/**************************************************************************/ /*! @file msc_device.c @author hathach (tinyusb.org) @section LICENSE Software License Agreement (BSD License) Copyright (c) 2013, hathach (tinyusb.org) All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This file is part of the tinyusb stack. */ /**************************************************************************/ #include "tusb_option.h" #if (MODE_DEVICE_SUPPORTED && CFG_TUD_MSC) //--------------------------------------------------------------------+ // INCLUDE //--------------------------------------------------------------------+ #define _TINY_USB_SOURCE_FILE_ #include "common/tusb_common.h" #include "msc_device.h" #include "device/usbd_pvt.h" //--------------------------------------------------------------------+ // Config Verification //--------------------------------------------------------------------+ VERIFY_STATIC(CFG_TUD_MSC_BUFSIZE < UINT16_MAX, "Size is not correct"); #ifndef CFG_TUD_MSC_MAXLUN #define CFG_TUD_MSC_MAXLUN 1 #elif CFG_TUD_MSC_MAXLUN == 0 || CFG_TUD_MSC_MAXLUN > 16 #error MSC Device: Incorrect setting of MAX LUN #endif #ifndef CFG_TUD_MSC_BLOCK_NUM #error CFG_TUD_MSC_BLOCK_NUM must be defined #endif #ifndef CFG_TUD_MSC_BLOCK_SZ #error CFG_TUD_MSC_BLOCK_SZ must be defined #endif #ifndef CFG_TUD_MSC_BUFSIZE #error CFG_TUD_MSC_BUFSIZE must be defined, value of CFG_TUD_MSC_BLOCK_SZ should work well, the more the better #endif //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ enum { MSC_STAGE_CMD = 0, MSC_STAGE_DATA, MSC_STAGE_STATUS }; typedef struct { CFG_TUSB_MEM_ALIGN msc_cbw_t cbw; #if defined (__ICCARM__) && (CFG_TUSB_MCU == OPT_MCU_LPC11UXX || CFG_TUSB_MCU == OPT_MCU_LPC13UXX) uint8_t padding1[64-sizeof(msc_cbw_t)]; // IAR cannot align struct's member #endif CFG_TUSB_MEM_ALIGN msc_csw_t csw; uint8_t itf_num; uint8_t ep_in; uint8_t ep_out; uint8_t stage; uint32_t data_len; uint32_t xferred_len; // numbered of bytes transferred so far in the Data Stage }mscd_interface_t; CFG_TUSB_ATTR_USBRAM CFG_TUSB_MEM_ALIGN static mscd_interface_t _mscd_itf; CFG_TUSB_ATTR_USBRAM CFG_TUSB_MEM_ALIGN static uint8_t _mscd_buf[CFG_TUD_MSC_BUFSIZE]; //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ static void proc_read10_cmd(uint8_t rhport, mscd_interface_t* p_msc); static void proc_write10_cmd(uint8_t rhport, mscd_interface_t* p_msc); static inline uint32_t rdwr10_get_lba(uint8_t const command[]) { // read10 & write10 has the same format scsi_write10_t* p_rdwr10 = (scsi_write10_t*) command; // copy first to prevent mis-aligned access uint32_t lba; memcpy(&lba, &p_rdwr10->lba, 4); return __be2n(lba); } static inline uint16_t rdwr10_get_blockcount(uint8_t const command[]) { // read10 & write10 has the same format scsi_write10_t* p_rdwr10 = (scsi_write10_t*) command; // copy first to prevent mis-aligned access uint16_t block_count; memcpy(&block_count, &p_rdwr10->block_count, 2); return __be2n_16(block_count); } //--------------------------------------------------------------------+ // USBD-CLASS API //--------------------------------------------------------------------+ void