/* * The MIT License (MIT) * * Copyright(c) 2016 STMicroelectronics * Copyright(c) N Conrad * Copyright (c) 2024, hathach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #ifndef TUSB_FSDEV_COMMON_H #define TUSB_FSDEV_COMMON_H #ifdef __cplusplus extern "C" { #endif #include "stdint.h" // FSDEV_PMA_SIZE is PMA buffer size in bytes. // On 512-byte devices, access with a stride of two words (use every other 16-bit address) // On 1024-byte devices, access with a stride of one word (use every 16-bit address) // For purposes of accessing the packet #if ((FSDEV_PMA_SIZE) == 512u) #define FSDEV_PMA_STRIDE (2u) #elif ((FSDEV_PMA_SIZE) == 1024u) #define FSDEV_PMA_STRIDE (1u) #endif // The fsdev_bus_t type can be used for both register and PMA access necessities // For type-safety create a new macro for the volatile address of PMAADDR // The compiler should warn us if we cast it to a non-volatile type? #ifdef FSDEV_BUS_32BIT typedef uint32_t fsdev_bus_t; static volatile uint32_t * const pma32 = (volatile uint32_t*)USB_PMAADDR; #else typedef uint16_t fsdev_bus_t; // Volatile is also needed to prevent the optimizer from changing access to 32-bit (as 32-bit access is forbidden) static volatile uint16_t * const pma = (volatile uint16_t*)USB_PMAADDR; TU_ATTR_ALWAYS_INLINE static inline volatile uint16_t * pcd_btable_word_ptr(USB_TypeDef * USBx, size_t x) { size_t total_word_offset = (((USBx)->BTABLE)>>1) + x; total_word_offset *= FSDEV_PMA_STRIDE; return &(pma[total_word_offset]); } TU_ATTR_ALWAYS_INLINE static inline volatile uint16_t* pcd_ep_tx_cnt_ptr(USB_TypeDef * USBx, uint32_t bEpIdx) { return pcd_btable_word_ptr(USBx,(bEpIdx)*4u + 1u); } TU_ATTR_ALWAYS_INLINE static inline volatile uint16_t* pcd_ep_rx_cnt_ptr(USB_TypeDef * USBx, uint32_t bEpIdx) { return pcd_btable_word_ptr(USBx,(bEpIdx)*4u + 3u); } #endif /* Aligned buffer size according to hardware */ TU_ATTR_ALWAYS_INLINE static inline uint16_t pcd_aligned_buffer_size(uint16_t size) { /* The STM32 full speed USB peripheral supports only a limited set of * buffer sizes given by the RX buffer entry format in the USB_BTABLE. */ uint16_t blocksize = (size > 62) ? 32 : 2; // Round up while dividing requested size by blocksize uint16_t numblocks = (size + blocksize - 1) / blocksize ; return numblocks * blocksize; } TU_ATTR_ALWAYS_INLINE static inline void pcd_set_endpoint(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t wRegValue) { #ifdef FSDEV_BUS_32BIT (void) USBx; volatile uint32_t *reg = (volatile uint32_t *)(USB_DRD_BASE + bEpIdx*4); *reg = wRegValue; #else volatile uint16_t *reg = (volatile uint16_t *)((&USBx->EP0R) + bEpIdx*2u); *reg = (uint16_t)wRegValue; #endif } TU_ATTR_ALWAYS_INLINE static inline uint32_t pcd_get_endpoint(USB_TypeDef * USBx, uint32_t bEpIdx) { #ifdef FSDEV_BUS_32BIT (void) USBx; volatile const uint32_t *reg = (volatile const uint32_t *)(USB_DRD_BASE + bEpIdx*4); #else volatile const uint16_t *reg = (volatile const uint16_t *)((&USBx->EP0R) + bEpIdx*2u); #endif return *reg; } TU_ATTR_ALWAYS_INLINE static inline void pcd_set_eptype(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t