/* * The MIT License (MIT) * * Copyright (c) 2019 Nathan Conrad * * Portions: * Copyright (c) 2019 Ha Thach (tinyusb.org) * Copyright (c) 2022 Simon Küppers (skuep) * Copyright (c) 2022 HiFiPhile * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ /********************************************** * This driver has been tested with the following MCUs: * - F070, F072, L053, F042F6 * * It also should work with minimal changes for any ST MCU with an "USB A"/"PCD"/"HCD" peripheral. This * covers: * * F04x, F072, F078, F070x6/B 1024 byte buffer * F102, F103 512 byte buffer; no internal D+ pull-up (maybe many more changes?) * F302xB/C, F303xB/C, F373 512 byte buffer; no internal D+ pull-up * F302x6/8, F302xD/E2, F303xD/E 1024 byte buffer; no internal D+ pull-up * G0 2048 byte buffer; 32-bit bus; host mode * G4 1024 byte buffer * H5 2048 byte buffer; 32-bit bus; host mode * L0x2, L0x3 1024 byte buffer * L1 512 byte buffer * L4x2, L4x3 1024 byte buffer * L5 1024 byte buffer * U0 1024 byte buffer; 32-bit bus * U535, U545 2048 byte buffer; 32-bit bus; host mode * WB35, WB55 1024 byte buffer * * To use this driver, you must: * - If you are using a device with crystal-less USB, set up the clock recovery system (CRS) * - Remap pins to be D+/D- on devices that they are shared (for example: F042Fx) * - This is different to the normal "alternate function" GPIO interface, needs to go through SYSCFG->CFGRx register * - Enable USB clock; Perhaps use __HAL_RCC_USB_CLK_ENABLE(); * - (Optionally configure GPIO HAL to tell it the USB driver is using the USB pins) * - call tusb_init(); * - periodically call tusb_task(); * * Assumptions of the driver: * - You are not using CAN (it must share the packet buffer) * - APB clock is >= 10 MHz * - On some boards, series resistors are required, but not on others. * - On some boards, D+ pull up resistor (1.5kohm) is required, but not on others. * - You don't have long-running interrupts; some USB packets must be quickly responded to. * - You have the ST CMSIS library linked into the project. HAL is not used. * * Current driver limitations (i.e., a list of features for you to add): * - STALL handled, but not tested. * - Does it work? No clue. * - All EP BTABLE buffers are created based on max packet size of first EP opened with that address. * - Packet buffer memory is copied in the interrupt. * - This is better for performance, but means interrupts are disabled for longer * - DMA may be the best choice, but it could also be pushed to the USBD task. * - No double-buffering * - No DMA * - Minimal error handling * - Perhaps error interrupts should be reported to the stack, or cause a device reset? * - Assumes a single USB peripheral; I think that no hardware has multiple so this is fine. * - Add a callback for enabling/disabling the D+ PU on devices without an internal PU. * - F3 models use three separate interrupts. I think we could only use the LP interrupt for * everything? However, the interrupts are configurable so the DisableInt and EnableInt * below functions could be adjusting the wrong interrupts (if they had been reconfigured) * - LPM is not used correctly, or at all? * * USB documentation and Reference implementations * - STM32 Reference manuals * - STM32 USB Hardware Guidelines AN4879 * * - STM32 HAL (much of this driver is based on this) * - libopencm3/lib/stm32/common/st_usbfs_core.c * - Keil USB Device http://www.keil.com/pack/doc/mw/USB/html/group__usbd.html * * - YouTube OpenTechLab 011; https://www.youtube.com/watch?v=4FOkJLp_PUw * * Advantages over HAL driver: * - Tiny (saves RAM, assumes a single USB peripheral) * * Notes: * - The buffer table is allocated as endpoints are opened. The allocation is only * cleared when the device is reset. This may be bad if the USB device needs * to be reconfigured. */ #include "tusb_option.h" #if CFG_TUD_ENABLED && defined(TUP_USBIP_FSDEV) && \ !(defined(TUP_USBIP_FSDEV_CH32) && CFG_TUD_WCH_USBIP_FSDEV == 0) #include "device/dcd.h" #if defined(TUP_USBIP_FSDEV_STM32) #include "fsdev_stm32.h" #elif defined(TUP_USBIP_FSDEV_CH32) #include "fsdev_ch32.h" #else #error "Unknown USB IP" #endif #include "fsdev_type.h" //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ // One of these for every EP IN & OUT, uses a bit of RAM.... typedef struct { uint8_t *buffer; tu_fifo_t *ff; uint16_t total_len; uint16_t queued_len; uint16_t max_packet_size; uint8_t ep_idx; // index for USB_EPnR register bool iso_in_sending; // Workaround for ISO IN EP doesn't have interrupt mask } xfer_ctl_t; // EP allocator typedef struct { uint8_t ep_num; uint8_t ep_type; bool allocated[2]; } ep_alloc_t; static xfer_ctl_t xfer_status[CFG_TUD_ENDPPOINT_MAX][2]; static ep_alloc_t ep_alloc_status[FSDEV_EP_COUNT]; static uint8_t remoteWakeCountdown; // When wake is requested //--------------------------------------------------------------------+ // Prototypes //--------------------------------------------------------------------+ // into the stack. static void handle_bus_reset(uint8_t rhport); static void dcd_transmit_packet(xfer_ctl_t *xfer, uint16_t ep_ix); static bool edpt_xfer(uint8_t rhport, uint8_t ep_num, uint8_t dir); // PMA allocation/access static uint16_t ep_buf_ptr; ///< Points to first free memory location static uint32_t dcd_pma_alloc(uint16_t len, bool dbuf); static uint8_t dcd_ep_alloc(uint8_t ep_addr, uint8_t ep_type); static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, uint16_t nbytes); static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, uint16_t nbytes); static bool dcd_write_packet_memory_ff(tu_fifo_t *ff, uint16_t dst, uint16_t wNBytes); static bool dcd_read_packet_memory_ff(tu_fifo_t *ff, uint16_t src, uint16_t wNBytes); static void edpt0_open(uint8_t rhport); TU_ATTR_ALWAYS_INLINE static inline void edpt0_prepare_setup(void) { btable_set_rx_bufsize(0, BTABLE_BUF_RX, 8); } //--------------------------------------------------------------------+ // Inline helper //--------------------------------------------------------------------+ TU_ATTR_ALWAYS_INLINE static inline xfer_ctl_t *xfer_ctl_ptr(uint8_t epnum, uint8_t dir) { return &xfer_status[epnum][dir]; } //--------------------------------------------------------------------+ // Controller API //--------------------------------------------------------------------+ void dcd_init(uint8_t rhport) { // Follow the RM mentions to use a special ordering of PDWN and FRES for (volatile uint32_t i = 0; i < 200; i++) { // should be a few us asm("NOP"); } // Perform USB peripheral reset FSDEV_REG->CNTR = USB_CNTR_FRES | USB_CNTR_PDWN; for (volatile uint32_t i = 0; i < 200; i++) { // should be a few us asm("NOP"); } FSDEV_REG->CNTR &= ~USB_CNTR_PDWN; // Wait startup time, for F042 and F070, this is <= 1 us. for (volatile uint32_t i = 0; i < 200; i++) { // should be a few us asm("NOP"); } FSDEV_REG->CNTR = 0; // Enable USB #if !defined(FSDEV_BUS_32BIT) // BTABLE register does not exist any more on 32-bit bus devices FSDEV_REG->BTABLE = FSDEV_BTABLE_BASE; #endif FSDEV_REG->ISTR = 0; // Clear pending interrupts // Reset endpoints to disabled for (uint32_t i = 0; i < FSDEV_EP_COUNT; i++) { // This doesn't clear all bits since some bits are "toggle", but does set the type to DISABLED. ep_write(i, 0u, false); } FSDEV_REG->CNTR |= USB_CNTR_RESETM | USB_CNTR_ESOFM | USB_CNTR_CTRM | USB_CNTR_SUSPM | USB_CNTR_WKUPM | USB_CNTR_PMAOVRM; handle_bus_reset(rhport); // Enable pull-up if supported dcd_connect(rhport); } void dcd_sof_enable(uint8_t rhport, bool en) { (void)rhport; if (en) { FSDEV_REG->CNTR |= USB_CNTR_SOFM; } else { FSDEV_REG->CNTR &= ~USB_CNTR_SOFM; } } // Receive Set Address request, mcu port must also include status IN response void dcd_set_address(uint8_t rhport, uint8_t dev_addr) { (void)dev_addr; // Respond with status dcd_edpt_xfer(rhport, TUSB_DIR_IN_MASK | 0x00, NULL, 0); // DCD can only set address after status for this request is complete. // do it at dcd_edpt0_status_complete() } void dcd_remote_wakeup(uint8_t rhport) { (void)rhport; FSDEV_REG->CNTR |= USB_CNTR_RESUME; remoteWakeCountdown = 4u; // required to be 1 to 15 ms, ESOF should trigger every 1ms. } static void handle_bus_reset(uint8_t rhport) { FSDEV_REG->DADDR = 0u; // disable USB Function for (uint32_t i = 0; i < FSDEV_EP_COUNT; i++) { // Clear EP allocation status ep_alloc_status[i].ep_num = 0xFF; ep_alloc_status[i].ep_type = 0xFF; ep_alloc_status[i].allocated[0] = false; ep_alloc_status[i].allocated[1] = false; } // Reset PMA allocation ep_buf_ptr = FSDEV_BTABLE_BASE + 8 * FSDEV_EP_COUNT; edpt0_open(rhport); // open control endpoint (both IN & OUT) FSDEV_REG->DADDR = USB_DADDR_EF; // Enable USB Function } // Handle CTR interrupt for the TX/IN direction static void handle_ctr_tx(uint32_t ep_id) { uint32_t ep_reg = ep_read(ep_id) | USB_EP_CTR_TX | USB_EP_CTR_RX; ep_reg &= USB_EPREG_MASK; uint8_t const ep_num = ep_reg & USB_EPADDR_FIELD; xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, TUSB_DIR_IN); if (ep_is_iso(ep_reg)) { // Ignore spurious interrupts that we don't schedule // host can send IN token while there is no data to send, since ISO does not have NAK // this will result to zero length packet --> trigger interrupt (which cannot be masked) if (!xfer->iso_in_sending) { return; } xfer->iso_in_sending = false; uint8_t buf_id = (ep_reg & USB_EP_DTOG_TX) ? 0 : 1; btable_set_count(ep_id, buf_id, 0); } if (xfer->total_len != xfer->queued_len) { dcd_transmit_packet(xfer, ep_id); } else { dcd_event_xfer_complete(0, ep_num | TUSB_DIR_IN_MASK, xfer->queued_len, XFER_RESULT_SUCCESS, true); } } static void handle_ctr_setup(uint32_t ep_id) { uint16_t rx_count = btable_get_count(ep_id, BTABLE_BUF_RX); uint16_t rx_addr = btable_get_addr(ep_id, BTABLE_BUF_RX); uint8_t setup_packet[8] TU_ATTR_ALIGNED(4); dcd_read_packet_memory(setup_packet, rx_addr, rx_count); // Clear CTR RX if another setup packet arrived before this, it will be discarded ep_write_clear_ctr(ep_id, TUSB_DIR_OUT); // Setup packet should always be 8 bytes. If not, we probably missed the packet if (rx_count == 8) { dcd_event_setup_received(0, (uint8_t*) setup_packet, true); // Hardware should reset EP0 RX/TX to NAK and both toggle to 1 } else { // Missed setup packet !!! TU_BREAKPOINT(); edpt0_prepare_setup(); } } // Handle CTR interrupt for the RX/OUT direction static void handle_ctr_rx(uint32_t ep_id) { uint32_t ep_reg = ep_read(ep_id) | USB_EP_CTR_TX | USB_EP_CTR_RX; uint8_t const ep_num = ep_reg & USB_EPADDR_FIELD; bool const is_iso = ep_is_iso(ep_reg); xfer_ctl_t* xfer = xfer_ctl_ptr(ep_num, TUSB_DIR_OUT); uint8_t buf_id; if (is_iso) { buf_id = (ep_reg & USB_EP_DTOG_RX) ? 