mscd_init(void) { memclr_(&_mscd_itf, sizeof(mscd_interface_t)); } void mscd_close(uint8_t rhport) { memclr_(&_mscd_itf, sizeof(mscd_interface_t)); } tusb_error_t mscd_open(uint8_t rhport, tusb_desc_interface_t const * p_desc_itf, uint16_t *p_len) { // only support SCSI's BOT protocol VERIFY( ( MSC_SUBCLASS_SCSI == p_desc_itf->bInterfaceSubClass && MSC_PROTOCOL_BOT == p_desc_itf->bInterfaceProtocol ), TUSB_ERROR_MSC_UNSUPPORTED_PROTOCOL ); mscd_interface_t * p_msc = &_mscd_itf; // Open endpoint pair with usbd helper tusb_desc_endpoint_t const *p_desc_ep = (tusb_desc_endpoint_t const *) descriptor_next( (uint8_t const*) p_desc_itf ); TU_ASSERT_ERR( usbd_open_edpt_pair(rhport, p_desc_ep, TUSB_XFER_BULK, &p_msc->ep_out, &p_msc->ep_in) ); p_msc->itf_num = p_desc_itf->bInterfaceNumber; (*p_len) = sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t); //------------- Queue Endpoint OUT for Command Block Wrapper -------------// TU_ASSERT( dcd_edpt_xfer(rhport, p_msc->ep_out, (uint8_t*) &p_msc->cbw, sizeof(msc_cbw_t)), TUSB_ERROR_DCD_EDPT_XFER ); return TUSB_ERROR_NONE; } tusb_error_t mscd_control_request_st(uint8_t rhport, tusb_control_request_t const * p_request) { OSAL_SUBTASK_BEGIN TU_ASSERT(p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS, TUSB_ERROR_DCD_CONTROL_REQUEST_NOT_SUPPORT); if(MSC_REQUEST_RESET == p_request->bRequest) { dcd_control_status(rhport, p_request->bmRequestType_bit.direction); } else if (MSC_REQUEST_GET_MAX_LUN == p_request->bRequest) { // returned MAX LUN is minus 1 by specs _mscd_buf[0] = CFG_TUD_MSC_MAXLUN-1; usbd_control_xfer_st(rhport, p_request->bmRequestType_bit.direction, _mscd_buf, 1); }else { dcd_control_stall(rhport); // stall unsupported request } OSAL_SUBTASK_END } tusb_error_t mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, tusb_event_t event, uint32_t xferred_bytes) { mscd_interface_t* p_msc = &_mscd_itf; msc_cbw_t const * p_cbw = &p_msc->cbw; msc_csw_t * p_csw = &p_msc->csw; VERIFY( (ep_addr == p_msc->ep_out) || (ep_addr == p_msc->ep_in), TUSB_ERROR_INVALID_PARA); switch (p_msc->stage) { case MSC_STAGE_CMD: //------------- new CBW received -------------// // Complete IN while waiting for CMD is usually Status of previous SCSI op, ignore it if(ep_addr != p_msc->ep_out) return TUSB_ERROR_NONE; TU_ASSERT( event == TUSB_EVENT_XFER_COMPLETE && xferred_bytes == sizeof(msc_cbw_t) && p_cbw->signature == MSC_CBW_SIGNATURE, TUSB_ERROR_INVALID_PARA ); p_csw->signature = MSC_CSW_SIGNATURE; p_csw->tag = p_cbw->tag; p_csw->data_residue = 0; /*------------- Parse command and prepare DATA -------------*/ p_msc->stage = MSC_STAGE_DATA; p_msc->data_len = p_cbw->xfer_bytes; p_msc->xferred_len = 0; if (SCSI_CMD_READ_10 == p_cbw->command[0]) { proc_read10_cmd(rhport, p_msc); } else if (SCSI_CMD_WRITE_10 == p_cbw->command[0]) { proc_write10_cmd(rhport, p_msc); } else { // For other SCSI commands // 1. Zero : Invoke app callback, skip DATA and move to STATUS stage // 2. OUT : queue transfer (invoke app callback after done) // 3. IN : invoke app callback to get response if ( p_cbw->xfer_bytes == 0) { p_msc->data_len = tud_msc_scsi_cb(rhport, p_cbw->lun, p_cbw->command, NULL, 