/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if CFG_TUH_ENABLED #include "hcd.h" #include "tusb.h" #include "usbh_pvt.h" #include "hub.h" //--------------------------------------------------------------------+ // Configuration //--------------------------------------------------------------------+ #ifndef CFG_TUH_TASK_QUEUE_SZ #define CFG_TUH_TASK_QUEUE_SZ 16 #endif #ifndef CFG_TUH_INTERFACE_MAX #define CFG_TUH_INTERFACE_MAX 8 #endif enum { USBH_CONTROL_RETRY_MAX = 3, }; //--------------------------------------------------------------------+ // Weak stubs: invoked if no strong implementation is available //--------------------------------------------------------------------+ TU_ATTR_WEAK bool hcd_deinit(uint8_t rhport) { (void) rhport; return false; } TU_ATTR_WEAK bool hcd_configure(uint8_t rhport, uint32_t cfg_id, const void* cfg_param) { (void) rhport; (void) cfg_id; (void) cfg_param; return false; } TU_ATTR_WEAK void tuh_enum_descriptor_device_cb(uint8_t daddr, const tusb_desc_device_t *desc_device) { (void) daddr; (void) desc_device; } TU_ATTR_WEAK bool tuh_enum_descriptor_configuration_cb(uint8_t daddr, uint8_t cfg_index, const tusb_desc_configuration_t *desc_config) { (void) daddr; (void) cfg_index; (void) desc_config; return true; } TU_ATTR_WEAK void tuh_event_hook_cb(uint8_t rhport, uint32_t eventid, bool in_isr) { (void) rhport; (void) eventid; (void) in_isr; } TU_ATTR_WEAK bool hcd_dcache_clean(const void* addr, uint32_t data_size) { (void) addr; (void) data_size; return false; } TU_ATTR_WEAK bool hcd_dcache_invalidate(const void* addr, uint32_t data_size) { (void) addr; (void) data_size; return false; } TU_ATTR_WEAK bool hcd_dcache_clean_invalidate(const void* addr, uint32_t data_size) { (void) addr; (void) data_size; return false; } //--------------------------------------------------------------------+ // Data Structure //--------------------------------------------------------------------+ typedef struct { tuh_bus_info_t bus_info; // Device Descriptor uint16_t bcdUSB; uint8_t bDeviceClass; uint8_t bDeviceSubClass; uint8_t bDeviceProtocol; uint8_t bMaxPacketSize0; uint16_t idVendor; uint16_t idProduct; uint16_t bcdDevice; uint8_t iManufacturer; uint8_t iProduct; uint8_t iSerialNumber; uint8_t bNumConfigurations; // Device State struct TU_ATTR_PACKED { volatile uint8_t connected : 1; // After 1st transfer volatile uint8_t addressed : 1; // After SET_ADDR volatile uint8_t configured : 1; // After SET_CONFIG and all drivers are configured volatile uint8_t suspended : 1; // Bus suspended // volatile uint8_t removing : 1; // Physically disconnected, waiting to be processed by usbh }; // Endpoint & Interface uint8_t itf2drv[CFG_TUH_INTERFACE_MAX]; // map interface number to driver (0xff is invalid) uint8_t ep2drv[CFG_TUH_ENDPOINT_MAX][2]; // map endpoint to driver ( 0xff is invalid ), can use only 4-bit each tu_edpt_state_t ep_status[CFG_TUH_ENDPOINT_MAX][2]; #if CFG_TUH_API_EDPT_XFER // TODO array can be CFG_TUH_ENDPOINT_MAX-1 struct { tuh_xfer_cb_t complete_cb; uintptr_t user_data; }ep_callback[CFG_TUH_ENDPOINT_MAX][2]; #endif } usbh_device_t; // sum of end device + hub #define TOTAL_DEVICES (CFG_TUH_DEVICE_MAX + CFG_TUH_HUB) // all devices excluding zero-address // hub address start from CFG_TUH_DEVICE_MAX+1 // TODO: hub can has its own simpler struct to save memory static usbh_device_t _usbh_devices[TOTAL_DEVICES]; // Mutex for claiming endpoint #if OSAL_MUTEX_REQUIRED static osal_mutex_def_t _usbh_mutexdef; static osal_mutex_t _usbh_mutex; #else #define _usbh_mutex NULL #endif // Spinlock for interrupt handler static OSAL_SPINLOCK_DEF(_usbh_spin, usbh_int_set); // Event queue: usbh_int_set() is used as mutex in OS NONE config OSAL_QUEUE_DEF(usbh_int_set, _usbh_qdef, CFG_TUH_TASK_QUEUE_SZ, hcd_event_t); static osal_queue_t _usbh_q; // Control transfers: since most controllers do not support multiple control transfers // on multiple devices concurrently and control transfers are not used much except for // enumeration, we will only execute control transfers one at a time. typedef struct { uint8_t* buffer; tuh_xfer_cb_t complete_cb; uintptr_t user_data; volatile uint8_t stage; uint8_t daddr; volatile uint16_t actual_len; uint8_t failed_count; } usbh_ctrl_xfer_info_t; typedef struct { uint8_t controller_id; // controller ID uint8_t enumerating_daddr; // device address of the device being enumerated uint8_t attach_debouncing_bm; // bitmask for roothub port attach debouncing tuh_bus_info_t dev0_bus; // bus info for dev0 in enumeration usbh_ctrl_xfer_info_t ctrl_xfer_info; // control transfer } usbh_data_t; static usbh_data_t _usbh_data = { .controller_id = TUSB_INDEX_INVALID_8, }; typedef struct { TUH_EPBUF_TYPE_DEF(tusb_control_request_t, request); TUH_EPBUF_DEF(ctrl, CFG_TUH_ENUMERATION_BUFSIZE); } usbh_epbuf_t; CFG_TUH_MEM_SECTION static usbh_epbuf_t _usbh_epbuf; //--------------------------------------------------------------------+ // Class Driver //--------------------------------------------------------------------+ #if CFG_TUSB_DEBUG >= CFG_TUH_LOG_LEVEL #define DRIVER_NAME(_name) _name #else #define DRIVER_NAME(_name) NULL #endif static usbh_class_driver_t const usbh_class_drivers[] = { #if CFG_TUH_CDC { .name = DRIVER_NAME("CDC"), .init = cdch_init, .deinit = cdch_deinit, .open = cdch_open, .set_config = cdch_set_config, .xfer_cb = cdch_xfer_cb, .close = cdch_close }, #endif #if CFG_TUH_MSC { .name = DRIVER_NAME("MSC"), .init = msch_init, .deinit = msch_deinit, .open = msch_open, .set_config = msch_set_config, .xfer_cb = msch_xfer_cb, .close = msch_close }, #endif #if CFG_TUH_HID { .name = DRIVER_NAME("HID"), .init = hidh_init, .deinit = hidh_deinit, .open = hidh_open, .set_config = hidh_set_config, .xfer_cb = hidh_xfer_cb, .close = hidh_close }, #endif #if CFG_TUH_MIDI { .name = DRIVER_NAME("MIDI"), .init = midih_init, .deinit = midih_deinit, .open = midih_open, .set_config = midih_set_config, .xfer_cb = midih_xfer_cb, .close = midih_close }, #endif #if CFG_TUH_HUB { .name = DRIVER_NAME("HUB"), .init = hub_init, .deinit = hub_deinit, .open = hub_open, .set_config = hub_set_config, .xfer_cb = hub_xfer_cb, .close = hub_close }, #endif #if CFG_TUH_VENDOR { .name = DRIVER_NAME("VENDOR"), .init = cush_init, .deinit = cush_deinit, .open = cush_open, .set_config = cush_set_config, .xfer_cb = cush_isr, .close = cush_close } #endif }; enum { BUILTIN_DRIVER_COUNT = TU_ARRAY_SIZE(usbh_class_drivers) }; // Additional class drivers implemented by application static usbh_class_driver_t const * _app_driver = NULL; static uint8_t _app_driver_count = 0; #define TOTAL_DRIVER_COUNT (_app_driver_count + BUILTIN_DRIVER_COUNT) static inline usbh_class_driver_t const *get_driver(uint8_t drv_id) { usbh_class_driver_t const *driver = NULL; if ( drv_id < _app_driver_count ) { driver = &_app_driver[drv_id]; } else if ( drv_id < TOTAL_DRIVER_COUNT && BUILTIN_DRIVER_COUNT > 0) { driver = &usbh_class_drivers[drv_id - _app_driver_count]; } return driver; } //--------------------------------------------------------------------+ // Function Inline and Prototypes //--------------------------------------------------------------------+ static bool enum_new_device(hcd_event_t* event); static void process_removed_device(uint8_t rhport, uint8_t hub_addr, uint8_t hub_port); static bool usbh_edpt_control_open(uint8_t dev_addr, uint8_t max_packet_size); static bool usbh_control_xfer_cb (uint8_t daddr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes); TU_ATTR_ALWAYS_INLINE static inline usbh_device_t* get_device(uint8_t dev_addr) { TU_VERIFY(dev_addr > 0 && dev_addr <= TOTAL_DEVICES, NULL); return &_usbh_devices[dev_addr-1]; } TU_ATTR_ALWAYS_INLINE static inline bool is_hub_addr(uint8_t daddr) { return (CFG_TUH_HUB > 0) && (daddr > CFG_TUH_DEVICE_MAX); } TU_ATTR_ALWAYS_INLINE static inline bool queue_event(hcd_event_t const * event, bool in_isr) { TU_ASSERT(osal_queue_send(_usbh_q, event, in_isr)); tuh_event_hook_cb(event->rhport, event->event_id, in_isr); return true; } TU_ATTR_ALWAYS_INLINE static inline void _control_set_xfer_stage(uint8_t stage) { if (_usbh_data.ctrl_xfer_info.stage != stage) { (void) osal_mutex_lock(_usbh_mutex, OSAL_TIMEOUT_WAIT_FOREVER); _usbh_data.ctrl_xfer_info.stage = stage; (void) osal_mutex_unlock(_usbh_mutex); } } TU_ATTR_ALWAYS_INLINE static inline bool usbh_setup_send(uint8_t daddr, const uint8_t setup_packet[8]) { const uint8_t rhport = usbh_get_rhport(daddr); const bool ret = hcd_setup_send(rhport, daddr, setup_packet); if (!ret) { _control_set_xfer_stage(CONTROL_STAGE_IDLE); } return ret; } TU_ATTR_ALWAYS_INLINE static inline void usbh_device_close(uint8_t rhport, uint8_t daddr) { hcd_device_close(rhport, daddr); // abort any ongoing control transfer if (daddr == _usbh_data.ctrl_xfer_info.daddr) { _control_set_xfer_stage(CONTROL_STAGE_IDLE); } // invalidate if enumerating if (daddr == _usbh_data.enumerating_daddr) { _usbh_data.enumerating_daddr = TUSB_INDEX_INVALID_8; } } //--------------------------------------------------------------------+ // Device API //--------------------------------------------------------------------+ bool tuh_mounted(uint8_t dev_addr) { usbh_device_t *dev = get_device(dev_addr); TU_VERIFY(dev); return dev->configured; } bool tuh_connected(uint8_t daddr) { if (daddr == 0) { return _usbh_data.enumerating_daddr == 0; } else { const usbh_device_t* dev = get_device(daddr); return dev && dev->connected; } } bool tuh_vid_pid_get(uint8_t dev_addr, uint16_t *vid, uint16_t *pid) { *vid = *pid = 0; usbh_device_t const *dev = get_device(dev_addr); TU_VERIFY(dev && dev->addressed && dev->idVendor != 0); *vid = dev->idVendor; *pid = dev->idProduct; return true; } bool tuh_descriptor_get_device_local(uint8_t daddr, tusb_desc_device_t* desc_device) { usbh_device_t *dev = get_device(daddr); TU_VERIFY(dev && desc_device); desc_device->bLength = sizeof(tusb_desc_device_t); desc_device->bDescriptorType = TUSB_DESC_DEVICE; desc_device->bcdUSB = dev->bcdUSB; desc_device->bDeviceClass = dev->bDeviceClass; desc_device->bDeviceSubClass = dev->bDeviceSubClass; desc_device->bDeviceProtocol = dev->bDeviceProtocol; desc_device->bMaxPacketSize0 = dev->bMaxPacketSize0; desc_device->idVendor = dev->idVendor; desc_device->idProduct = dev->idProduct; desc_device->bcdDevice = dev->bcdDevice; desc_device->iManufacturer = dev->iManufacturer; desc_device->iProduct = dev->iProduct; desc_device->iSerialNumber = dev->iSerialNumber; desc_device->bNumConfigurations = dev->bNumConfigurations; return true; } tusb_speed_t tuh_speed_get(uint8_t daddr) { tuh_bus_info_t bus_info; tuh_bus_info_get(daddr, &bus_info); return bus_info.speed; } bool tuh_rhport_is_active(uint8_t rhport) { return _usbh_data.controller_id == rhport; } bool tuh_rhport_reset_bus(uint8_t rhport, bool active) { TU_VERIFY(tuh_rhport_is_active(rhport)); if (active) { hcd_port_reset(rhport); } else { hcd_port_reset_end(rhport); } return true; } //--------------------------------------------------------------------+ // PUBLIC API (Parameter Verification is required) //--------------------------------------------------------------------+ bool tuh_configure(uint8_t rhport, uint32_t cfg_id, const void *cfg_param) { return hcd_configure(rhport, cfg_id, cfg_param); } static void clear_device(usbh_device_t* dev) { tu_memclr(dev, sizeof(usbh_device_t)); memset(dev->itf2drv, TUSB_INDEX_INVALID_8, sizeof(dev->itf2drv)); // invalid mapping memset(dev->ep2drv , TUSB_INDEX_INVALID_8, sizeof(dev->ep2drv )); // invalid mapping } bool tuh_inited(void) { return _usbh_data.controller_id != TUSB_INDEX_INVALID_8; } bool tuh_rhport_init(uint8_t rhport, const tusb_rhport_init_t* rh_init) { if (tuh_rhport_is_active(rhport)) { return true; // skip if already initialized } TU_LOG_USBH("USBH init on controller %u, speed = %s\r\n", rhport, rh_init->speed == TUSB_SPEED_HIGH ? "High" : "Full"); // Init host stack if not already if (!tuh_inited()) { TU_LOG_INT_USBH(sizeof(usbh_data_t)); TU_LOG_INT_USBH(sizeof(usbh_device_t)); TU_LOG_INT_USBH(sizeof(hcd_event_t)); TU_LOG_INT_USBH(sizeof(tuh_xfer_t)); TU_LOG_INT_USBH(sizeof(tu_fifo_t)); TU_LOG_INT_USBH(sizeof(tu_edpt_stream_t)); osal_spin_init(&_usbh_spin); // Event queue _usbh_q = osal_queue_create(&_usbh_qdef); TU_ASSERT(_usbh_q != NULL); #if OSAL_MUTEX_REQUIRED // Init mutex _usbh_mutex = osal_mutex_create(&_usbh_mutexdef); TU_ASSERT(_usbh_mutex); #endif // Get application driver if available if (usbh_app_driver_get_cb) { _app_driver = usbh_app_driver_get_cb(&_app_driver_count); } // Device tu_memclr(_usbh_devices, sizeof(_usbh_devices)); tu_memclr(&_usbh_data, sizeof(_usbh_data)); _usbh_data.controller_id = TUSB_INDEX_INVALID_8; _usbh_data.enumerating_daddr = TUSB_INDEX_INVALID_8; for (uint8_t i = 0; i < TOTAL_DEVICES; i++) { clear_device(&_usbh_devices[i]); } // Class drivers for (uint8_t drv_id = 0; drv_id < TOTAL_DRIVER_COUNT; drv_id++) { usbh_class_driver_t const* driver = get_driver(drv_id); if (driver) { TU_LOG_USBH("%s init\r\n", driver->name); driver->init(); } } } // Init host controller _usbh_data.controller_id = rhport; TU_ASSERT(hcd_init(rhport, rh_init)); hcd_int_enable(rhport); return true; } bool tuh_deinit(uint8_t rhport) { if (!tuh_rhport_is_active(rhport)) { return true; } // deinit host controller hcd_int_disable(rhport); hcd_deinit(rhport); _usbh_data.controller_id = TUSB_INDEX_INVALID_8; // "unplug" all devices on this rhport (hub_addr = 0, hub_port = 0) process_removed_device(rhport, 0, 0); // deinit host stack if no controller is active if (!tuh_inited()) { // Class drivers for (uint8_t drv_id = 0; drv_id < TOTAL_DRIVER_COUNT; drv_id++) { usbh_class_driver_t const* driver = get_driver(drv_id); if (driver && driver->deinit) { TU_LOG_USBH("%s deinit\r\n", driver->name); driver->deinit(); } } osal_queue_delete(_usbh_q); _usbh_q = NULL; #if OSAL_MUTEX_REQUIRED // TODO make sure there is no task waiting on this mutex osal_mutex_delete(_usbh_mutex); _usbh_mutex = NULL; #endif } return true; } bool tuh_task_event_ready(void) { if (!tuh_inited()) { return false; // Skip if stack