pipetre(num); #endif if (pt) { const unsigned mps = edpt_max_packet_size(num); volatile uint16_t *ctr = get_pipectr(num); if (*ctr & 0x3) *ctr = RUSB2_PIPE_CTR_PID_NAK; pt->TRE = TU_BIT(8); pt->TRN = (total_bytes + mps - 1) / mps; pt->TRENB = 1; *ctr = RUSB2_PIPE_CTR_PID_BUF; } } // TU_LOG1("X %x %d %d\r\n", ep_addr, total_bytes, buffer_type); return true; } static bool process_edpt_xfer(int buffer_type, uint8_t ep_addr, void* buffer, uint16_t total_bytes) { const unsigned epn = tu_edpt_number(ep_addr); if (0 == epn) { return process_pipe0_xfer(buffer_type, ep_addr, buffer, total_bytes); } else { return process_pipe_xfer(buffer_type, ep_addr, buffer, total_bytes); } } static void process_pipe0_bemp(uint8_t rhport) { bool completed = pipe0_xfer_in(); if (completed) { pipe_state_t *pipe = &_dcd.pipe[0]; dcd_event_xfer_complete(rhport, tu_edpt_addr(0, TUSB_DIR_IN), pipe->length, XFER_RESULT_SUCCESS, true); } } static void process_pipe_brdy(uint8_t rhport, unsigned num) { pipe_state_t *pipe = &_dcd.pipe[num]; const unsigned dir = tu_edpt_dir(pipe->ep); bool completed; if (dir) { /* IN */ completed = pipe_xfer_in(num); } else { if (num) { completed = pipe_xfer_out(num); } else { completed = pipe0_xfer_out(); } } if (completed) { dcd_event_xfer_complete(rhport, pipe->ep, pipe->length - pipe->remaining, XFER_RESULT_SUCCESS, true); // TU_LOG1("C %d %d\r\n", num, pipe->length - pipe->remaining); } } static void process_bus_reset(uint8_t rhport) { RUSB2->BEMPENB = 1; RUSB2->BRDYENB = 1; RUSB2->CFIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk; RUSB2->D0FIFOSEL = 0; while (RUSB2->D0FIFOSEL_b.CURPIPE) ; /* if CURPIPE bits changes, check written value */ RUSB2->D1FIFOSEL = 0; while (RUSB2->D1FIFOSEL_b.CURPIPE) ; /* if CURPIPE bits changes, check written value */ volatile uint16_t *ctr = (volatile uint16_t*)((uintptr_t) (&RUSB2->PIPE_CTR[0])); volatile uint16_t *tre = (volatile uint16_t*)((uintptr_t) (&RUSB2->PIPE_TR[0].E)); for (int i = 1; i <= 5; ++i) { RUSB2->PIPESEL = i; RUSB2->PIPECFG = 0; *ctr = RUSB2_PIPE_CTR_ACLRM_Msk; *ctr = 0; ++ctr; *tre = TU_BIT(8); tre += 2; } for (int i = 6; i <= 9; ++i) { RUSB2->PIPESEL = i; RUSB2->PIPECFG = 0; *ctr = RUSB2_PIPE_CTR_ACLRM_Msk; *ctr = 0; ++ctr; } tu_varclr(&_dcd); #if (CFG_TUSB_RHPORT1_MODE & OPT_MODE_DEVICE) dcd_event_bus_reset(rhport, TUSB_SPEED_HIGH, true); #else dcd_event_bus_reset(rhport, TUSB_SPEED_FULL, true); #endif } static void process_set_address(uint8_t rhport) { const uint32_t addr = RUSB2->USBADDR & 0xFF; if (!addr) return; const tusb_control_request_t setup_packet = { #if defined(__CCRX__) .bmRequestType = { 0 }, /* Note: CCRX needs the braces over this struct member */ #else .bmRequestType = 0, #endif .bRequest = TUSB_REQ_SET_ADDRESS, .wValue = addr, .wIndex = 0, .wLength = 0, }; dcd_event_setup_received(rhport, (const uint8_t*)&setup_packet, true); } /*------------------------------------------------------------------*/ /* Device API *------------------------------------------------------------------*/ #if 0 // previously present in the rx driver before generalization static uint32_t disable_interrupt(void) { uint32_t pswi; #if defined(__CCRX__) pswi = get_psw() & 0x010000; clrpsw_i(); #else pswi = __builtin_rx_mvfc(0) & 0x010000; __builtin_rx_clrpsw('I'); #endif return pswi; } static void enable_interrupt(uint32_t pswi) { #if defined(__CCRX__) set_psw(get_psw() | pswi); #else __builtin_rx_mvtc(0, __builtin_rx_mvfc(0) | pswi); #endif } #endif void dcd_init(uint8_t rhport) { (void)rhport; #if (CFG_TUSB_RHPORT1_MODE & OPT_MODE_DEVICE) RUSB2->SYSCFG_b.HSE = 1; RUSB2->PHYSET_b.DIRPD = 0; R_BSP_SoftwareDelay((uint32_t) 1, BSP_DELAY_UNITS_MILLISECONDS); RUSB2->PHYSET_b.PLLRESET = 0; //RUSB2->PHYSET_b.REPSTART = 1; RUSB2->SYSCFG_b.DRPD = 0; RUSB2->SYSCFG_b.USBE = 1; RUSB2->LPSTS_b.SUSPENDM = 1; while (!RUSB2->PLLSTA_b.PLLLOCK); //RUSB2->BUSWAIT |= 0x0F00U; //RUSB2->PHYSET_b.REPSEL = 1; RUSB2->CFIFOSEL_b.MBW = 1; RUSB2->D0FIFOSEL_b.MBW = 1; RUSB2->D1FIFOSEL_b.MBW = 1; RUSB2->INTSTS0 = 0; #else RUSB2->SYSCFG_b.SCKE = 1; while (!RUSB2->SYSCFG_b.SCKE) ; RUSB2->SYSCFG_b.DRPD = 0; RUSB2->SYSCFG_b.DCFM = 0; RUSB2->SYSCFG_b.USBE = 1; #endif // MCU specific PHY init rusb2_phy_init(); #if (CFG_TUSB_RHPORT0_MODE & OPT_MODE_DEVICE) RUSB2->PHYSLEW = 0x5; RUSB2->DPUSR0R_FS_b.FIXPHY0 = 0u; /* USB_BASE Transceiver Output fixed */ #define USB_VDCEN (0x0080U) /* b7: Regulator ON/OFF control */ RUSB2->USBMC = (uint16_t) (RUSB2->USBMC | (USB_VDCEN)); #endif /* Setup default control pipe */ RUSB2->DCPMAXP_b.MXPS = 64; RUSB2->INTENB0 = RUSB2_INTSTS0_VBINT_Msk | RUSB2_INTSTS0_BRDY_Msk | RUSB2_INTSTS0_BEMP_Msk | RUSB2_INTSTS0_DVST_Msk | RUSB2_INTSTS0_CTRT_Msk | (USE_SOF ? RUSB2_INTSTS0_SOFR_Msk : 0) | RUSB2_INTSTS0_RESM_Msk | RUSB2_INTSTS0_NRDY_Msk; RUSB2->BEMPENB = 1; RUSB2->BRDYENB = 1; #if (CFG_TUSB_RHPORT0_MODE & OPT_MODE_DEVICE) RUSB2->SYSCFG_b.DPRPU = 1; /* necessary in this position */ #endif if (RUSB2->INTSTS0_b.VBSTS) { dcd_connect(rhport); } } void dcd_int_enable(uint8_t rhport) { rusb2_int_enable(rhport); } void dcd_int_disable(uint8_t rhport) { rusb2_int_disable(rhport); } void dcd_set_address(uint8_t rhport, uint8_t dev_addr) { (void)rhport; (void)dev_addr; } void dcd_remote_wakeup(uint8_t rhport) { (void)rhport; RUSB2->DVSTCTR0_b.WKUP = 1; } void dcd_connect(uint8_t rhport) { (void)rhport; #if (CFG_TUSB_RHPORT1_MODE & OPT_MODE_DEVICE) RUSB2->SYSCFG_b.CNEN = 1; R_BSP_SoftwareDelay((uint32_t) 10, BSP_DELAY_UNITS_MILLISECONDS); #endif RUSB2->SYSCFG_b.DPRPU = 1; } void dcd_disconnect(uint8_t rhport) { (void)rhport; RUSB2->SYSCFG_b.DPRPU = 0; } void dcd_sof_enable(uint8_t rhport, bool en) { (void) rhport; (void) en; // TODO implement later } //--------------------------------------------------------------------+ // Endpoint API //--------------------------------------------------------------------+ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * ep_desc) { (void)rhport; const