0); p_csw->status = (p_msc->data_len == 0) ? MSC_CSW_STATUS_PASSED : MSC_CSW_STATUS_FAILED; p_msc->stage = MSC_STAGE_STATUS; TU_ASSERT( p_msc->data_len == 0, TUSB_ERROR_INVALID_PARA); } else if ( !BIT_TEST_(p_cbw->dir, 7) ) { // OUT transfer TU_ASSERT( dcd_edpt_xfer(rhport, p_msc->ep_out, _mscd_buf, p_msc->data_len), TUSB_ERROR_DCD_EDPT_XFER ); } else { // IN Transfer int32_t cb_result; if (SCSI_CMD_READ_CAPACITY_10 == p_cbw->command[0]) { scsi_read_capacity10_data_t read_capa10 = { .last_lba = ENDIAN_BE(CFG_TUD_MSC_BLOCK_NUM-1), // read capacity .block_size = ENDIAN_BE(CFG_TUD_MSC_BLOCK_SZ) }; cb_result = sizeof(read_capa10); memcpy(_mscd_buf, &read_capa10, cb_result); } else if (SCSI_CMD_READ_FORMAT_CAPACITY == p_cbw->command[0]) { scsi_read_format_capacity_data_t read_fmt_capa = { .list_length = 8, .block_num = ENDIAN_BE(CFG_TUD_MSC_BLOCK_NUM), // write capacity .descriptor_type = 2, // formatted media .block_size_u16 = ENDIAN_BE16(CFG_TUD_MSC_BLOCK_SZ) }; cb_result = sizeof(read_fmt_capa); memcpy(_mscd_buf, &read_fmt_capa, cb_result); } else { cb_result = tud_msc_scsi_cb(rhport, p_cbw->lun, p_cbw->command, _mscd_buf, p_msc->data_len); } p_csw->status = (cb_result >= 0) ? MSC_CSW_STATUS_PASSED : MSC_CSW_STATUS_FAILED; p_msc->data_len = (uint32_t) cb_result; TU_ASSERT( p_cbw->xfer_bytes >= p_msc->data_len, TUSB_ERROR_INVALID_PARA ); // cannot return more than host expect if ( p_msc->data_len ) { TU_ASSERT( dcd_edpt_xfer(rhport, p_msc->ep_in, _mscd_buf, p_msc->data_len), TUSB_ERROR_DCD_EDPT_XFER ); }else { // application does not provide data to response --> possibly unsupported SCSI command dcd_edpt_stall(rhport, p_msc->ep_in); p_csw->status = MSC_CSW_STATUS_FAILED; p_msc->stage = MSC_STAGE_STATUS; } } } break; case MSC_STAGE_DATA: // OUT transfer, invoke callback if needed if ( !BIT_TEST_(p_cbw->dir, 7) ) { if ( SCSI_CMD_WRITE_10 != p_cbw->command[0] ) { p_csw->status = (tud_msc_scsi_cb(rhport, p_cbw->lun, p_cbw->command, _mscd_buf, p_msc->data_len) >= 0 ) ? MSC_CSW_STATUS_PASSED : MSC_CSW_STATUS_FAILED; } else { uint16_t const block_sz = p_cbw->xfer_bytes / rdwr10_get_blockcount(p_cbw->command); // Adjust lba with transferred bytes uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz); // Application can consume smaller bytes int32_t nbytes = tud_msc_write10_cb(rhport, p_cbw->lun, lba, p_msc->xferred_len % block_sz, _mscd_buf, xferred_bytes); if ( nbytes < 0 ) { // negative means error -> skip to status phase, status in CSW set to failed p_csw->data_residue = p_cbw->xfer_bytes - p_msc->xferred_len; p_csw->status = MSC_CSW_STATUS_FAILED; p_msc->stage = MSC_STAGE_STATUS; break; }else { // Application consume less than what we got (including zero) if ( nbytes < xferred_bytes ) { if ( nbytes > 0 ) { p_msc->xferred_len += nbytes; memmove(_mscd_buf, _mscd_buf+nbytes, xferred_bytes-nbytes); } // simulate an transfer complete with adjusted params dcd_xfer_complete(rhport, p_msc->ep_out, xferred_bytes-nbytes, true); return TUSB_ERROR_NONE; // skip the rest } else { // Application consume all bytes in our buffer // Nothing to do, process with normal flow } } } } // Accumulate data so far