is not initialized } return !osal_queue_empty(_usbh_q); } /* USB Host Driver task * This top level thread manages all host controller event and delegates events to class-specific drivers. * This should be called periodically within the mainloop or rtos thread. * @code int main(void) { application_init(); tusb_init(0, TUSB_ROLE_HOST); while(1) { // the mainloop application_code(); tuh_task(); // tinyusb host task } } @endcode */ void tuh_task_ext(uint32_t timeout_ms, bool in_isr) { (void) in_isr; // not implemented yet // Skip if stack is not initialized if (!tuh_inited()) { return; } // Loop until there is no more events in the queue while (1) { hcd_event_t event; if (!osal_queue_receive(_usbh_q, &event, timeout_ms)) { return; } switch (event.event_id) { case HCD_EVENT_DEVICE_ATTACH: // due to the shared control buffer, we must fully complete enumerating one device first. // TODO better to have an separated queue for newly attached devices if (_usbh_data.enumerating_daddr == TUSB_INDEX_INVALID_8) { // New device attached and we are ready TU_LOG_USBH("[%u:] USBH Device Attach\r\n", event.rhport); _usbh_data.enumerating_daddr = 0; // enumerate new device with address 0 enum_new_device(&event); } else { // currently enumerating another device TU_LOG_USBH("[%u:] USBH Defer Attach until current enumeration complete\r\n", event.rhport); const bool is_empty = osal_queue_empty(_usbh_q); queue_event(&event, in_isr); if (is_empty) { return; // Exit if this is the only event in the queue, otherwise we loop forever } } break; case HCD_EVENT_DEVICE_REMOVE: TU_LOG_USBH("[%u:%u:%u] USBH DEVICE REMOVED\r\n", event.rhport, event.connection.hub_addr, event.connection.hub_port); if (_usbh_data.enumerating_daddr == 0 && event.rhport == _usbh_data.dev0_bus.rhport && event.connection.hub_addr == _usbh_data.dev0_bus.hub_addr && event.connection.hub_port == _usbh_data.dev0_bus.hub_port) { // dev0 is unplugged while enumerating (not yet assigned an address) usbh_device_close(_usbh_data.dev0_bus.rhport, 0); } else { process_removed_device(event.rhport, event.connection.hub_addr, event.connection.hub_port); } break; case HCD_EVENT_XFER_COMPLETE: { uint8_t const ep_addr = event.xfer_complete.ep_addr; uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const ep_dir = (uint8_t) tu_edpt_dir(ep_addr); TU_LOG_USBH("[:%u] on EP %02X with %u bytes: %s\r\n", event.dev_addr, ep_addr, (unsigned int) event.xfer_complete.len, tu_str_xfer_result[event.xfer_complete.result]); if (event.dev_addr == 0) { // device 0 only has control endpoint TU_ASSERT(epnum == 0,); usbh_control_xfer_cb(event.dev_addr, ep_addr, (xfer_result_t) event.xfer_complete.result, event.xfer_complete.len); } else { usbh_device_t* dev = get_device(event.dev_addr); TU_VERIFY(dev && dev->connected,); dev->ep_status[epnum][ep_dir].busy = 0; dev->ep_status[epnum][ep_dir].claimed = 0; if (0 == epnum) { usbh_control_xfer_cb(event.dev_addr, ep_addr, (xfer_result_t) event.xfer_complete.result, event.xfer_complete.len); } else { // Prefer application callback over built-in one if available. This occurs when tuh_edpt_xfer() is used // with enabled driver e.g HID endpoint #if CFG_TUH_API_EDPT_XFER tuh_xfer_cb_t const complete_cb = dev->ep_callback[epnum][ep_dir].complete_cb; if ( complete_cb ) { // re-construct xfer info tuh_xfer_t xfer = { .daddr = event.dev_addr, .ep_addr = ep_addr, .result = event.xfer_complete.result, .actual_len = event.xfer_complete.len, .buflen = 0, // not available .buffer = NULL, // not available .complete_cb = complete_cb, .user_data = dev->ep_callback[epnum][ep_dir].user_data }; complete_cb(&xfer); }else #endif { uint8_t drv_id = dev->ep2drv[epnum][ep_dir]; usbh_class_driver_t const* driver = get_driver(drv_id); if (driver) { TU_LOG_USBH(" %s xfer callback\r\n", driver->name); driver->xfer_cb(event.dev_addr, ep_addr, (xfer_result_t) event.xfer_complete.result, event.xfer_complete.len); } else { // no driver/callback responsible for this transfer TU_ASSERT(false,); } } } } break; } case USBH_EVENT_FUNC_CALL: if (event.func_call.func) event.func_call.func(event.func_call.param); break; default: break; } #if CFG_TUSB_OS != OPT_OS_NONE && CFG_TUSB_OS != OPT_OS_PICO // return if there is no more events, for application to run other background if (osal_queue_empty(_usbh_q)) return; #endif } } //--------------------------------------------------------------------+ // Control transfer //--------------------------------------------------------------------+ static void _control_blocking_complete_cb(tuh_xfer_t* xfer) { // update result *((xfer_result_t*) xfer->user_data) = xfer->result; } // TODO timeout_ms is not supported yet bool tuh_control_xfer (tuh_xfer_t* xfer) { TU_VERIFY(xfer->ep_addr == 0 && xfer->setup); // EP0 with setup packet const uint8_t daddr = xfer->daddr; TU_VERIFY(tuh_connected(daddr)); usbh_ctrl_xfer_info_t* ctrl_info = &_usbh_data.ctrl_xfer_info; TU_VERIFY(ctrl_info->stage == CONTROL_STAGE_IDLE); // pre-check to help reducing mutex lock (void) osal_mutex_lock(_usbh_mutex, OSAL_TIMEOUT_WAIT_FOREVER); bool const is_idle = (ctrl_info->stage == CONTROL_STAGE_IDLE); if (is_idle) { ctrl_info->stage = CONTROL_STAGE_SETUP; ctrl_info->daddr = daddr; ctrl_info->actual_len = 0; ctrl_info->failed_count = 0; ctrl_info->buffer = xfer->buffer; ctrl_info->complete_cb = xfer->complete_cb; ctrl_info->user_data = xfer->user_data; _usbh_epbuf.request = (*xfer->setup); } (void) osal_mutex_unlock(_usbh_mutex); TU_VERIFY(is_idle); TU_LOG_USBH("[%u:%u] %s: ", usbh_get_rhport(daddr), daddr, (xfer->setup->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD && xfer->setup->bRequest <= TUSB_REQ_SYNCH_FRAME) ? tu_str_std_request[xfer->setup->bRequest] : "Class Request"); TU_LOG_BUF_USBH(xfer->setup, 8); if (xfer->complete_cb) { TU_ASSERT(usbh_setup_send(daddr, (uint8_t const *) &_usbh_epbuf.request)); }else { // blocking if complete callback is not provided // change callback to internal blocking, and result as user argument volatile xfer_result_t result = XFER_RESULT_INVALID; // use user_data to point to xfer_result_t ctrl_info->user_data = (uintptr_t) &result; ctrl_info->complete_cb = _control_blocking_complete_cb; TU_ASSERT(usbh_setup_send(daddr, (uint8_t const *) &_usbh_epbuf.request)); while (result == XFER_RESULT_INVALID) { // Note: this can be called within an callback ie. part of tuh_task() // therefore event with RTOS tuh_task() still need to be invoked if (tuh_task_event_ready()) { tuh_task(); } // TODO probably some timeout to prevent hanged } // update transfer result, user_data is expected to point to xfer_result_t if (xfer->user_data != 0) { *((xfer_result_t*) xfer->user_data) = result; } xfer->result = result; xfer->actual_len = ctrl_info->actual_len; } return true; } static void _control_xfer_complete(uint8_t daddr, xfer_result_t result) { TU_LOG_USBH("\r\n"); usbh_ctrl_xfer_info_t* ctrl_info = &_usbh_data.ctrl_xfer_info; // duplicate xfer since user can execute control transfer within callback tusb_control_request_t const request = _usbh_epbuf.request; tuh_xfer_t