unsigned ep_addr = ep_desc->bEndpointAddress; const unsigned epn = tu_edpt_number(ep_addr); const unsigned dir = tu_edpt_dir(ep_addr); const unsigned xfer = ep_desc->bmAttributes.xfer; const unsigned mps = tu_edpt_packet_size(ep_desc); if (xfer == TUSB_XFER_ISOCHRONOUS && mps > 256) { /* USBa supports up to 256 bytes */ return false; } const unsigned num = find_pipe(xfer); if (!num) return false; _dcd.pipe[num].ep = ep_addr; _dcd.ep[dir][epn] = num; /* setup pipe */ dcd_int_disable(rhport); #if (CFG_TUSB_RHPORT1_MODE & OPT_MODE_DEVICE) RUSB2->PIPEBUF = 0x7C08; #endif RUSB2->PIPESEL = num; RUSB2->PIPEMAXP = mps; volatile uint16_t *ctr = get_pipectr(num); *ctr = RUSB2_PIPE_CTR_ACLRM_Msk | RUSB2_PIPE_CTR_SQCLR_Msk; *ctr = 0; unsigned cfg = (dir << 4) | epn; if (xfer == TUSB_XFER_BULK) { cfg |= (RUSB2_PIPECFG_TYPE_BULK | RUSB2_PIPECFG_SHTNAK_Msk | RUSB2_PIPECFG_DBLB_Msk); } else if (xfer == TUSB_XFER_INTERRUPT) { cfg |= RUSB2_PIPECFG_TYPE_INT; } else { cfg |= (RUSB2_PIPECFG_TYPE_ISO | RUSB2_PIPECFG_DBLB_Msk); } RUSB2->PIPECFG = cfg; RUSB2->BRDYSTS = 0x1FFu ^ TU_BIT(num); RUSB2->BRDYENB |= TU_BIT(num); if (dir || (xfer != TUSB_XFER_BULK)) { *ctr = RUSB2_PIPE_CTR_PID_BUF; } // TU_LOG1("O %d %x %x\r\n", RUSB2->PIPESEL, RUSB2->PIPECFG, RUSB2->PIPEMAXP); dcd_int_enable(rhport); return true; } void dcd_edpt_close_all(uint8_t rhport) { unsigned i = TU_ARRAY_SIZE(_dcd.pipe); dcd_int_disable(rhport); while (--i) { /* Close all pipes except 0 */ const unsigned ep_addr = _dcd.pipe[i].ep; if (!ep_addr) continue; dcd_edpt_close(rhport, ep_addr); } dcd_int_enable(rhport); } void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr) { (void)rhport; const unsigned epn = tu_edpt_number(ep_addr); const unsigned dir = tu_edpt_dir(ep_addr); const unsigned num = _dcd.ep[dir][epn]; RUSB2->BRDYENB &= ~TU_BIT(num); volatile uint16_t *ctr = get_pipectr(num); *ctr = 0; RUSB2->PIPESEL = num; RUSB2->PIPECFG = 0; _dcd.pipe[num].ep = 0; _dcd.ep[dir][epn] = 0; } bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) { bool r; dcd_int_disable(rhport); r = process_edpt_xfer(0, ep_addr, buffer, total_bytes); dcd_int_enable(rhport); return r; } bool dcd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes) { // USB buffers always work in bytes so to avoid unnecessary divisions we demand item_size = 1 TU_ASSERT(ff->item_size == 1); bool r; dcd_int_disable(rhport); r = process_edpt_xfer(1, ep_addr, ff, total_bytes); dcd_int_enable(rhport); return r; } void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) { volatile uint16_t *ctr = ep_addr_to_pipectr(rhport, ep_addr); if (!ctr) return; dcd_int_disable(rhport); const uint32_t pid = *ctr & 0x3; *ctr = pid | RUSB2_PIPE_CTR_PID_STALL; *ctr = RUSB2_PIPE_CTR_PID_STALL; dcd_int_enable(rhport); } void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) { volatile uint16_t *ctr = ep_addr_to_pipectr(rhport, ep_addr); if (!ctr) return; dcd_int_disable(rhport); *ctr = RUSB2_PIPE_CTR_SQCLR_Msk; if (tu_edpt_dir(ep_addr)) { /* IN */ *ctr = RUSB2_PIPE_CTR_PID_BUF; } else { const unsigned num = _dcd.ep[0][tu_edpt_number(ep_addr)]; RUSB2->PIPESEL = num; if (RUSB2->PIPECFG_b.TYPE != 1) { *ctr = RUSB2_PIPE_CTR_PID_BUF; } } dcd_int_enable(rhport); } //--------------------------------------------------------------------+ // ISR //--------------------------------------------------------------------+ void dcd_int_handler(uint8_t rhport) { (void)rhport; unsigned is0 = RUSB2->INTSTS0; /* clear active bits except VALID (don't write 0 to already cleared bits according to the HW manual) */ RUSB2->INTSTS0 = ~((RUSB2_INTSTS0_CTRT_Msk | RUSB2_INTSTS0_DVST_Msk | RUSB2_INTSTS0_SOFR_Msk | RUSB2_INTSTS0_RESM_Msk | RUSB2_INTSTS0_VBINT_Msk) & is0) | RUSB2_INTSTS0_VALID_Msk; if (is0 & RUSB2_INTSTS0_VBINT_Msk) { if (RUSB2->INTSTS0_b.VBSTS) { dcd_connect(rhport); } else { dcd_disconnect(rhport); } } if (is0 & RUSB2_INTSTS0_RESM_Msk) { dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true); #if (0==USE_SOF) RUSB2->INTENB0_b.SOFE = 0; #endif } if ((is0 & RUSB2_INTSTS0_SOFR_Msk) && RUSB2->INTENB0_b.SOFE) { // USBD will exit suspended mode when SOF event is received dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true); #if (0 == USE_SOF) RUSB2->INTENB0_b.SOFE = 0; #endif } if (is0 & RUSB2_INTSTS0_DVST_Msk) { switch (is0 & RUSB2_INTSTS0_DVSQ_Msk) { case RUSB2_INTSTS0_DVSQ_STATE_DEF: process_bus_reset(rhport); break; case RUSB2_INTSTS0_DVSQ_STATE_ADDR: process_set_address(rhport); break; case RUSB2_INTSTS0_DVSQ_STATE_SUSP0: case RUSB2_INTSTS0_DVSQ_STATE_SUSP1: case RUSB2_INTSTS0_DVSQ_STATE_SUSP2: case RUSB2_INTSTS0_DVSQ_STATE_SUSP3: dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true); #if (0==USE_SOF) RUSB2->INTENB0_b.SOFE = 1; #endif default: break; } } if (is0 & RUSB2_INTSTS0_NRDY_Msk) { RUSB2->NRDYSTS = 0; } if (is0 & RUSB2_INTSTS0_CTRT_Msk) { if (is0 & RUSB2_INTSTS0_CTSQ_CTRL_RDATA) { /* A setup packet has been received. */ process_setup_packet(rhport); } else if (0 == (is0 & RUSB2_INTSTS0_CTSQ_Msk)) { /* A ZLP has been sent/received. */ process_status_completion(rhport); } } if (is0 & RUSB2_INTSTS0_BEMP_Msk) { const unsigned s = RUSB2->BEMPSTS; RUSB2->BEMPSTS = 0; if (s & 1) { process_pipe0_bemp(rhport); } } if (is0 & RUSB2_INTSTS0_BRDY_Msk) { const unsigned m = RUSB2->BRDYENB; unsigned s = RUSB2->BRDYSTS & m; /* clear active bits (don't write 0 to already cleared bits according to the HW manual) */ RUSB2->BRDYSTS = ~s; while (s) { #if defined(__CCRX__) static const int Mod37BitPosition[] = { -1, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13, 4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9, 5, 20, 8, 19, 18 }; const unsigned num = Mod37BitPosition[(-s & s) % 37]; #else const unsigned num = __builtin_ctz(s); #endif process_pipe_brdy(rhport, num); s &= ~TU_BIT(num); } } } #endif