/* * The MIT License (MIT) * * Copyright (c) 2021, Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ /* metadata: name: STM32 N657X0-Q Nucleo url: https://www.st.com/en/evaluation-tools/nucleo-n657x0-q.html */ #ifndef BOARD_H_ #define BOARD_H_ #ifdef __cplusplus extern "C" { #endif #include "stm32n657xx.h" #include "stm32n6xx_ll_exti.h" #include "stm32n6xx_ll_system.h" #include "tcpp0203.h" #define UART_DEV USART1 #define UART_CLK_EN __HAL_RCC_USART1_CLK_ENABLE #define BOARD_TUD_RHPORT 1 // VBUS Sense detection #define OTG_FS_VBUS_SENSE 1 #define OTG_HS_VBUS_SENSE 1 #define PINID_LED 0 #define PINID_BUTTON 1 #define PINID_UART_TX 2 #define PINID_UART_RX 3 #define PINID_TCPP0203_EN 4 static board_pindef_t board_pindef[] = { {// LED .port = GPIOG, .pin_init = {.Pin = GPIO_PIN_10, .Mode = GPIO_MODE_OUTPUT_PP, .Pull = GPIO_PULLDOWN, .Speed = GPIO_SPEED_FREQ_HIGH, .Alternate = 0}, .active_state = 1}, {// Button .port = GPIOC, .pin_init = {.Pin = GPIO_PIN_13, .Mode = GPIO_MODE_INPUT, .Pull = GPIO_PULLDOWN, .Speed = GPIO_SPEED_FREQ_HIGH, .Alternate = 0}, .active_state = 1}, {// UART TX .port = GPIOE, .pin_init = {.Pin = GPIO_PIN_5, .Mode = GPIO_MODE_AF_PP, .Pull = GPIO_NOPULL, .Speed = GPIO_SPEED_FREQ_LOW, .Alternate = GPIO_AF7_USART1}, .active_state = 0}, {// UART RX .port = GPIOE, .pin_init = {.Pin = GPIO_PIN_6, .Mode = GPIO_MODE_AF_PP, .Pull = GPIO_NOPULL, .Speed = GPIO_SPEED_FREQ_LOW, .Alternate = GPIO_AF7_USART1}, .active_state = 0}, {// VBUS input pin used for TCPP0203 EN .port = GPIOA, .pin_init = {.Pin = GPIO_PIN_7, .Mode = GPIO_MODE_OUTPUT_PP, .Pull = GPIO_PULLDOWN, .Speed = GPIO_SPEED_FREQ_HIGH, .Alternate = 0}, .active_state = 0}, { // I2C SCL for TCPP0203 .port = GPIOB, .pin_init = {.Pin = GPIO_PIN_10, .Mode = GPIO_MODE_AF_OD, .Pull = GPIO_NOPULL, .Speed = GPIO_SPEED_FREQ_LOW, .Alternate = GPIO_AF4_I2C2}, }, { // I2C SDA for TCPP0203 .port = GPIOB, .pin_init = {.Pin = GPIO_PIN_11, .Mode = GPIO_MODE_AF_OD, .Pull = GPIO_NOPULL, .Speed = GPIO_SPEED_FREQ_LOW, .Alternate = GPIO_AF4_I2C2}, }, { // INT for TCPP0203 .port = GPIOD, .pin_init = {.Pin = GPIO_PIN_2, .Mode = GPIO_MODE_IT_FALLING, .Pull = GPIO_PULLUP, .Speed = GPIO_SPEED_FREQ_HIGH, .Alternate = 0}, }, }; //--------------------------------------------------------------------+ // RCC Clock //--------------------------------------------------------------------+ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /* Configure the power domain */ if (HAL_PWREx_ConfigSupply(PWR_EXTERNAL_SOURCE_SUPPLY) != HAL_OK) { Error_Handler(); } /* Get current CPU/System buses clocks configuration */ /* and if necessary switch to intermediate HSI clock */ /* to ensure target clock can be set */ HAL_RCC_GetClockConfig(&RCC_ClkInitStruct); if ((RCC_ClkInitStruct.CPUCLKSource == RCC_CPUCLKSOURCE_IC1) || (RCC_ClkInitStruct.SYSCLKSource == RCC_SYSCLKSOURCE_IC2_IC6_IC11)) { RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_CPUCLK | RCC_CLOCKTYPE_SYSCLK); RCC_ClkInitStruct.CPUCLKSource = RCC_CPUCLKSOURCE_HSI; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct) != HAL_OK) { Error_Handler(); } } /* HSE selected as source (stable clock on Level 0 samples */ /* PLL1 output = ((HSE/PLLM)*PLLN)/PLLP1/PLLP2 */ /* = ((48000000/3)*75)/1/1 */ /* = (16000000*75)/1/1 */ /* = 1200000000 (1200 MHz) */ /* PLL2 off */ /* PLL3 off */ /* PLL4 off */ /* Enable HSE && HSI */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSIState = RCC_HSI_OFF; RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.HSEState = RCC_HSE_ON; /* 48 MHz */ RCC_OscInitStruct.PLL1.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL1.