/* * The MIT License (MIT) * * Copyright (c) 2022 Scott Shawcroft for Adafruit Industries * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ /* This example prints out info about the enumerated devices. */ #include #include #include #include "bsp/board.h" #include "tusb.h" //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF PROTYPES //--------------------------------------------------------------------+ void led_blinking_task(void); static xfer_result_t _get_string_result; static bool _transfer_done_cb(uint8_t daddr, tusb_control_request_t const *request, xfer_result_t result) { (void)daddr; (void)request; _get_string_result = result; return true; } static void _convert_utf16le_to_utf8(const uint16_t *utf16, size_t utf16_len, uint8_t *utf8, size_t utf8_len) { // TODO: Check for runover. (void)utf8_len; // Get the UTF-16 length out of the data itself. for (size_t i = 0; i < utf16_len; i++) { uint16_t chr = utf16[i]; if (chr < 0x80) { *utf8++ = chr & 0xff; } else if (chr < 0x800) { *utf8++ = (uint8_t)(0xC0 | (chr >> 6 & 0x1F)); *utf8++ = (uint8_t)(0x80 | (chr >> 0 & 0x3F)); } else { // TODO: Verify surrogate. *utf8++ = (uint8_t)(0xE0 | (chr >> 12 & 0x0F)); *utf8++ = (uint8_t)(0x80 | (chr >> 6 & 0x3F)); *utf8++ = (uint8_t)(0x80 | (chr >> 0 & 0x3F)); } // TODO: Handle UTF-16 code points that take two entries. } } // Count how many bytes a utf-16-le encoded string will take in utf-8. static int _count_utf8_bytes(const uint16_t *buf, size_t len) { size_t total_bytes = 0; for (size_t i = 0; i < len; i++) { uint16_t chr = buf[i]; if (chr < 0x80) { total_bytes += 1; } else if (chr < 0x800) { total_bytes += 2; } else { total_bytes += 3; } // TODO: Handle UTF-16 code points that take two entries. } return total_bytes; } static void _wait_and_convert(uint16_t *temp_buf, size_t buf_len) { while (_get_string_result == 0xff) { tuh_task(); } if (_get_string_result != XFER_RESULT_SUCCESS) { temp_buf[0] = 0; return; } size_t utf16_len = ((temp_buf[0] & 0xff) - 2) / sizeof(uint16_t); size_t utf8_len = _count_utf8_bytes(temp_buf + 1, utf16_len); _convert_utf16le_to_utf8(temp_buf + 1, utf16_len, (uint8_t *) temp_buf, sizeof(uint16_t) * buf_len); ((uint8_t*) temp_buf)[utf8_len] = '\0'; } /*------------- MAIN -------------*/ int main(void) { board_init(); printf("TinyUSB Host Device Info Example\r\n"); tusb_init(); uint32_t interval_ms = 5000; uint32_t start_time = 0; while (1) { // tinyusb host task tuh_task(); led_blinking_task(); if (board_millis() - start_time < interval_ms) { continue; } start_time = board_millis(); // Brute force check every device address to see if it is active. for (int i = 1; i < CFG_TUH_DEVICE_MAX + CFG_TUH_HUB + 1; i++) { if (!tuh_ready(i)) { continue; } uint16_t vid; uint16_t pid; tuh_vid_pid_get(i, &vid, &pid); printf("%d vid %04x pid %04x\r\n", i, vid, pid); tusb_speed_t speed = tuh_speed_get(i); switch (speed) { case TUSB_SPEED_FULL: printf("Full speed\r\n"); break; case TUSB_SPEED_LOW: printf("Low speed\r\n"); break; case TUSB_SPEED_HIGH: printf("High speed\r\n"); break; default: break; } _get_string_result = 0xff; uint16_t temp_buf[127]; if (tuh_descriptor_string_serial_get(i, 0, temp_buf, TU_ARRAY_SIZE(temp_buf), _transfer_done_cb)) { _wait_and_convert(temp_buf, TU_ARRAY_SIZE(temp_buf)); printf("Serial: %s\r\n", (const char*) temp_buf); } _get_string_result = 0xff; temp_buf[0] = 0; if (tuh_descriptor_string_product_get(i, 0, temp_buf, TU_ARRAY_SIZE(temp_buf), _transfer_done_cb)) { _wait_and_convert(temp_buf, TU_ARRAY_SIZE(temp_buf)); printf("Product: %s\r\n", (const char*) temp_buf); } _get_string_result = 0xff; temp_buf[0] = 0; if (tuh_descriptor_string_manufacturer_get(i, 0, temp_buf, TU_ARRAY_SIZE(temp_buf), _transfer_done_cb)) { _wait_and_convert(temp_buf, TU_ARRAY_SIZE(temp_buf)); printf("Manufacturer: %s\r\n", (const char*) temp_buf); } } printf("\n"); } return 0; } //--------------------------------------------------------------------+ // Blinking Task //--------------------------------------------------------------------+ void led_blinking_task(void) { const uint32_t interval_ms = 1000; static uint32_t start_ms = 0; static bool led_state = false; // Blink every interval ms if ( board_millis() - start_ms < interval_ms) return; // not enough time start_ms += interval_ms; board_led_write(led_state); led_state = 1 - led_state; // toggle }