wType) { uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx); regVal &= (uint32_t)USB_EP_T_MASK; regVal |= wType; regVal |= USB_EP_CTR_RX | USB_EP_CTR_TX; // These clear on write0, so must set high pcd_set_endpoint(USBx, bEpIdx, regVal); } TU_ATTR_ALWAYS_INLINE static inline uint32_t pcd_get_eptype(USB_TypeDef * USBx, uint32_t bEpIdx) { uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx); regVal &= USB_EP_T_FIELD; return regVal; } /** * @brief Clears bit CTR_RX / CTR_TX in the endpoint register. * @param USBx USB peripheral instance register address. * @param bEpIdx Endpoint Number. * @retval None */ TU_ATTR_ALWAYS_INLINE static inline void pcd_clear_rx_ep_ctr(USB_TypeDef * USBx, uint32_t bEpIdx) { uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx); regVal &= USB_EPREG_MASK; regVal &= ~USB_EP_CTR_RX; regVal |= USB_EP_CTR_TX; // preserve CTR_TX (clears on writing 0) pcd_set_endpoint(USBx, bEpIdx, regVal); } TU_ATTR_ALWAYS_INLINE static inline void pcd_clear_tx_ep_ctr(USB_TypeDef * USBx, uint32_t bEpIdx) { uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx); regVal &= USB_EPREG_MASK; regVal &= ~USB_EP_CTR_TX; regVal |= USB_EP_CTR_RX; // preserve CTR_RX (clears on writing 0) pcd_set_endpoint(USBx, bEpIdx,regVal); } /** * @brief gets counter of the tx buffer. * @param USBx USB peripheral instance register address. * @param bEpIdx Endpoint Number. * @retval Counter value */ TU_ATTR_ALWAYS_INLINE static inline uint32_t pcd_get_ep_tx_cnt(USB_TypeDef * USBx, uint32_t bEpIdx) { #ifdef FSDEV_BUS_32BIT (void) USBx; return (pma32[2*bEpIdx] & 0x03FF0000) >> 16; #else volatile const uint16_t *regPtr = pcd_ep_tx_cnt_ptr(USBx, bEpIdx); return *regPtr & 0x3ffU; #endif } TU_ATTR_ALWAYS_INLINE static inline uint32_t pcd_get_ep_rx_cnt(USB_TypeDef * USBx, uint32_t bEpIdx) { #ifdef FSDEV_BUS_32BIT (void) USBx; return (pma32[2*bEpIdx + 1] & 0x03FF0000) >> 16; #else volatile const uint16_t *regPtr = pcd_ep_rx_cnt_ptr(USBx, bEpIdx); return *regPtr & 0x3ffU; #endif } #define pcd_get_ep_dbuf0_cnt pcd_get_ep_tx_cnt #define pcd_get_ep_dbuf1_cnt pcd_get_ep_rx_cnt /** * @brief Sets address in an endpoint register. * @param USBx USB peripheral instance register address. * @param bEpIdx Endpoint Number. * @param bAddr Address. * @retval None */ TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_address(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t bAddr) { uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx); regVal &= USB_EPREG_MASK; regVal |= bAddr; regVal |= USB_EP_CTR_RX|USB_EP_CTR_TX; pcd_set_endpoint(USBx, bEpIdx,regVal); } TU_ATTR_ALWAYS_INLINE static inline uint32_t pcd_get_ep_tx_address(USB_TypeDef * USBx, uint32_t bEpIdx) { #ifdef FSDEV_BUS_32BIT (void) USBx; return pma32[2*bEpIdx] & 0x0000FFFFu ; #else return *pcd_btable_word_ptr(USBx,(bEpIdx)*4u + 0u); #endif } TU_ATTR_ALWAYS_INLINE static inline uint32_t pcd_get_ep_rx_address(USB_TypeDef * USBx, uint32_t bEpIdx) { #ifdef FSDEV_BUS_32BIT (void) USBx; return pma32[2*bEpIdx + 1] & 0x0000FFFFu; #else return *pcd_btable_word_ptr(USBx,(bEpIdx)*4u + 2u); #endif } #define pcd_get_ep_dbuf0_address pcd_get_ep_tx_address #define pcd_get_ep_dbuf1_address