/* * The MIT License (MIT) * * Copyright (c) 2020 Jerzy Kasenberg * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include #include #include "bsp/board_api.h" #include "common_types.h" #include "tusb.h" #include "usb_descriptors.h" #ifdef CFG_QUIRK_OS_GUESSING #include "quirk_os_guessing.h" #endif //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF PROTOTYPES //--------------------------------------------------------------------+ // List of supported sample rates #if defined(__RX__) const uint32_t sample_rates[] = {44100, 48000}; #else const uint32_t sample_rates[] = {44100, 48000, 88200, 96000}; #endif uint32_t current_sample_rate = 44100; #define N_SAMPLE_RATES TU_ARRAY_SIZE(sample_rates) /* Blink pattern * - 25 ms : streaming data * - 250 ms : device not mounted * - 1000 ms : device mounted * - 2500 ms : device is suspended */ enum { BLINK_STREAMING = 25, BLINK_NOT_MOUNTED = 250, BLINK_MOUNTED = 1000, BLINK_SUSPENDED = 2500, }; enum { VOLUME_CTRL_0_DB = 0, VOLUME_CTRL_10_DB = 2560, VOLUME_CTRL_20_DB = 5120, VOLUME_CTRL_30_DB = 7680, VOLUME_CTRL_40_DB = 10240, VOLUME_CTRL_50_DB = 12800, VOLUME_CTRL_60_DB = 15360, VOLUME_CTRL_70_DB = 17920, VOLUME_CTRL_80_DB = 20480, VOLUME_CTRL_90_DB = 23040, VOLUME_CTRL_100_DB = 25600, VOLUME_CTRL_SILENCE = 0x8000, }; static uint32_t blink_interval_ms = BLINK_NOT_MOUNTED; // Audio controls // Current states int8_t mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1]; // +1 for master channel 0 int16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1];// +1 for master channel 0 // Buffer for speaker data uint16_t i2s_dummy_buffer[CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ / 2]; void led_blinking_task(void); void audio_task(void); #if CFG_AUDIO_DEBUG void audio_debug_task(void); uint8_t current_alt_settings; volatile uint16_t fifo_count; volatile uint32_t fifo_count_avg; #endif /*------------- MAIN -------------*/ int main(void) { board_init(); // init device stack on configured roothub port tusb_rhport_init_t dev_init = { .role = TUSB_ROLE_DEVICE, .speed = TUSB_SPEED_AUTO}; tusb_init(BOARD_TUD_RHPORT, &dev_init); if (board_init_after_tusb) { board_init_after_tusb(); } TU_LOG1("Speaker running\r\n"); while (1) { tud_task();// TinyUSB device task led_blinking_task(); #if CFG_AUDIO_DEBUG audio_debug_task(); #endif audio_task(); } } //--------------------------------------------------------------------+ // Device callbacks //--------------------------------------------------------------------+ // Invoked when device is mounted void tud_mount_cb(void) { blink_interval_ms = BLINK_MOUNTED; } // Invoked when device is unmounted void tud_umount_cb(void) { blink_interval_ms = BLINK_NOT_MOUNTED; } // Invoked when usb bus is suspended // remote_wakeup_en : if host allow us to perform remote wakeup // Within 7ms, device must draw an average of current less than 2.5 mA from bus void tud_suspend_cb(bool remote_wakeup_en) { (void) remote_wakeup_en; blink_interval_ms = BLINK_SUSPENDED; } // Invoked when usb bus is resumed void tud_resume_cb(void) { blink_interval_ms = tud_mounted() ? BLINK_MOUNTED : BLINK_NOT_MOUNTED; } //--------------------------------------------------------------------+ // Application Callback API Implementations //--------------------------------------------------------------------+ // Helper for clock get requests static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t const *request) { TU_ASSERT(request->bEntityID == UAC2_ENTITY_CLOCK); if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ) { if (request->bRequest == AUDIO_CS_REQ_CUR) { TU_LOG1("Clock get current freq %lu\r\n", current_sample_rate); audio_control_cur_4_t