xfer_temp = { .daddr = daddr, .ep_addr = 0, .result = result, .setup = &request, .actual_len = (uint32_t) ctrl_info->actual_len, .buffer = ctrl_info->buffer, .complete_cb = ctrl_info->complete_cb, .user_data = ctrl_info->user_data }; _control_set_xfer_stage(CONTROL_STAGE_IDLE); if (xfer_temp.complete_cb) { xfer_temp.complete_cb(&xfer_temp); } } static bool usbh_control_xfer_cb (uint8_t daddr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) { (void) ep_addr; const uint8_t rhport = usbh_get_rhport(daddr); tusb_control_request_t const * request = &_usbh_epbuf.request; usbh_ctrl_xfer_info_t* ctrl_info = &_usbh_data.ctrl_xfer_info; switch (result) { case XFER_RESULT_STALLED: TU_LOG_USBH("[%u:%u] Control STALLED, xferred_bytes = %" PRIu32 "\r\n", rhport, daddr, xferred_bytes); TU_LOG_BUF_USBH(request, 8); _control_xfer_complete(daddr, result); break; case XFER_RESULT_FAILED: if (tuh_connected(daddr) && ctrl_info->failed_count < USBH_CONTROL_RETRY_MAX) { TU_LOG_USBH("[%u:%u] Control FAILED %u/%u, retrying\r\n", rhport, daddr, ctrl_info->failed_count+1, USBH_CONTROL_RETRY_MAX); (void) osal_mutex_lock(_usbh_mutex, OSAL_TIMEOUT_WAIT_FOREVER); ctrl_info->stage = CONTROL_STAGE_SETUP; ctrl_info->failed_count++; ctrl_info->actual_len = 0; // reset actual_len (void) osal_mutex_unlock(_usbh_mutex); TU_ASSERT(usbh_setup_send(daddr, (uint8_t const *) request)); } else { TU_LOG_USBH("[%u:%u] Control FAILED, xferred_bytes = %" PRIu32 "\r\n", rhport, daddr, xferred_bytes); TU_LOG_BUF_USBH(request, 8); _control_xfer_complete(daddr, result); } break; case XFER_RESULT_SUCCESS: switch(ctrl_info->stage) { case CONTROL_STAGE_SETUP: if (request->wLength) { // DATA stage: initial data toggle is always 1 _control_set_xfer_stage(CONTROL_STAGE_DATA); const uint8_t ep_data = tu_edpt_addr(0, request->bmRequestType_bit.direction); TU_ASSERT(hcd_edpt_xfer(rhport, daddr, ep_data, ctrl_info->buffer, request->wLength)); return true; } TU_ATTR_FALLTHROUGH; case CONTROL_STAGE_DATA: if (request->wLength) { TU_LOG_USBH("[%u:%u] Control data:\r\n", rhport, daddr); TU_LOG_MEM_USBH(ctrl_info->buffer, xferred_bytes, 2); } ctrl_info->actual_len = (uint16_t) xferred_bytes; // ACK stage: toggle is always 1 _control_set_xfer_stage(CONTROL_STAGE_ACK); const uint8_t ep_status = tu_edpt_addr(0, 1 - request->bmRequestType_bit.direction); TU_ASSERT(hcd_edpt_xfer(rhport, daddr, ep_status, NULL, 0)); break; case CONTROL_STAGE_ACK: { // Abort all pending transfers if SET_CONFIGURATION request // NOTE: should we force closing all non-control endpoints in the future? if (request->bRequest == TUSB_REQ_SET_CONFIGURATION && request->bmRequestType == 0x00) { for(uint8_t epnum=1; epnumdaddr; uint8_t const ep_addr = xfer->ep_addr; TU_VERIFY(daddr && ep_addr); TU_VERIFY(usbh_edpt_claim(daddr, ep_addr)); if (!usbh_edpt_xfer_with_callback(daddr, ep_addr, xfer->buffer, (uint16_t) xfer->buflen, xfer->complete_cb, xfer->user_data)) { usbh_edpt_release(daddr, ep_addr); return false; } return true; } bool tuh_edpt_abort_xfer(uint8_t daddr, uint8_t ep_addr) { TU_LOG_USBH("[%u] Aborted transfer on EP %02X\r\n", daddr, ep_addr); const uint8_t epnum = tu_edpt_number(ep_addr); const uint8_t dir = tu_edpt_dir(ep_addr); if (epnum == 0) { // Also include dev0 for aborting enumerating const uint8_t rhport = usbh_get_rhport(daddr); // control transfer: only 1 control at a time, check if we are aborting the current one const usbh_ctrl_xfer_info_t* ctrl_info = &_usbh_data.ctrl_xfer_info; TU_VERIFY(daddr == ctrl_info->daddr && ctrl_info->stage != CONTROL_STAGE_IDLE); hcd_edpt_abort_xfer(rhport, daddr, ep_addr); _control_set_xfer_stage(CONTROL_STAGE_IDLE); // reset control transfer state to idle } else { usbh_device_t* dev = get_device(daddr); TU_VERIFY(dev); TU_VERIFY(dev->ep_status[epnum][dir].busy); // non-control skip if not busy // abort then mark as ready and release endpoint hcd_edpt_abort_xfer(dev->bus_info.rhport, daddr, ep_addr); dev->ep_status[epnum][dir].busy = false; tu_edpt_release(&dev->ep_status[epnum][dir], _usbh_mutex); } return true; } //--------------------------------------------------------------------+ // USBH API For Class Driver //--------------------------------------------------------------------+ uint8_t usbh_get_rhport(uint8_t daddr) { tuh_bus_info_t bus_info; tuh_bus_info_get(daddr, &bus_info); return bus_info.rhport; } uint8_t *usbh_get_enum_buf(void) { return _usbh_epbuf.ctrl; } void usbh_int_set(bool enabled) { // TODO all host controller if multiple are used since they shared the same event queue if (enabled) { hcd_int_enable(_usbh_data.controller_id); } else { hcd_int_disable(_usbh_data.controller_id); } } void usbh_spin_lock(bool in_isr) { osal_spin_lock(&_usbh_spin, in_isr); } void usbh_spin_unlock(bool in_isr) { osal_spin_unlock(&_usbh_spin, in_isr); } void usbh_defer_func(osal_task_func_t func, void *param, bool in_isr) { hcd_event_t event = { 0 }; event.event_id = USBH_EVENT_FUNC_CALL; event.func_call.func = func; event.func_call.param = param; queue_event(&event, in_isr); } //--------------------------------------------------------------------+ // Endpoint API //--------------------------------------------------------------------+ // Claim an endpoint for transfer bool usbh_edpt_claim(uint8_t dev_addr, uint8_t ep_addr) { // Note: addr0 only use tuh_control_xfer usbh_device_t* dev = get_device(dev_addr); TU_ASSERT(dev && dev->connected); uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); TU_VERIFY(tu_edpt_claim(&dev->ep_status[epnum][dir], _usbh_mutex)); TU_LOG_USBH("[%u] Claimed EP 0x%02x\r\n", dev_addr, ep_addr); return true; } // Release an claimed endpoint due to failed transfer attempt bool usbh_edpt_release(uint8_t dev_addr, uint8_t ep_addr) { // Note: addr0 only use tuh_control_xfer usbh_device_t* dev = get_device(dev_addr); TU_VERIFY(dev && dev->connected); uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); TU_VERIFY(tu_edpt_release(&dev->ep_status[epnum][dir], _usbh_mutex)); TU_LOG_USBH("[%u] Released EP 0x%02x\r\n", dev_addr, ep_addr); return true; } // Submit an transfer bool usbh_edpt_xfer_with_callback(uint8_t dev_addr, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { (void) complete_cb; (void) user_data; usbh_device_t* dev = get_device(dev_addr); TU_VERIFY(dev); uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); tu_edpt_state_t* ep_state = &dev->ep_status[epnum][dir]; TU_LOG_USBH(" Queue EP %02X with %u bytes ... \r\n", ep_addr, total_bytes); // Attempt to transfer on a busy endpoint, sound like an race condition ! TU_ASSERT(ep_state->busy == 0); // Set busy first since the actual transfer can be complete before hcd_edpt_xfer() // could return and USBH task can preempt and clear the busy ep_state->busy = 1; #if CFG_TUH_API_EDPT_XFER dev->ep_callback[epnum][dir].complete_cb = complete_cb; dev->ep_callback[epnum][dir].user_data = user_data; #endif if (hcd_edpt_xfer(dev->bus_info.rhport, dev_addr, ep_addr, buffer, total_bytes)) { TU_LOG_USBH("OK\r\n"); return true; } else { // HCD error, mark