0 : 1; // ISO are double buffered } else { buf_id = BTABLE_BUF_RX; } uint16_t const rx_count = btable_get_count(ep_id, buf_id); uint16_t pma_addr = (uint16_t) btable_get_addr(ep_id, buf_id); if (xfer->ff) { dcd_read_packet_memory_ff(xfer->ff, pma_addr, rx_count); } else { dcd_read_packet_memory(xfer->buffer + xfer->queued_len, pma_addr, rx_count); } xfer->queued_len += rx_count; if ((rx_count < xfer->max_packet_size) || (xfer->queued_len >= xfer->total_len)) { // all bytes received or short packet // For ch32v203: reset rx bufsize to mps to prevent race condition to cause PMAOVR (occurs with msc write10) btable_set_rx_bufsize(ep_id, BTABLE_BUF_RX, xfer->max_packet_size); dcd_event_xfer_complete(0, ep_num, xfer->queued_len, XFER_RESULT_SUCCESS, true); // ch32 seems to unconditionally accept ZLP on EP0 OUT, which can incorrectly use queued_len of previous // transfer. So reset total_len and queued_len to 0. xfer->total_len = xfer->queued_len = 0; } else { // Set endpoint active again for receiving more data. Note that isochronous endpoints stay active always if (!is_iso) { uint16_t const cnt = tu_min16(xfer->total_len - xfer->queued_len, xfer->max_packet_size); btable_set_rx_bufsize(ep_id, BTABLE_BUF_RX, cnt); } ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(TUSB_DIR_OUT); // will change RX Status, reserved other toggle bits ep_change_status(&ep_reg, TUSB_DIR_OUT, EP_STAT_VALID); ep_write(ep_id, ep_reg, false); } } void dcd_int_handler(uint8_t rhport) { uint32_t int_status = FSDEV_REG->ISTR; /* Put SOF flag at the beginning of ISR in case to get least amount of jitter if it is used for timing purposes */ if (int_status & USB_ISTR_SOF) { FSDEV_REG->ISTR = (fsdev_bus_t)~USB_ISTR_SOF; dcd_event_sof(0, FSDEV_REG->FNR & USB_FNR_FN, true); } if (int_status & USB_ISTR_RESET) { // USBRST is start of reset. FSDEV_REG->ISTR = (fsdev_bus_t)~USB_ISTR_RESET; handle_bus_reset(rhport); dcd_event_bus_reset(0, TUSB_SPEED_FULL, true); return; // Don't do the rest of the things here; perhaps they've been cleared? } if (int_status & USB_ISTR_WKUP) { FSDEV_REG->CNTR &= ~USB_CNTR_LPMODE; FSDEV_REG->CNTR &= ~USB_CNTR_FSUSP; FSDEV_REG->ISTR = (fsdev_bus_t)~USB_ISTR_WKUP; dcd_event_bus_signal(0, DCD_EVENT_RESUME, true); } if (int_status & USB_ISTR_SUSP) { /* Suspend is asserted for both suspend and unplug events. without Vbus monitoring, * these events cannot be differentiated, so we only trigger suspend. */ /* Force low-power mode in the macrocell */ FSDEV_REG->CNTR |= USB_CNTR_FSUSP; FSDEV_REG->CNTR |= USB_CNTR_LPMODE; /* clear of the ISTR bit must be done after setting of CNTR_FSUSP */ FSDEV_REG->ISTR = (fsdev_bus_t)~USB_ISTR_SUSP; dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true); } if (int_status & USB_ISTR_ESOF) { if (remoteWakeCountdown == 1u) { FSDEV_REG->CNTR &= ~USB_CNTR_RESUME; } if (remoteWakeCountdown > 