pcd_get_ep_rx_address TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_tx_address(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t addr) { #ifdef FSDEV_BUS_32BIT (void) USBx; pma32[2*bEpIdx] = (pma32[2*bEpIdx] & 0xFFFF0000u) | (addr & 0x0000FFFCu); #else *pcd_btable_word_ptr(USBx,(bEpIdx)*4u + 0u) = addr; #endif } TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_rx_address(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t addr) { #ifdef FSDEV_BUS_32BIT (void) USBx; pma32[2*bEpIdx + 1] = (pma32[2*bEpIdx + 1] & 0xFFFF0000u) | (addr & 0x0000FFFCu); #else *pcd_btable_word_ptr(USBx,(bEpIdx)*4u + 2u) = addr; #endif } #define pcd_set_ep_dbuf0_address pcd_set_ep_tx_address #define pcd_set_ep_dbuf1_address pcd_set_ep_rx_address TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_tx_cnt(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t wCount) { #ifdef FSDEV_BUS_32BIT (void) USBx; pma32[2*bEpIdx] = (pma32[2*bEpIdx] & ~0x03FF0000u) | ((wCount & 0x3FFu) << 16); #else volatile uint16_t * reg = pcd_ep_tx_cnt_ptr(USBx, bEpIdx); *reg = (uint16_t) (*reg & (uint16_t) ~0x3FFU) | (wCount & 0x3FFU); #endif } #define pcd_set_ep_tx_dbuf0_cnt pcd_set_ep_tx_cnt TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_tx_dbuf1_cnt(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t wCount) { #ifdef FSDEV_BUS_32BIT (void) USBx; pma32[2*bEpIdx + 1] = (pma32[2*bEpIdx + 1] & ~0x03FF0000u) | ((wCount & 0x3FFu) << 16); #else volatile uint16_t * reg = pcd_ep_rx_cnt_ptr(USBx, bEpIdx); *reg = (uint16_t) (*reg & (uint16_t) ~0x3FFU) | (wCount & 0x3FFU); #endif } TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_blsize_num_blocks(USB_TypeDef * USBx, uint32_t rxtx_idx, uint32_t blocksize, uint32_t numblocks) { /* Encode into register. When BLSIZE==1, we need to subtract 1 block count */ #ifdef FSDEV_BUS_32BIT (void) USBx; pma32[rxtx_idx] = (pma32[rxtx_idx] & 0x0000FFFFu) | (blocksize << 31) | ((numblocks - blocksize) << 26); #else volatile uint16_t *pdwReg = pcd_btable_word_ptr(USBx, rxtx_idx*2u + 1u); *pdwReg = (blocksize << 15) | ((numblocks - blocksize) << 10); #endif } TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_bufsize(USB_TypeDef * USBx, uint32_t rxtx_idx, uint32_t wCount) { wCount = pcd_aligned_buffer_size(wCount); /* We assume that the buffer size is already aligned to hardware requirements. */ uint16_t blocksize = (wCount > 62) ? 1 : 0; uint16_t numblocks = wCount / (blocksize ? 32 : 2); /* There should be no remainder in the above calculation */ TU_ASSERT((wCount - (numblocks * (blocksize ? 32 : 2))) == 0, /**/); /* Encode into register. When BLSIZE==1, we need to subtract 1 block count */ pcd_set_ep_blsize_num_blocks(USBx, rxtx_idx, blocksize, numblocks); } TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_rx_dbuf0_cnt(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t wCount) { pcd_set_ep_bufsize(USBx, 2*bEpIdx, wCount); } TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_rx_cnt(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t wCount) { pcd_set_ep_bufsize(USBx, 2*bEpIdx + 1, wCount); } #define pcd_set_ep_rx_dbuf1_cnt pcd_set_ep_rx_cnt /** * @brief sets the status for tx transfer (bits STAT_TX[1:0]). * @param USBx USB peripheral instance register address. * @param bEpIdx Endpoint Number. * @param wState new state * @retval None */ TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_tx_status(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t wState) { uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx); regVal &= USB_EPTX_DTOGMASK; /* toggle first bit ? */ if((USB_EPTX_DTOG1 & (wState))!= 0U) { regVal ^= USB_EPTX_DTOG1; } /* toggle second bit ? */ if((USB_EPTX_DTOG2 & ((uint32_t)(wState)))!= 0U) { regVal ^= USB_EPTX_DTOG2; } regVal |= USB_EP_CTR_RX|USB_EP_CTR_TX; pcd_set_endpoint(USBx, bEpIdx, regVal); } /** * @brief sets the status for rx transfer (bits STAT_TX[1:0]) * @param USBx USB peripheral instance register address. * @param bEpIdx Endpoint Number. * @param wState new state * @retval None */ TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_rx_status(USB_TypeDef * USBx, uint32_t bEpIdx, uint32_t wState) { uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx); regVal &= USB_EPRX_DTOGMASK; /* toggle first bit ? */ if((USB_EPRX_DTOG1 & wState)!= 0U) { regVal ^= USB_EPRX_DTOG1; } /* toggle second bit ? */ if((USB_EPRX_DTOG2 & wState)!= 0U) { regVal ^= USB_EPRX_DTOG2; } regVal |= USB_EP_CTR_RX|USB_EP_CTR_TX; pcd_set_endpoint(USBx, bEpIdx, regVal); } TU_ATTR_ALWAYS_INLINE static inline uint32_t pcd_get_ep_rx_status(USB_TypeDef * USBx, uint32_t bEpIdx) { uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx); return (regVal & USB_EPRX_STAT) >> (12u); } TU_ATTR_ALWAYS_INLINE static inline void pcd_rx_dtog(USB_TypeDef * USBx, uint32_t bEpIdx) { uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx); regVal &= USB_EPREG_MASK; regVal |= USB_EP_CTR_RX|USB_EP_CTR_TX|USB_EP_DTOG_RX; pcd_set_endpoint(USBx, bEpIdx, regVal); } TU_ATTR_ALWAYS_INLINE static inline void pcd_tx_dtog(USB_TypeDef * USBx, uint32_t bEpIdx) { uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx); regVal &= USB_EPREG_MASK; regVal |= USB_EP_CTR_RX|USB_EP_CTR_TX|USB_EP_DTOG_TX; pcd_set_endpoint(USBx, bEpIdx, regVal); } TU_ATTR_ALWAYS_INLINE static inline void pcd_clear_rx_dtog(USB_TypeDef * USBx, uint32_t bEpIdx) { uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx); if((regVal & USB_EP_DTOG_RX) != 0) { pcd_rx_dtog(USBx,bEpIdx); } } TU_ATTR_ALWAYS_INLINE static inline void pcd_clear_tx_dtog(USB_TypeDef * USBx, uint32_t bEpIdx) { uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx); if((regVal & USB_EP_DTOG_TX) != 0) { pcd_tx_dtog(USBx,bEpIdx); } } TU_ATTR_ALWAYS_INLINE static inline void pcd_set_ep_kind(USB_TypeDef * USBx, uint32_t bEpIdx) { uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx); regVal |= USB_EP_KIND; regVal &= USB_EPREG_MASK; regVal |= USB_EP_CTR_RX|USB_EP_CTR_TX; pcd_set_endpoint(USBx, bEpIdx, regVal); } TU_ATTR_ALWAYS_INLINE static inline void pcd_clear_ep_kind(USB_TypeDef * USBx, uint32_t bEpIdx) { uint32_t regVal = pcd_get_endpoint(USBx, bEpIdx); regVal &= USB_EPKIND_MASK; regVal |= USB_EP_CTR_RX|USB_EP_CTR_TX; pcd_set_endpoint(USBx, bEpIdx, regVal); } #ifdef __cplusplus } #endif #endif