endpoint as ready to allow next transfer ep_state->busy = 0; ep_state->claimed = 0; TU_LOG1("Failed\r\n"); // TU_BREAKPOINT(); return false; } } static bool usbh_edpt_control_open(uint8_t dev_addr, uint8_t max_packet_size) { TU_LOG_USBH("[%u:%u] Open EP0 with Size = %u\r\n", usbh_get_rhport(dev_addr), dev_addr, max_packet_size); tusb_desc_endpoint_t ep0_desc = { .bLength = sizeof(tusb_desc_endpoint_t), .bDescriptorType = TUSB_DESC_ENDPOINT, .bEndpointAddress = 0, .bmAttributes = { .xfer = TUSB_XFER_CONTROL }, .wMaxPacketSize = max_packet_size, .bInterval = 0 }; return hcd_edpt_open(usbh_get_rhport(dev_addr), dev_addr, &ep0_desc); } bool tuh_edpt_open(uint8_t dev_addr, tusb_desc_endpoint_t const* desc_ep) { TU_ASSERT(tu_edpt_validate(desc_ep, tuh_speed_get(dev_addr), true)); return hcd_edpt_open(usbh_get_rhport(dev_addr), dev_addr, desc_ep); } bool tuh_edpt_close(uint8_t daddr, uint8_t ep_addr) { TU_VERIFY(0 != tu_edpt_number(ep_addr)); // cannot close EP0 tuh_edpt_abort_xfer(daddr, ep_addr); // abort any pending transfer return hcd_edpt_close(usbh_get_rhport(daddr), daddr, ep_addr); } bool usbh_edpt_busy(uint8_t dev_addr, uint8_t ep_addr) { usbh_device_t* dev = get_device(dev_addr); TU_VERIFY(dev); uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); return dev->ep_status[epnum][dir].busy; } //--------------------------------------------------------------------+ // HCD Event Handler //--------------------------------------------------------------------+ bool tuh_bus_info_get(uint8_t daddr, tuh_bus_info_t* bus_info) { usbh_device_t const* dev = get_device(daddr); if (dev) { *bus_info = dev->bus_info; } else { *bus_info = _usbh_data.dev0_bus; } return true; } TU_ATTR_FAST_FUNC void hcd_event_handler(hcd_event_t const* event, bool in_isr) { switch (event->event_id) { case HCD_EVENT_DEVICE_ATTACH: case HCD_EVENT_DEVICE_REMOVE: // Attach debouncing on roothub: skip attach/remove while debouncing delay if (event->connection.hub_addr == 0) { if (tu_bit_test(_usbh_data.attach_debouncing_bm, event->rhport)) { return; } if (event->event_id == HCD_EVENT_DEVICE_ATTACH) { // No debouncing, set flag if attach event _usbh_data.attach_debouncing_bm |= TU_BIT(event->rhport); } } break; default: break; } queue_event(event, in_isr); } //--------------------------------------------------------------------+ // Descriptors Async //--------------------------------------------------------------------+ // generic helper to get a descriptor // if blocking, user_data is pointed to xfer_result TU_ATTR_ALWAYS_INLINE static inline bool _get_descriptor(uint8_t daddr, uint8_t type, uint8_t index, uint16_t language_id, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { tusb_control_request_t const request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_IN }, .bRequest = TUSB_REQ_GET_DESCRIPTOR, .wValue = tu_htole16( TU_U16(type, index) ), .wIndex = tu_htole16(language_id), .wLength = tu_htole16(len) }; tuh_xfer_t xfer = { .daddr = daddr, .ep_addr = 0, .setup = &request, .buffer = buffer, .complete_cb = complete_cb, .user_data = user_data }; return tuh_control_xfer(&xfer); } bool tuh_descriptor_get(uint8_t daddr, uint8_t type, uint8_t index, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { return _get_descriptor(daddr, type, index, 0x0000, buffer, len, complete_cb, user_data); } bool tuh_descriptor_get_device(uint8_t daddr, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { len = tu_min16(len, sizeof(tusb_desc_device_t)); return tuh_descriptor_get(daddr, TUSB_DESC_DEVICE, 0, buffer, len, complete_cb, user_data); } bool tuh_descriptor_get_configuration(uint8_t daddr, uint8_t index, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { return tuh_descriptor_get(daddr, TUSB_DESC_CONFIGURATION, index, buffer, len, complete_cb, user_data); } //------------- String Descriptor -------------// bool tuh_descriptor_get_string(uint8_t daddr, uint8_t index, uint16_t language_id, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { return _get_descriptor(daddr, TUSB_DESC_STRING, index, language_id, buffer, len, complete_cb, user_data); } // Get manufacturer string descriptor bool tuh_descriptor_get_manufacturer_string(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { usbh_device_t const* dev = get_device(daddr); TU_VERIFY(dev && dev->iManufacturer); return tuh_descriptor_get_string(daddr, dev->iManufacturer, language_id, buffer, len, complete_cb, user_data); } // Get product string descriptor bool tuh_descriptor_get_product_string(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { usbh_device_t const* dev = get_device(daddr); TU_VERIFY(dev && dev->iProduct); return tuh_descriptor_get_string(daddr, dev->iProduct, language_id, buffer, len, complete_cb, user_data); } // Get serial string descriptor bool tuh_descriptor_get_serial_string(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { usbh_device_t const* dev = get_device(daddr); TU_VERIFY(dev && dev->iSerialNumber); return tuh_descriptor_get_string(daddr, dev->iSerialNumber, language_id, buffer, len, complete_cb, user_data); } // Get HID report descriptor // if blocking, user_data is pointed to xfer_result bool tuh_descriptor_get_hid_report(uint8_t daddr, uint8_t itf_num, uint8_t desc_type, uint8_t index, void* buffer, uint16_t len, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { TU_LOG_USBH("HID Get Report Descriptor\r\n"); tusb_control_request_t const request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_INTERFACE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_IN }, .bRequest = TUSB_REQ_GET_DESCRIPTOR, .wValue = tu_htole16(TU_U16(desc_type, index)), .wIndex = tu_htole16((uint16_t) itf_num), .wLength = len }; tuh_xfer_t xfer = { .daddr = daddr, .ep_addr = 0, .setup = &request, .buffer = buffer, .complete_cb = complete_cb, .user_data = user_data }; return tuh_control_xfer(&xfer); } bool tuh_address_set(uint8_t daddr, uint8_t new_addr, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { TU_LOG_USBH("Set Address = %d\r\n", new_addr); const tusb_control_request_t request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_OUT }, .bRequest = TUSB_REQ_SET_ADDRESS, .wValue = tu_htole16(new_addr), .wIndex = 0, .wLength = 0 }; tuh_xfer_t xfer = { .daddr = daddr, .ep_addr = 0, .setup = &request, .buffer = NULL, .complete_cb = complete_cb, .user_data = user_data }; TU_ASSERT(tuh_control_xfer(&xfer)); return true; } bool tuh_configuration_set(uint8_t daddr, uint8_t config_num, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { TU_LOG_USBH("Set Configuration = %d\r\n", config_num); tusb_control_request_t const request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_OUT }, .bRequest = TUSB_REQ_SET_CONFIGURATION, .wValue = tu_htole16(config_num), .wIndex = 0, .wLength = 0 }; tuh_xfer_t xfer = { .daddr = daddr, .ep_addr = 0, .setup = &request, .buffer = NULL, .complete_cb = complete_cb, .user_data = user_data }; return tuh_control_xfer(&xfer); } bool tuh_interface_set(uint8_t daddr, uint8_t itf_num, uint8_t itf_alt, tuh_xfer_cb_t complete_cb, uintptr_t