0u) { remoteWakeCountdown--; } FSDEV_REG->ISTR = (fsdev_bus_t)~USB_ISTR_ESOF; } // loop to handle all pending CTR interrupts while (FSDEV_REG->ISTR & USB_ISTR_CTR) { // skip DIR bit, and use CTR TX/RX instead, since there is chance we have both TX/RX completed in one interrupt uint32_t const ep_id = FSDEV_REG->ISTR & USB_ISTR_EP_ID; uint32_t const ep_reg = ep_read(ep_id); if (ep_reg & USB_EP_CTR_RX) { #ifdef FSDEV_BUS_32BIT /* https://www.st.com/resource/en/errata_sheet/es0561-stm32h503cbebkbrb-device-errata-stmicroelectronics.pdf * https://www.st.com/resource/en/errata_sheet/es0587-stm32u535xx-and-stm32u545xx-device-errata-stmicroelectronics.pdf * From H503/U535 errata: Buffer description table update completes after CTR interrupt triggers * Description: * - During OUT transfers, the correct transfer interrupt (CTR) is triggered a little before the last USB SRAM accesses * have completed. If the software responds quickly to the interrupt, the full buffer contents may not be correct. * Workaround: * - Software should ensure that a small delay is included before accessing the SRAM contents. This delay * should be 800 ns in Full Speed mode and 6.4 μs in Low Speed mode * - Since H5 can run up to 250Mhz -> 1 cycle = 4ns. Per errata, we need to wait 200 cycles. Though executing code * also takes time, so we'll wait 60 cycles (count = 20). * - Since Low Speed mode is not supported/popular, we will ignore it for now. * * Note: this errata may also apply to G0, U5, H5 etc. */ volatile uint32_t cycle_count = 20; // defined as PCD_RX_PMA_CNT in stm32 hal_driver while (cycle_count > 0U) { cycle_count--; // each count take 3 cycles (1 for sub, jump, and compare) } #endif if (ep_reg & USB_EP_SETUP) { handle_ctr_setup(ep_id); // CTR will be clear after copied setup packet } else { ep_write_clear_ctr(ep_id, TUSB_DIR_OUT); handle_ctr_rx(ep_id); } } if (ep_reg & USB_EP_CTR_TX) { ep_write_clear_ctr(ep_id, TUSB_DIR_IN); handle_ctr_tx(ep_id); } } if (int_status & USB_ISTR_PMAOVR) { TU_BREAKPOINT(); FSDEV_REG->ISTR = (fsdev_bus_t)~USB_ISTR_PMAOVR; } } //--------------------------------------------------------------------+ // Endpoint API //--------------------------------------------------------------------+ // Invoked when a control transfer's status stage is complete. // May help DCD to prepare for next control transfer, this API is optional. void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const *request) { (void)rhport; if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE && request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD && request->bRequest == TUSB_REQ_SET_ADDRESS) { uint8_t const dev_addr = (uint8_t)request->wValue; FSDEV_REG->DADDR = (USB_DADDR_EF | dev_addr); } edpt0_prepare_setup(); } /*** * Allocate a section of PMA * In case of double buffering, high 16bit is the address of 2nd buffer * During failure, TU_ASSERT is used. If this happens, rework/reallocate memory manually. */ static uint32_t dcd_pma_alloc(uint16_t len, bool dbuf) { uint8_t blsize, num_block; uint16_t aligned_len = pma_align_buffer_size(len, &blsize, &num_block); (void) blsize; (void) num_block; uint32_t addr = ep_buf_ptr; ep_buf_ptr = (uint16_t)(ep_buf_ptr + aligned_len); // increment buffer pointer if (dbuf) { addr |= ((uint32_t)ep_buf_ptr) << 16; ep_buf_ptr = (uint16_t)(ep_buf_ptr + aligned_len); // increment buffer pointer } // Verify