p_msc->xferred_len += xferred_bytes; if ( p_msc->xferred_len >= p_msc->data_len ) { // Data Stage is complete p_msc->stage = MSC_STAGE_STATUS; } else { // READ10 & WRITE10 Can be executed with large bulk of data e.g write 8K bytes (several flash write) // We break it into multiple smaller command whose data size is up to CFG_TUD_MSC_BUFSIZE if (SCSI_CMD_READ_10 == p_cbw->command[0]) { proc_read10_cmd(rhport, p_msc); } else if (SCSI_CMD_WRITE_10 == p_cbw->command[0]) { proc_write10_cmd(rhport, p_msc); }else { // No other command take more than one transfer yet -> unlikely error verify_breakpoint(); } } break; case MSC_STAGE_STATUS: break; // processed immediately after this switch default : break; } if ( p_msc->stage == MSC_STAGE_STATUS ) { // Invoke complete callback if defined if ( SCSI_CMD_READ_10 == p_cbw->command[0]) { if ( tud_msc_read10_complete_cb ) tud_msc_read10_complete_cb(rhport, p_cbw->lun); } else if ( SCSI_CMD_WRITE_10 == p_cbw->command[0] ) { if ( tud_msc_write10_complete_cb ) tud_msc_write10_complete_cb(rhport, p_cbw->lun); } else { if ( tud_msc_scsi_complete_cb ) tud_msc_scsi_complete_cb(rhport, p_cbw->lun, p_cbw->command); } // Move to default CMD stage after sending status p_msc->stage = MSC_STAGE_CMD; TU_ASSERT( dcd_edpt_xfer(rhport, p_msc->ep_in , (uint8_t*) &p_msc->csw, sizeof(msc_csw_t)) ); //------------- Queue the next CBW -------------// TU_ASSERT( dcd_edpt_xfer(rhport, p_msc->ep_out, (uint8_t*) &p_msc->cbw, sizeof(msc_cbw_t)) ); } return TUSB_ERROR_NONE; } /*------------------------------------------------------------------*/ /* SCSI Command Process *------------------------------------------------------------------*/ static void proc_read10_cmd(uint8_t rhport, mscd_interface_t* p_msc) { msc_cbw_t const * p_cbw = &p_msc->cbw; msc_csw_t * p_csw = &p_msc->csw; uint16_t const block_sz = p_cbw->xfer_bytes / rdwr10_get_blockcount(p_cbw->command); // Adjust lba with transferred bytes uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz); // remaining bytes capped at class buffer int32_t nbytes = (int32_t) min32_of(sizeof(_mscd_buf), p_cbw->xfer_bytes-p_msc->xferred_len); // Application can consume smaller bytes nbytes = tud_msc_read10_cb (rhport, p_cbw->lun, lba, p_msc->xferred_len % block_sz, _mscd_buf, (uint32_t) nbytes); if ( nbytes < 0 ) { // negative means error -> pipe is stalled & status in CSW set to failed p_csw->data_residue = p_cbw->xfer_bytes - p_msc->xferred_len; p_csw->status = MSC_CSW_STATUS_FAILED; dcd_edpt_stall(rhport, p_msc->ep_in); } else if ( nbytes == 0 ) { // zero means not ready -> try again later by simulate an transfer complete dcd_xfer_complete(rhport, p_msc->ep_in, 0, true); } else { TU_ASSERT( dcd_edpt_xfer(rhport, p_msc->ep_in, _mscd_buf, nbytes), ); } } static void proc_write10_cmd(uint8_t rhport, mscd_interface_t* p_msc) { msc_cbw_t const * p_cbw = &p_msc->cbw; // remaining bytes capped at class buffer int32_t nbytes = (int32_t) min32_of(sizeof(_mscd_buf), p_cbw->xfer_bytes-p_msc->xferred_len); // Write10 callback will be called later when usb transfer complete TU_ASSERT( dcd_edpt_xfer(rhport, p_msc->ep_out, _mscd_buf, nbytes), ); } #endif