user_data) { TU_LOG_USBH("Set Interface %u Alternate %u\r\n", itf_num, itf_alt); tusb_control_request_t const request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_INTERFACE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_OUT }, .bRequest = TUSB_REQ_SET_INTERFACE, .wValue = tu_htole16(itf_alt), .wIndex = tu_htole16(itf_num), .wLength = 0 }; tuh_xfer_t xfer = { .daddr = daddr, .ep_addr = 0, .setup = &request, .buffer = NULL, .complete_cb = complete_cb, .user_data = user_data }; return tuh_control_xfer(&xfer); } //--------------------------------------------------------------------+ // Detaching //--------------------------------------------------------------------+ // a device unplugged from rhport:hub_addr:hub_port static void process_removed_device(uint8_t rhport, uint8_t hub_addr, uint8_t hub_port) { // Find the all devices (star-network) under port that is unplugged #if CFG_TUH_HUB uint8_t removing_hubs[CFG_TUH_HUB] = { 0 }; #endif do { for (uint8_t dev_id = 0; dev_id < TOTAL_DEVICES; dev_id++) { usbh_device_t* dev = &_usbh_devices[dev_id]; uint8_t const daddr = dev_id + 1; // hub_addr = 0 means roothub, hub_port = 0 means all devices of downstream hub if (dev->bus_info.rhport == rhport && dev->connected && (hub_addr == 0 || dev->bus_info.hub_addr == hub_addr) && (hub_port == 0 || dev->bus_info.hub_port == hub_port)) { TU_LOG_USBH("[%u:%u:%u] unplugged address = %u\r\n", rhport, hub_addr, hub_port, daddr); #if CFG_TUH_HUB if (is_hub_addr(daddr)) { TU_LOG_USBH(" is a HUB device %u\r\n", daddr); removing_hubs[dev_id - CFG_TUH_DEVICE_MAX] = 1; } else #endif { // Invoke callback before closing driver (maybe call it later ?) if (tuh_umount_cb) { tuh_umount_cb(daddr); } } // Close class driver for (uint8_t drv_id = 0; drv_id < TOTAL_DRIVER_COUNT; drv_id++) { usbh_class_driver_t const* driver = get_driver(drv_id); if (driver) { driver->close(daddr); } } usbh_device_close(rhport, daddr); clear_device(dev); } } #if CFG_TUH_HUB // if a hub is removed, we need to remove all of its downstream devices if (tu_mem_is_zero(removing_hubs, CFG_TUH_HUB)) { break; } // find a marked hub to process for (uint8_t h_id = 0; h_id < CFG_TUH_HUB; h_id++) { if (removing_hubs[h_id]) { removing_hubs[h_id] = 0; // update hub_addr and hub_port for next loop hub_addr = h_id + 1 + CFG_TUH_DEVICE_MAX; hub_port = 0; break; } } #else break; #endif } while(1); } //--------------------------------------------------------------------+ // Enumeration Process // is a lengthy process with a series of control transfer to configure newly attached device. // NOTE: due to the shared control buffer, we must complete enumerating // one device before enumerating another one. //--------------------------------------------------------------------+ enum { // USB 2.0 specs 7.1.7 for timing ENUM_DEBOUNCING_DELAY_MS = 150, // T(ATTDB) minimum 100 ms for stable connection ENUM_RESET_ROOT_DELAY_MS = 50, // T(DRSTr) minimum 50 ms for reset from root port ENUM_RESET_HUB_DELAY_MS = 20, // T(DRST) 10-20 ms for hub reset ENUM_RESET_RECOVERY_DELAY_MS = 10, // T(RSTRCY) minimum 10 ms for reset recovery ENUM_SET_ADDRESS_RECOVERY_DELAY_MS = 2, // USB 2.0 Spec 9.2.6.3 min is 2 ms }; enum { ENUM_IDLE, ENUM_HUB_RERSET, ENUM_HUB_GET_STATUS_AFTER_RESET, ENUM_HUB_CLEAR_RESET, ENUM_HUB_CLEAR_RESET_COMPLETE, ENUM_ADDR0_DEVICE_DESC, ENUM_SET_ADDR, ENUM_GET_DEVICE_DESC, ENUM_GET_STRING_LANGUAGE_ID_LEN, ENUM_GET_STRING_LANGUAGE_ID, ENUM_GET_STRING_MANUFACTURER_LEN, ENUM_GET_STRING_MANUFACTURER, ENUM_GET_STRING_PRODUCT_LEN, ENUM_GET_STRING_PRODUCT, ENUM_GET_STRING_SERIAL_LEN, ENUM_GET_STRING_SERIAL, ENUM_GET_9BYTE_CONFIG_DESC, ENUM_GET_FULL_CONFIG_DESC, ENUM_SET_CONFIG, ENUM_CONFIG_DRIVER }; static uint8_t enum_get_new_address(bool is_hub); static bool enum_parse_configuration_desc (uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg); static void enum_full_complete(void); static void process_enumeration(tuh_xfer_t* xfer); // start a new enumeration process static bool enum_new_device(hcd_event_t* event) { tuh_bus_info_t* dev0_bus = &_usbh_data.dev0_bus; dev0_bus->rhport = event->rhport; dev0_bus->hub_addr = event->connection.hub_addr; dev0_bus->hub_port = event->connection.hub_port; // wait until device connection is stable TODO non blocking tusb_time_delay_ms_api(ENUM_DEBOUNCING_DELAY_MS); // clear roothub debouncing delay if (dev0_bus->hub_addr == 0) { _usbh_data.attach_debouncing_bm &= (uint8_t) ~TU_BIT(dev0_bus->rhport); } if (dev0_bus->hub_addr == 0) { // connected directly to roothub // USB bus not active and frame number is not available yet. // need to depend on tusb_time_millis_api() TODO non blocking if (!hcd_port_connect_status(dev0_bus->rhport)) { TU_LOG_USBH("Device unplugged while debouncing\r\n"); enum_full_complete(); return true; } // reset device hcd_port_reset(dev0_bus->rhport); tusb_time_delay_ms_api(ENUM_RESET_ROOT_DELAY_MS); hcd_port_reset_end(dev0_bus->rhport); if (!hcd_port_connect_status(dev0_bus->rhport)) { // device unplugged while delaying enum_full_complete(); return true; } dev0_bus->speed = hcd_port_speed_get(dev0_bus->rhport); TU_LOG_USBH("%s Speed\r\n", tu_str_speed[dev0_bus->speed]); // fake transfer to kick-off the enumeration process tuh_xfer_t xfer; xfer.daddr = 0; xfer.result = XFER_RESULT_SUCCESS; xfer.user_data = ENUM_ADDR0_DEVICE_DESC; process_enumeration(&xfer); } #if CFG_TUH_HUB else { // connected via hub TU_VERIFY(dev0_bus->hub_port != 0); TU_ASSERT(hub_port_get_status(dev0_bus->hub_addr, dev0_bus->hub_port, NULL, process_enumeration, ENUM_HUB_RERSET)); } #endif // hub return true; } // process device enumeration static void process_enumeration(tuh_xfer_t* xfer) { // Retry a few times while enumerating since device can be unstable when starting up static uint8_t failed_count = 0; if (XFER_RESULT_FAILED == xfer->result) { enum { ATTEMPT_COUNT_MAX = 3, ATTEMPT_DELAY_MS = 100 }; // retry if not reaching max attempt failed_count++; bool retry = (_usbh_data.enumerating_daddr != TUSB_INDEX_INVALID_8) && (failed_count < ATTEMPT_COUNT_MAX); if (retry) { tusb_time_delay_ms_api(ATTEMPT_DELAY_MS); // delay a bit TU_LOG_USBH("Enumeration attempt %u/%u\r\n", failed_count+1, ATTEMPT_COUNT_MAX); retry = tuh_control_xfer(xfer); } if (!retry) { enum_full_complete(); // complete as failed } return; } failed_count = 0; uint8_t const daddr = xfer->daddr; uintptr_t const state = xfer->user_data; usbh_device_t* dev = get_device(daddr); tuh_bus_info_t* dev0_bus = &_usbh_data.dev0_bus; if (daddr > 0) { TU_ASSERT(dev,); } uint16_t langid = 0x0409; // default is English switch (state) { #if CFG_TUH_HUB case ENUM_HUB_RERSET: { hub_port_status_response_t port_status; hub_port_get_status_local(dev0_bus->hub_addr, dev0_bus->hub_port, &port_status); if (!port_status.status.connection) { TU_LOG_USBH("Device unplugged from hub while debouncing\r\n"); enum_full_complete(); return; } TU_ASSERT(hub_port_reset(dev0_bus->hub_addr, dev0_bus->hub_port, process_enumeration, ENUM_HUB_GET_STATUS_AFTER_RESET),); break; } case