packet buffer is not overflowed TU_ASSERT(ep_buf_ptr <= FSDEV_PMA_SIZE, 0xFFFF); return addr; } /*** * Allocate hardware endpoint */ static uint8_t dcd_ep_alloc(uint8_t ep_addr, uint8_t ep_type) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); for (uint8_t i = 0; i < FSDEV_EP_COUNT; i++) { // Check if already allocated if (ep_alloc_status[i].allocated[dir] && ep_alloc_status[i].ep_type == ep_type && ep_alloc_status[i].ep_num == epnum) { return i; } // If EP of current direction is not allocated // Except for ISO endpoint, both direction should be free if (!ep_alloc_status[i].allocated[dir] && (ep_type != TUSB_XFER_ISOCHRONOUS || !ep_alloc_status[i].allocated[dir ^ 1])) { // Check if EP number is the same if (ep_alloc_status[i].ep_num == 0xFF || ep_alloc_status[i].ep_num == epnum) { // One EP pair has to be the same type if (ep_alloc_status[i].ep_type == 0xFF || ep_alloc_status[i].ep_type == ep_type) { ep_alloc_status[i].ep_num = epnum; ep_alloc_status[i].ep_type = ep_type; ep_alloc_status[i].allocated[dir] = true; return i; } } } } // Allocation failed TU_ASSERT(0); } void edpt0_open(uint8_t rhport) { (void) rhport; dcd_ep_alloc(0x0, TUSB_XFER_CONTROL); dcd_ep_alloc(0x80, TUSB_XFER_CONTROL); xfer_status[0][0].max_packet_size = CFG_TUD_ENDPOINT0_SIZE; xfer_status[0][0].ep_idx = 0; xfer_status[0][1].max_packet_size = CFG_TUD_ENDPOINT0_SIZE; xfer_status[0][1].ep_idx = 0; uint16_t pma_addr0 = dcd_pma_alloc(CFG_TUD_ENDPOINT0_SIZE, false); uint16_t pma_addr1 = dcd_pma_alloc(CFG_TUD_ENDPOINT0_SIZE, false); btable_set_addr(0, BTABLE_BUF_RX, pma_addr0); btable_set_addr(0, BTABLE_BUF_TX, pma_addr1); uint32_t ep_reg = ep_read(0) & ~USB_EPREG_MASK; // only get toggle bits ep_reg |= USB_EP_CONTROL; ep_change_status(&ep_reg, TUSB_DIR_IN, EP_STAT_NAK); ep_change_status(&ep_reg, TUSB_DIR_OUT, EP_STAT_NAK); // no need to explicitly set DTOG bits since we aren't masked DTOG bit edpt0_prepare_setup(); // prepare for setup packet ep_write(0, ep_reg, false); } bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *desc_ep) { (void)rhport; uint8_t const ep_addr = desc_ep->bEndpointAddress; uint8_t const ep_num = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); const uint16_t packet_size = tu_edpt_packet_size(desc_ep); uint8_t const ep_idx = dcd_ep_alloc(ep_addr, desc_ep->bmAttributes.xfer); TU_ASSERT(ep_idx < FSDEV_EP_COUNT); uint32_t ep_reg = ep_read(ep_idx) & ~USB_EPREG_MASK; ep_reg |= tu_edpt_number(ep_addr) | USB_EP_CTR_TX | USB_EP_CTR_RX; // Set type switch (desc_ep->bmAttributes.xfer) { case TUSB_XFER_BULK: ep_reg |= USB_EP_BULK; break; case TUSB_XFER_INTERRUPT: ep_reg |= USB_EP_INTERRUPT; break; default: // Note: ISO endpoint should use alloc / active functions TU_ASSERT(false); } /* Create a packet memory buffer area. */ uint16_t pma_addr = dcd_pma_alloc(packet_size, false); btable_set_addr(ep_idx, dir == TUSB_DIR_IN ? BTABLE_BUF_TX : BTABLE_BUF_RX, pma_addr); xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, dir); xfer->max_packet_size = packet_size; xfer->ep_idx = ep_idx; ep_change_status(&ep_reg, dir, EP_STAT_NAK); ep_change_dtog(&ep_reg, dir, 0); // reserve other direction toggle bits if (dir == TUSB_DIR_IN) { ep_reg &= ~(USB_EPRX_STAT | USB_EP_DTOG_RX); } else { ep_reg &= ~(USB_EPTX_STAT | USB_EP_DTOG_TX); } ep_write(ep_idx, ep_reg, true); return true; } void dcd_edpt_close_all(uint8_t