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL1.PLLM = 3; RCC_OscInitStruct.PLL1.PLLN = 75; /* PLL1 VCO = 48/3 * 75 = 1200MHz */ RCC_OscInitStruct.PLL1.PLLP1 = 1; /* PLL output = PLL VCO frequency / (PLLP1 * PLLP2) */ RCC_OscInitStruct.PLL1.PLLP2 = 1; /* PLL output = 1200 MHz */ RCC_OscInitStruct.PLL1.PLLFractional = 0; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { /* Initialization error */ Error_Handler(); } /* Select PLL1 outputs as CPU and System bus clock source */ /* CPUCLK = ic1_ck = PLL1 output/ic1_divider = 600 MHz */ /* SYSCLK = ic2_ck = PLL1 output/ic2_divider = 400 MHz */ /* Configure the HCLK clock divider */ /* HCLK = PLL1 SYSCLK/HCLK divider = 200 MHz */ /* PCLKx = HCLK / PCLKx divider = 200 MHz */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_CPUCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2 | RCC_CLOCKTYPE_PCLK4 | RCC_CLOCKTYPE_PCLK5); RCC_ClkInitStruct.CPUCLKSource = RCC_CPUCLKSOURCE_IC1; RCC_ClkInitStruct.IC1Selection.ClockSelection = RCC_ICCLKSOURCE_PLL1; RCC_ClkInitStruct.IC1Selection.ClockDivider = 2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_IC2_IC6_IC11; RCC_ClkInitStruct.IC2Selection.ClockSelection = RCC_ICCLKSOURCE_PLL1; RCC_ClkInitStruct.IC2Selection.ClockDivider = 3; RCC_ClkInitStruct.IC6Selection.ClockSelection = RCC_ICCLKSOURCE_PLL1; RCC_ClkInitStruct.IC6Selection.ClockDivider = 3; RCC_ClkInitStruct.IC11Selection.ClockSelection = RCC_ICCLKSOURCE_PLL1; RCC_ClkInitStruct.IC11Selection.ClockDivider = 3; RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV1; RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV1; RCC_ClkInitStruct.APB5CLKDivider = RCC_APB5_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /** Initializes the peripherals clock */ RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_USBOTGHS1; PeriphClkInitStruct.UsbOtgHs1ClockSelection = RCC_USBPHY1REFCLKSOURCE_HSE_DIRECT; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { /* Initialization Error */ Error_Handler(); } /** Set USB OTG HS PHY1 Reference Clock Source */ PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_USBPHY1; PeriphClkInitStruct.UsbPhy1ClockSelection = RCC_USBPHY1REFCLKSOURCE_HSE_DIRECT; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { /* Initialization Error */ Error_Handler(); } } //--------------------------------------------------------------------+ // USB PD //--------------------------------------------------------------------+ static I2C_HandleTypeDef i2c_handle = { .Instance = I2C2, .Init = { .Timing = 0x20C0EDFF, .OwnAddress1 = 0, .AddressingMode = I2C_ADDRESSINGMODE_7BIT, .DualAddressMode = I2C_DUALADDRESS_DISABLE, .OwnAddress2 = 0, .OwnAddress2Masks = I2C_OA2_NOMASK, .GeneralCallMode = I2C_GENERALCALL_DISABLE, .NoStretchMode = I2C_NOSTRETCH_DISABLE, }}; static TCPP0203_Object_t tcpp0203_obj = {0}; int32_t board_tcpp0203_init(void) { board_pindef_t *pindef = &board_pindef[PINID_TCPP0203_EN]; HAL_GPIO_WritePin(pindef->port, pindef->pin_init.Pin, GPIO_PIN_SET); __HAL_RCC_I2C2_CLK_ENABLE(); __HAL_RCC_I2C2_FORCE_RESET(); __HAL_RCC_I2C2_RELEASE_RESET(); if (HAL_I2C_Init(&i2c_handle) != HAL_OK) { return HAL_ERROR; } NVIC_SetPriority(EXTI8_IRQn, 12); NVIC_EnableIRQ(EXTI8_IRQn); return 0; } int32_t board_tcpp0203_deinit(void) { return 0; } int32_t i2c_readreg(uint16_t DevAddr, uint16_t Reg, uint8_t *pData, uint16_t Length) { TU_ASSERT(HAL_OK == HAL_I2C_Mem_Read(&i2c_handle, DevAddr, Reg, I2C_MEMADD_SIZE_8BIT, pData, Length, 10000)); return 0; } int32_t i2c_writereg(uint16_t DevAddr, uint16_t Reg, uint8_t *pData, uint16_t Length) { TU_ASSERT(HAL_OK == HAL_I2C_Mem_Write(&i2c_handle, DevAddr, Reg, I2C_MEMADD_SIZE_8BIT, pData, Length, 10000)); return 0; } static inline void board_init2(void) { TCPP0203_IO_t io_ctx; io_ctx.Address = TCPP0203_I2C_ADDRESS_X68; io_ctx.Init = board_tcpp0203_init; io_ctx.DeInit = board_tcpp0203_deinit; io_ctx.ReadReg = i2c_readreg; io_ctx.WriteReg = i2c_writereg; TU_ASSERT(TCPP0203_RegisterBusIO(&tcpp0203_obj, &io_ctx) == TCPP0203_OK, ); TU_ASSERT(TCPP0203_Init(&tcpp0203_obj) == TCPP0203_OK, ); TU_ASSERT(TCPP0203_SetPowerMode(&tcpp0203_obj, TCPP0203_POWER_MODE_NORMAL) == TCPP0203_OK, ); } void board_vbus_set(uint8_t rhport, bool state) { (void) state; if (rhport == 1) { TU_ASSERT(TCPP0203_SetGateDriverProvider(&tcpp0203_obj, TCPP0203_GD_PROVIDER_SWITCH_CLOSED) == TCPP0203_OK, ); } } void EXTI8_IRQHandler(void) { __HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_8); if (tcpp0203_obj.IsInitialized) { TU_ASSERT(TCPP0203_SetPowerMode(&tcpp0203_obj, TCPP0203_POWER_MODE_NORMAL) == TCPP0203_OK, ); TU_ASSERT(TCPP0203_SetGateDriverProvider(&tcpp0203_obj, TCPP0203_GD_PROVIDER_SWITCH_CLOSED) == TCPP0203_OK, ); } } #ifdef __cplusplus } #endif #endif