ENUM_HUB_GET_STATUS_AFTER_RESET: { tusb_time_delay_ms_api(ENUM_RESET_HUB_DELAY_MS); // wait for reset to take effect // get status to check for reset change TU_ASSERT(hub_port_get_status(dev0_bus->hub_addr, dev0_bus->hub_port, NULL, process_enumeration, ENUM_HUB_CLEAR_RESET),); break; } case ENUM_HUB_CLEAR_RESET: { hub_port_status_response_t port_status; hub_port_get_status_local(dev0_bus->hub_addr, dev0_bus->hub_port, &port_status); if (port_status.change.reset) { // Acknowledge Port Reset Change TU_ASSERT(hub_port_clear_reset_change(dev0_bus->hub_addr, dev0_bus->hub_port, process_enumeration, ENUM_HUB_CLEAR_RESET_COMPLETE),); } else { // maybe retry if reset change not set but we need timeout to prevent infinite loop // TU_ASSERT(hub_port_get_status(dev0_bus->hub_addr, dev0_bus->hub_port, NULL, process_enumeration, ENUM_HUB_CLEAR_RESET_COMPLETE),); } break; } case ENUM_HUB_CLEAR_RESET_COMPLETE: { hub_port_status_response_t port_status; hub_port_get_status_local(dev0_bus->hub_addr, dev0_bus->hub_port, &port_status); if (!port_status.status.connection) { TU_LOG_USBH("Device unplugged from hub (not addressed yet)\r\n"); enum_full_complete(); return; } dev0_bus->speed = (port_status.status.high_speed) ? TUSB_SPEED_HIGH : (port_status.status.low_speed) ? TUSB_SPEED_LOW : TUSB_SPEED_FULL; TU_ATTR_FALLTHROUGH; } #endif case ENUM_ADDR0_DEVICE_DESC: { tusb_time_delay_ms_api(ENUM_RESET_RECOVERY_DELAY_MS); // reset recovery // TODO probably doesn't need to open/close each enumeration uint8_t const addr0 = 0; TU_ASSERT(usbh_edpt_control_open(addr0, 8),); // Get first 8 bytes of device descriptor for control endpoint size TU_LOG_USBH("Get 8 byte of Device Descriptor\r\n"); TU_ASSERT(tuh_descriptor_get_device(addr0, _usbh_epbuf.ctrl, 8, process_enumeration, ENUM_SET_ADDR),); break; } case ENUM_SET_ADDR: { // Due to physical debouncing, some devices can cause multiple attaches (actually reset) without detach event // Force remove currently mounted with the same bus info (rhport, hub addr, hub port) if exists process_removed_device(dev0_bus->rhport, dev0_bus->hub_addr, dev0_bus->hub_port); const tusb_desc_device_t *desc_device = (const tusb_desc_device_t *) _usbh_epbuf.ctrl; const uint8_t new_addr = enum_get_new_address(desc_device->bDeviceClass == TUSB_CLASS_HUB); TU_ASSERT(new_addr != 0,); usbh_device_t* new_dev = get_device(new_addr); new_dev->bus_info = *dev0_bus; new_dev->connected = 1; new_dev->bMaxPacketSize0 = desc_device->bMaxPacketSize0; TU_ASSERT(tuh_address_set(0, new_addr, process_enumeration, ENUM_GET_DEVICE_DESC),); break; } case ENUM_GET_DEVICE_DESC: { tusb_time_delay_ms_api(ENUM_SET_ADDRESS_RECOVERY_DELAY_MS); // set address recovery const uint8_t new_addr = (uint8_t) tu_le16toh(xfer->setup->wValue); usbh_device_t* new_dev = get_device(new_addr); TU_ASSERT(new_dev,); new_dev->addressed = 1; _usbh_data.enumerating_daddr = new_addr; usbh_device_close(dev0_bus->rhport, 0); // close dev0 TU_ASSERT(usbh_edpt_control_open(new_addr, new_dev->bMaxPacketSize0),); // open new control endpoint TU_LOG_USBH("Get Device Descriptor\r\n"); TU_ASSERT(tuh_descriptor_get_device(new_addr, _usbh_epbuf.ctrl, sizeof(tusb_desc_device_t), process_enumeration, ENUM_GET_STRING_LANGUAGE_ID_LEN),); break; } // For string descriptor (langid, manufacturer, product, serila): always get the first 2 bytes // to determine the length first. otherwise, some device may have buffer overflow. case ENUM_GET_STRING_LANGUAGE_ID_LEN: { // save the received device descriptor tusb_desc_device_t const *desc_device = (tusb_desc_device_t const *) _usbh_epbuf.ctrl; dev->bcdUSB = desc_device->bcdUSB; dev->bDeviceClass = desc_device->bDeviceClass; dev->bDeviceSubClass = desc_device->bDeviceSubClass; dev->bDeviceProtocol = desc_device->bDeviceProtocol; dev->bMaxPacketSize0 = desc_device->bMaxPacketSize0; dev->idVendor = desc_device->idVendor; dev->idProduct = desc_device->idProduct; dev->bcdDevice = desc_device->bcdDevice; dev->iManufacturer = desc_device->iManufacturer; dev->iProduct = desc_device->iProduct; dev->iSerialNumber = desc_device->iSerialNumber; dev->bNumConfigurations = desc_device->bNumConfigurations; tuh_enum_descriptor_device_cb(daddr, desc_device); // callback tuh_descriptor_get_string_langid(daddr, _usbh_epbuf.ctrl, 2, process_enumeration, ENUM_GET_STRING_LANGUAGE_ID); break; } case ENUM_GET_STRING_LANGUAGE_ID: { const uint8_t str_len = xfer->buffer[0]; tuh_descriptor_get_string_langid(daddr, _usbh_epbuf.ctrl, str_len, process_enumeration, ENUM_GET_STRING_MANUFACTURER_LEN); break; } case ENUM_GET_STRING_MANUFACTURER_LEN: { const tusb_desc_string_t* desc_langid = (const tusb_desc_string_t *) _usbh_epbuf.ctrl; if (desc_langid->bLength >= 4) { langid = tu_le16toh(desc_langid->utf16le[0]); // previous request is langid } if (dev->iManufacturer != 0) { tuh_descriptor_get_string(daddr, dev->iManufacturer, langid, _usbh_epbuf.ctrl, 2, process_enumeration, ENUM_GET_STRING_MANUFACTURER); break; }else { TU_ATTR_FALLTHROUGH; } } case ENUM_GET_STRING_MANUFACTURER: { if (dev->iManufacturer != 0) { langid = tu_le16toh(xfer->setup->wIndex); // langid from length's request const uint8_t str_len = xfer->buffer[0]; tuh_descriptor_get_string(daddr, dev->iManufacturer, langid, _usbh_epbuf.ctrl, str_len, process_enumeration, ENUM_GET_STRING_PRODUCT_LEN); break; } else { TU_ATTR_FALLTHROUGH; } } case ENUM_GET_STRING_PRODUCT_LEN: if (dev->iProduct != 0) { if (state == ENUM_GET_STRING_PRODUCT_LEN) { langid = tu_le16toh(xfer->setup->wIndex); // get langid from previous setup packet if not fall through } tuh_descriptor_get_string(daddr, dev->iProduct, langid, _usbh_epbuf.ctrl, 2, process_enumeration, ENUM_GET_STRING_PRODUCT); break; } else { TU_ATTR_FALLTHROUGH; } case ENUM_GET_STRING_PRODUCT: { if (dev->iProduct != 0) { langid = tu_le16toh(xfer->setup->wIndex); // langid from length's request const uint8_t str_len = xfer->buffer[0]; tuh_descriptor_get_string(daddr, dev->iProduct, langid, _usbh_epbuf.ctrl, str_len, process_enumeration, ENUM_GET_STRING_SERIAL_LEN); break; } else { TU_ATTR_FALLTHROUGH; } } case ENUM_GET_STRING_SERIAL_LEN: if (dev->iSerialNumber != 0) { if (state == ENUM_GET_STRING_SERIAL_LEN) { langid = tu_le16toh(xfer->setup->wIndex); // get langid from previous setup packet if not fall through } tuh_descriptor_get_string(daddr, dev->iSerialNumber, langid, _usbh_epbuf.ctrl, 2, process_enumeration, ENUM_GET_STRING_SERIAL); break; } else { TU_ATTR_FALLTHROUGH; } case ENUM_GET_STRING_SERIAL: { if (dev->iSerialNumber != 0) { langid = tu_le16toh(xfer->setup->wIndex); // langid from length's request const uint8_t str_len = xfer->buffer[0]; tuh_descriptor_get_string(daddr, dev->iSerialNumber, langid, _usbh_epbuf.ctrl, str_len, process_enumeration, ENUM_GET_9BYTE_CONFIG_DESC); break; } else { TU_ATTR_FALLTHROUGH; } } case ENUM_GET_9BYTE_CONFIG_DESC: { // Get 9-byte for total length uint8_t const config_idx = 0; TU_LOG_USBH("Get Configuration[%u] Descriptor (9 bytes)\r\n", config_idx); TU_ASSERT(tuh_descriptor_get_configuration(daddr, config_idx, _usbh_epbuf.ctrl, 