rhport) { dcd_int_disable(rhport); for (uint32_t i = 1; i < FSDEV_EP_COUNT; i++) { // Reset endpoint ep_write(i, 0, false); // Clear EP allocation status ep_alloc_status[i].ep_num = 0xFF; ep_alloc_status[i].ep_type = 0xFF; ep_alloc_status[i].allocated[0] = false; ep_alloc_status[i].allocated[1] = false; } dcd_int_enable(rhport); // Reset PMA allocation ep_buf_ptr = FSDEV_BTABLE_BASE + 8 * CFG_TUD_ENDPPOINT_MAX + 2 * CFG_TUD_ENDPOINT0_SIZE; } bool dcd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packet_size) { (void)rhport; uint8_t const ep_num = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); uint8_t const ep_idx = dcd_ep_alloc(ep_addr, TUSB_XFER_ISOCHRONOUS); /* Create a packet memory buffer area. Enable double buffering for devices with 2048 bytes PMA, for smaller devices double buffering occupy too much space. */ uint32_t pma_addr = dcd_pma_alloc(largest_packet_size, true); #if FSDEV_PMA_SIZE > 1024u uint16_t pma_addr2 = pma_addr >> 16; #else uint16_t pma_addr2 = pma_addr; #endif btable_set_addr(ep_idx, 0, pma_addr); btable_set_addr(ep_idx, 1, pma_addr2); xfer_ctl_t* xfer = xfer_ctl_ptr(ep_num, dir); xfer->ep_idx = ep_idx; return true; } bool dcd_edpt_iso_activate(uint8_t rhport, tusb_desc_endpoint_t const *desc_ep) { (void)rhport; uint8_t const ep_addr = desc_ep->bEndpointAddress; uint8_t const ep_num = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); xfer_ctl_t* xfer = xfer_ctl_ptr(ep_num, dir); uint8_t const ep_idx = xfer->ep_idx; xfer->max_packet_size = tu_edpt_packet_size(desc_ep); uint32_t ep_reg = ep_read(ep_idx) & ~USB_EPREG_MASK; ep_reg |= tu_edpt_number(ep_addr) | USB_EP_ISOCHRONOUS | USB_EP_CTR_TX | USB_EP_CTR_RX; ep_change_status(&ep_reg, TUSB_DIR_IN, EP_STAT_DISABLED); ep_change_status(&ep_reg, TUSB_DIR_OUT, EP_STAT_DISABLED); ep_change_dtog(&ep_reg, dir, 0); ep_change_dtog(&ep_reg, 1 - dir, 1); ep_write(ep_idx, ep_reg, true); return true; } // Currently, single-buffered, and only 64 bytes at a time (max) static void dcd_transmit_packet(xfer_ctl_t *xfer, uint16_t ep_ix) { uint16_t len = tu_min16(xfer->total_len - xfer->queued_len, xfer->max_packet_size); uint32_t ep_reg = ep_read(ep_ix) | USB_EP_CTR_TX | USB_EP_CTR_RX; // reserve CTR ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(TUSB_DIR_IN); // only change TX Status, reserve other toggle bits bool const is_iso = ep_is_iso(ep_reg); uint8_t buf_id; if (is_iso) { buf_id = (ep_reg & USB_EP_DTOG_TX) ? 1 : 0; } else { buf_id = BTABLE_BUF_TX; } uint16_t addr_ptr = (uint16_t) btable_get_addr(ep_ix, buf_id); if (xfer->ff) { dcd_write_packet_memory_ff(xfer->ff, addr_ptr, len); } else { dcd_write_packet_memory(addr_ptr, &(xfer->buffer[xfer->queued_len]), len); } xfer->queued_len += len; btable_set_count(ep_ix, buf_id, len); ep_change_status(&ep_reg, TUSB_DIR_IN, EP_STAT_VALID); if (is_iso) { xfer->iso_in_sending = true; } ep_write(ep_ix, ep_reg, true); } static bool edpt_xfer(uint8_t rhport, uint8_t ep_num, uint8_t dir) { (void) rhport; xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, dir); uint8_t const ep_idx = xfer->ep_idx; if (dir == TUSB_DIR_IN) { dcd_transmit_packet(xfer, ep_idx); } else { uint32_t ep_reg = ep_read(ep_idx) | USB_EP_CTR_TX | USB_EP_CTR_RX; // reserve CTR ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(dir); uint16_t cnt = tu_min16(xfer->total_len, xfer->max_packet_size); if (ep_is_iso(ep_reg)) { btable_set_rx_bufsize(ep_idx, 