curf = {(int32_t) tu_htole32(current_sample_rate)}; return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &curf, sizeof(curf)); } else if (request->bRequest == AUDIO_CS_REQ_RANGE) { audio_control_range_4_n_t(N_SAMPLE_RATES) rangef = { .wNumSubRanges = tu_htole16(N_SAMPLE_RATES)}; TU_LOG1("Clock get %d freq ranges\r\n", N_SAMPLE_RATES); for (uint8_t i = 0; i < N_SAMPLE_RATES; i++) { rangef.subrange[i].bMin = (int32_t) sample_rates[i]; rangef.subrange[i].bMax = (int32_t) sample_rates[i]; rangef.subrange[i].bRes = 0; TU_LOG1("Range %d (%d, %d, %d)\r\n", i, (int) rangef.subrange[i].bMin, (int) rangef.subrange[i].bMax, (int) rangef.subrange[i].bRes); } return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &rangef, sizeof(rangef)); } } else if (request->bControlSelector == AUDIO_CS_CTRL_CLK_VALID && request->bRequest == AUDIO_CS_REQ_CUR) { audio_control_cur_1_t cur_valid = {.bCur = 1}; TU_LOG1("Clock get is valid %u\r\n", cur_valid.bCur); return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &cur_valid, sizeof(cur_valid)); } TU_LOG1("Clock get request not supported, entity = %u, selector = %u, request = %u\r\n", request->bEntityID, request->bControlSelector, request->bRequest); return false; } // Helper for clock set requests static bool tud_audio_clock_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf) { (void) rhport; TU_ASSERT(request->bEntityID == UAC2_ENTITY_CLOCK); TU_VERIFY(request->bRequest == AUDIO_CS_REQ_CUR); if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ) { TU_VERIFY(request->wLength == sizeof(audio_control_cur_4_t)); current_sample_rate = (uint32_t) ((audio_control_cur_4_t const *) buf)->bCur; TU_LOG1("Clock set current freq: %ld\r\n", current_sample_rate); return true; } else { TU_LOG1("Clock set request not supported, entity = %u, selector = %u, request = %u\r\n", request->bEntityID, request->bControlSelector, request->bRequest); return false; } } // Helper for feature unit get requests static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_request_t const *request) { TU_ASSERT(request->bEntityID == UAC2_ENTITY_FEATURE_UNIT); if (request->bControlSelector == AUDIO_FU_CTRL_MUTE && request->bRequest == AUDIO_CS_REQ_CUR) { audio_control_cur_1_t mute1 = {.bCur = mute[request->bChannelNumber]}; TU_LOG1("Get channel %u mute %d\r\n", request->bChannelNumber, mute1.bCur); return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &mute1, sizeof(mute1)); } else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME) { if (request->bRequest == AUDIO_CS_REQ_RANGE) { audio_control_range_2_n_t(1) range_vol = { .wNumSubRanges = tu_htole16(1), .subrange[0] = {.bMin = tu_htole16(-VOLUME_CTRL_50_DB), tu_htole16(VOLUME_CTRL_0_DB), tu_htole16(256)}}; TU_LOG1("Get channel %u volume range (%d, %d, %u) dB\r\n", request->bChannelNumber, range_vol.subrange[0].bMin / 256, range_vol.subrange[0].bMax / 256, range_vol.subrange[0].bRes / 256); return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &range_vol, sizeof(range_vol)); } else if (request->bRequest == AUDIO_CS_REQ_CUR) { audio_control_cur_2_t cur_vol = {.bCur = tu_htole16(volume[request->bChannelNumber])}; TU_LOG1("Get channel %u volume %d dB\r\n", request->bChannelNumber, cur_vol.bCur / 256); return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *) request, &cur_vol, sizeof(cur_vol)); } } TU_LOG1("Feature unit get request not supported, entity = %u, selector = %u, request = %u\r\n", request->bEntityID, request->bControlSelector, request->bRequest); return false; } // Helper for feature unit set requests static bool tud_audio_feature_unit_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf) { (void) rhport; TU_ASSERT(request->bEntityID == UAC2_ENTITY_FEATURE_UNIT); TU_VERIFY(request->bRequest == AUDIO_CS_REQ_CUR); if (request->bControlSelector == AUDIO_FU_CTRL_MUTE) { TU_VERIFY(request->wLength == sizeof(audio_control_cur_1_t)); mute[request->bChannelNumber] = ((audio_control_cur_1_t const *) buf)->bCur; TU_LOG1("Set channel %d Mute: %d\r\n", request->bChannelNumber, mute[request->bChannelNumber]); return true; } else if (request->bControlSelector == AUDIO_FU_CTRL_VOLUME) { TU_VERIFY(request->wLength == sizeof(audio_control_cur_2_t)); volume[request->bChannelNumber] = ((audio_control_cur_2_t const *) buf)->bCur; TU_LOG1("Set channel %d volume: %d dB\r\n", request->bChannelNumber, volume[request->bChannelNumber] / 256); return true; } else { TU_LOG1("Feature unit set request not supported, entity = %u, selector = %u, request = %u\r\n", request->bEntityID, request->bControlSelector, request->bRequest); return false; } } // Invoked when audio class specific get request received for an entity bool tud_audio_get_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request) { audio_control_request_t const *request = (audio_control_request_t const *) p_request; if (request->bEntityID == UAC2_ENTITY_CLOCK) return tud_audio_clock_get_request(rhport, request); if (request->bEntityID == UAC2_ENTITY_FEATURE_UNIT) return tud_audio_feature_unit_get_request(rhport, request); else { TU_LOG1("Get request not handled, entity = %d, selector = %d, request = %d\r\n", request->bEntityID, request->bControlSelector, request->bRequest); } return false; } // Invoked when audio class specific set request received for an entity bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p_request, uint8_t *buf) { audio_control_request_t const *request = (audio_control_request_t const *) p_request; if (request->bEntityID == UAC2_ENTITY_FEATURE_UNIT) return tud_audio_feature_unit_set_request(rhport, request, buf); if (request->bEntityID == UAC2_ENTITY_CLOCK) return tud_audio_clock_set_request(rhport, request, buf); TU_LOG1("Set request not handled, entity = %d, selector = %d, request = %d\r\n", request->bEntityID, request->bControlSelector, request->bRequest); return false; } bool tud_audio_set_itf_close_EP_cb(uint8_t rhport, tusb_control_request_t const *p_request) { (void) rhport; uint8_t const itf = tu_u16_low(tu_le16toh(p_request->wIndex)); uint8_t const alt = tu_u16_low(tu_le16toh(p_request->wValue)); if (ITF_NUM_AUDIO_STREAMING == itf && alt == 0) blink_interval_ms = BLINK_MOUNTED; return true; } bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const *p_request) { (void) rhport; uint8_t const itf = tu_u16_low(tu_le16toh(p_request->wIndex)); uint8_t const alt = tu_u16_low(tu_le16toh(p_request->wValue)); TU_LOG2("Set interface %d alt %d\r\n", itf, alt); if (ITF_NUM_AUDIO_STREAMING == itf && alt != 0) blink_interval_ms = BLINK_STREAMING; #if CFG_AUDIO_DEBUG current_alt_settings = alt; #endif return true; } void tud_audio_feedback_params_cb(uint8_t func_id, uint8_t alt_itf, audio_feedback_params_t *feedback_param) { (void) func_id; (void) alt_itf; // Set feedback method to fifo counting feedback_param->method = AUDIO_FEEDBACK_METHOD_FIFO_COUNT; feedback_param->sample_freq = current_sample_rate; } #if CFG_AUDIO_DEBUG bool tud_audio_rx_done_isr(uint8_t rhport, uint16_t n_bytes_received, uint8_t func_id, uint8_t ep_out, uint8_t cur_alt_setting) { (void) rhport; (void) n_bytes_received; (void) func_id; (void) ep_out; (void) cur_alt_setting; fifo_count = tud_audio_available(); // Same averaging method used in UAC2 class fifo_count_avg = (uint32_t) (((uint64_t) fifo_count_avg * 63 + ((uint32_t) fifo_count << 16)) >> 