9, process_enumeration, ENUM_GET_FULL_CONFIG_DESC),); break; } case ENUM_GET_FULL_CONFIG_DESC: { uint8_t const* desc_config = _usbh_epbuf.ctrl; // Use offsetof to avoid pointer to the odd/misaligned address uint16_t const total_len = tu_le16toh(tu_unaligned_read16(desc_config + offsetof(tusb_desc_configuration_t, wTotalLength))); // TODO not enough buffer to hold configuration descriptor TU_ASSERT(total_len <= CFG_TUH_ENUMERATION_BUFSIZE,); // Get full configuration descriptor uint8_t const config_idx = (uint8_t) tu_le16toh(xfer->setup->wIndex); TU_LOG_USBH("Get Configuration[%u] Descriptor\r\n", config_idx); TU_ASSERT(tuh_descriptor_get_configuration(daddr, config_idx, _usbh_epbuf.ctrl, total_len, process_enumeration, ENUM_SET_CONFIG),); break; } case ENUM_SET_CONFIG: { uint8_t config_idx = (uint8_t) tu_le16toh(xfer->setup->wIndex); if (tuh_enum_descriptor_configuration_cb(daddr, config_idx, (const tusb_desc_configuration_t*) _usbh_epbuf.ctrl)) { TU_ASSERT(tuh_configuration_set(daddr, config_idx+1, process_enumeration, ENUM_CONFIG_DRIVER),); } else { config_idx++; TU_ASSERT(config_idx < dev->bNumConfigurations,); TU_LOG_USBH("Get Configuration[%u] Descriptor (9 bytes)\r\n", config_idx); TU_ASSERT(tuh_descriptor_get_configuration(daddr, config_idx, _usbh_epbuf.ctrl, 9, process_enumeration, ENUM_GET_FULL_CONFIG_DESC),); } break; } case ENUM_CONFIG_DRIVER: { TU_LOG_USBH("Device configured\r\n"); dev->configured = 1; // Parse configuration & set up drivers // driver_open() must not make any usb transfer TU_ASSERT(enum_parse_configuration_desc(daddr, (tusb_desc_configuration_t*) _usbh_epbuf.ctrl),); // Start the Set Configuration process for interfaces (itf = TUSB_INDEX_INVALID_8) // Since driver can perform control transfer within its set_config, this is done asynchronously. // The process continue with next interface when class driver complete its sequence with usbh_driver_set_config_complete() // TODO use separated API instead of using TUSB_INDEX_INVALID_8 usbh_driver_set_config_complete(daddr, TUSB_INDEX_INVALID_8); break; } default: enum_full_complete(); // stop enumeration if unknown state break; } } static uint8_t enum_get_new_address(bool is_hub) { uint8_t start; uint8_t end; if ( is_hub ) { start = CFG_TUH_DEVICE_MAX; end = start + CFG_TUH_HUB; }else { start = 0; end = start + CFG_TUH_DEVICE_MAX; } for (uint8_t idx = start; idx < end; idx++) { if (!_usbh_devices[idx].connected) { return (idx + 1); } } return 0; // invalid address } static bool enum_parse_configuration_desc(uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg) { usbh_device_t* dev = get_device(dev_addr); uint16_t const total_len = tu_le16toh(desc_cfg->wTotalLength); uint8_t const* desc_end = ((uint8_t const*) desc_cfg) + total_len; uint8_t const* p_desc = tu_desc_next(desc_cfg); TU_LOG_USBH("Parsing Configuration descriptor (wTotalLength = %u)\r\n", total_len); // parse each interfaces while( p_desc < desc_end ) { if ( 0 == tu_desc_len(p_desc) ) { // A zero length descriptor indicates that the device is off spec (e.g. wrong wTotalLength). // Parsed interfaces should still be usable TU_LOG_USBH("Encountered a zero-length descriptor after %" PRIu32 " bytes\r\n", (uint32_t)p_desc - (uint32_t)desc_cfg); break; } uint8_t assoc_itf_count = 1; // Class will always starts with Interface Association (if any) and then Interface descriptor if ( TUSB_DESC_INTERFACE_ASSOCIATION == tu_desc_type(p_desc) ) { tusb_desc_interface_assoc_t const * desc_iad = (tusb_desc_interface_assoc_t const *) p_desc; assoc_itf_count = desc_iad->bInterfaceCount; p_desc = tu_desc_next(p_desc); // next to Interface // IAD's first interface number and class should match with opened interface //TU_ASSERT(desc_iad->bFirstInterface == desc_itf->bInterfaceNumber && // desc_iad->bFunctionClass == desc_itf->bInterfaceClass); } TU_ASSERT( TUSB_DESC_INTERFACE == tu_desc_type(p_desc) ); tusb_desc_interface_t const* desc_itf = (tusb_desc_interface_t const*) p_desc; #if CFG_TUH_MIDI // MIDI has 2 interfaces (Audio Control v1 + MIDIStreaming) but does not have IAD // manually force associated count = 2 if (1 == assoc_itf_count && TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass && AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass && AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_itf->bInterfaceProtocol) { assoc_itf_count = 2; } #endif #if CFG_TUH_CDC // Some legacy CDC device does not use IAD but rather use device class as hint to combine 2 interfaces // manually force associated count = 2 if (1 == assoc_itf_count && TUSB_CLASS_CDC == desc_itf->bInterfaceClass && CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL == desc_itf->bInterfaceSubClass) { assoc_itf_count = 2; } #endif uint16_t const drv_len = tu_desc_get_interface_total_len(desc_itf, assoc_itf_count, (uint16_t) (desc_end-p_desc)); TU_ASSERT(drv_len >= sizeof(tusb_desc_interface_t)); // Find driver for this interface for (uint8_t drv_id = 0; drv_id < TOTAL_DRIVER_COUNT; drv_id++) { usbh_class_driver_t const * driver = get_driver(drv_id); if (driver && driver->open(dev->bus_info.rhport, dev_addr, desc_itf, drv_len) ) { // open successfully TU_LOG_USBH(" %s opened\r\n", driver->name); // bind (associated) interfaces to found driver for(uint8_t i=0; ibInterfaceNumber+i; // Interface number must not be used already TU_ASSERT( TUSB_INDEX_INVALID_8 == dev->itf2drv[itf_num] ); dev->itf2drv[itf_num] = drv_id; } // bind all endpoints to found driver tu_edpt_bind_driver(dev->ep2drv, desc_itf, drv_len, drv_id); break; // exit driver find loop } if (drv_id == TOTAL_DRIVER_COUNT - 1) { TU_LOG_USBH("[%u:%u] Interface %u: class = %u subclass = %u protocol = %u is not supported\r\n", dev->bus_info.rhport, dev_addr, desc_itf->bInterfaceNumber, desc_itf->bInterfaceClass, desc_itf->bInterfaceSubClass, desc_itf->bInterfaceProtocol); } } // next Interface or IAD descriptor p_desc += drv_len; } return true; } void usbh_driver_set_config_complete(uint8_t dev_addr, uint8_t itf_num) { usbh_device_t* dev = get_device(dev_addr); for(itf_num++; itf_num < CFG_TUH_INTERFACE_MAX; itf_num++) { // continue with next valid interface // IAD binding interface such as CDCs should return itf_num + 1 when complete // with usbh_driver_set_config_complete() uint8_t const drv_id = dev->itf2drv[itf_num]; usbh_class_driver_t const * driver = get_driver(drv_id); if (driver) { TU_LOG_USBH("%s set config: itf = %u\r\n", driver->name, itf_num); driver->set_config(dev_addr, itf_num); break; } } // all interface are configured if (itf_num == CFG_TUH_INTERFACE_MAX) { enum_full_complete(); if (is_hub_addr(dev_addr)) { TU_LOG_USBH("HUB address = %u is mounted\r\n", dev_addr); }else { // Invoke callback if available if (tuh_mount_cb) { tuh_mount_cb(dev_addr); } } } } static void enum_full_complete(void) { // mark enumeration as complete _usbh_data.enumerating_daddr = TUSB_INDEX_INVALID_8; #if CFG_TUH_HUB if (_usbh_data.dev0_bus.hub_addr != 0) { hub_edpt_status_xfer(_usbh_data.dev0_bus.hub_addr); // get next hub status } #endif } #endif