6); return true; } #endif #if CFG_QUIRK_OS_GUESSING bool tud_audio_feedback_format_correction_cb(uint8_t func_id) { (void) func_id; if (tud_speed_get() == TUSB_SPEED_FULL && quirk_os_guessing_get() == QUIRK_OS_GUESSING_OSX) { return true; } else { return false; } } #endif //--------------------------------------------------------------------+ // AUDIO Task //--------------------------------------------------------------------+ // This task simulates an audio transmit callback, one frame is sent every 1ms. // In a real application, this would be replaced with actual I2S transmit callback. void audio_task(void) { static uint32_t start_ms = 0; uint32_t curr_ms = board_millis(); if (start_ms == curr_ms) return;// not enough time start_ms = curr_ms; uint16_t length = (uint16_t) (current_sample_rate / 1000 * CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_RX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX); if (current_sample_rate == 44100 && (curr_ms % 10 == 0)) { // Take one more sample every 10 cycles, to have a average reading speed of 44.1 // This correction is not needed in real world cases length += CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_RX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX; } else if (current_sample_rate == 88200 && (curr_ms % 5 == 0)) { // Take one more sample every 5 cycles, to have a average reading speed of 88.2 // This correction is not needed in real world cases length += CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_RX * CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX; } tud_audio_read(i2s_dummy_buffer, length); } //--------------------------------------------------------------------+ // BLINKING TASK //--------------------------------------------------------------------+ void led_blinking_task(void) { static uint32_t start_ms = 0; static bool led_state = false; // Blink every interval ms if (board_millis() - start_ms < blink_interval_ms) return; start_ms += blink_interval_ms; board_led_write(led_state); led_state = 1 - led_state; } #if CFG_AUDIO_DEBUG //--------------------------------------------------------------------+ // HID interface for audio debug //--------------------------------------------------------------------+ // Every 1ms, we will sent 1 debug information report void audio_debug_task(void) { static uint32_t start_ms = 0; uint32_t curr_ms = board_millis(); if (start_ms == curr_ms) return;// not enough time start_ms = curr_ms; audio_debug_info_t debug_info; debug_info.sample_rate = current_sample_rate; debug_info.alt_settings = current_alt_settings; debug_info.fifo_size = CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ; debug_info.fifo_count = fifo_count; debug_info.fifo_count_avg = (uint16_t) (fifo_count_avg >> 16); for (int i = 0; i < CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX + 1; i++) { debug_info.mute[i] = mute[i]; debug_info.volume[i] = volume[i]; } if (tud_hid_ready()) tud_hid_report(0, &debug_info, sizeof(debug_info)); } // Invoked when received GET_REPORT control request // Unused here uint16_t tud_hid_get_report_cb(uint8_t itf, uint8_t report_id, hid_report_type_t report_type, uint8_t *buffer, uint16_t reqlen) { // TODO not Implemented (void) itf; (void) report_id; (void) report_type; (void) buffer; (void) reqlen; return 0; } // Invoked when received SET_REPORT control request or // Unused here void tud_hid_set_report_cb(uint8_t itf, uint8_t report_id, hid_report_type_t report_type, uint8_t const *buffer, uint16_t bufsize) { // This example doesn't use multiple report and report ID (void) itf; (void) report_id; (void) report_type; (void) buffer; (void) bufsize; } #endif