0, cnt); btable_set_rx_bufsize(ep_idx, 1, cnt); } else { btable_set_rx_bufsize(ep_idx, BTABLE_BUF_RX, cnt); } ep_change_status(&ep_reg, dir, EP_STAT_VALID); ep_write(ep_idx, ep_reg, true); } return true; } bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes) { uint8_t const ep_num = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, dir); xfer->buffer = buffer; xfer->ff = NULL; xfer->total_len = total_bytes; xfer->queued_len = 0; return edpt_xfer(rhport, ep_num, dir); } bool dcd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t *ff, uint16_t total_bytes) { uint8_t const ep_num = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, dir); xfer->buffer = NULL; xfer->ff = ff; xfer->total_len = total_bytes; xfer->queued_len = 0; return edpt_xfer(rhport, ep_num, dir); } void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) { (void)rhport; uint8_t const ep_num = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, dir); uint8_t const ep_idx = xfer->ep_idx; uint32_t ep_reg = ep_read(ep_idx) | USB_EP_CTR_TX | USB_EP_CTR_RX; // reserve CTR bits ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(dir); ep_change_status(&ep_reg, dir, EP_STAT_STALL); ep_write(ep_idx, ep_reg, true); } void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) { (void)rhport; uint8_t const ep_num = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, dir); uint8_t const ep_idx = xfer->ep_idx; uint32_t ep_reg = ep_read(ep_idx) | USB_EP_CTR_TX | USB_EP_CTR_RX; // reserve CTR bits ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(dir) | EP_DTOG_MASK(dir); if (!ep_is_iso(ep_reg)) { ep_change_status(&ep_reg, dir, EP_STAT_NAK); } ep_change_dtog(&ep_reg, dir, 0); // Reset to DATA0 ep_write(ep_idx, ep_reg, true); } //--------------------------------------------------------------------+ // PMA read/write //--------------------------------------------------------------------+ // Write to packet memory area (PMA) from user memory // - Packet memory must be either strictly 16-bit or 32-bit depending on FSDEV_BUS_32BIT // - Uses unaligned for RAM (since M0 cannot access unaligned address) static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, uint16_t nbytes) { if (nbytes == 0) return true; uint32_t n_write = nbytes / FSDEV_BUS_SIZE; fsdev_pma_buf_t* pma_buf = PMA_BUF_AT(dst); const uint8_t *src8 = src; while (n_write--) { pma_buf->value = fsdevbus_unaligned_read(src8); src8 += FSDEV_BUS_SIZE; pma_buf++; } // odd bytes e.g 1 for 16-bit or 1-3 for 32-bit uint16_t odd = nbytes & (FSDEV_BUS_SIZE - 1); if (odd) { fsdev_bus_t temp = 0; for(uint16_t i = 0; i < odd; i++) { temp |= *src8++ << (i * 8); } pma_buf->value = temp; } return true; } // Read from packet memory area (PMA) to user memory. // - Packet memory must be either strictly 16-bit or 32-bit depending on FSDEV_BUS_32BIT // - Uses unaligned for RAM (since M0 cannot access unaligned address) static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, uint16_t nbytes) { if (nbytes == 0) return true; uint32_t n_read = nbytes / FSDEV_BUS_SIZE; fsdev_pma_buf_t* pma_buf = PMA_BUF_AT(src); uint8_t *dst8 = (uint8_t *)dst; while (n_read--) { fsdevbus_unaligned_write(dst8, (fsdev_bus_t ) pma_buf->value); dst8 += FSDEV_BUS_SIZE; pma_buf++; } // odd bytes e.g 1 for 16-bit or 1-3 for 32-bit uint16_t odd = nbytes & (FSDEV_BUS_SIZE - 1); if (odd) { fsdev_bus_t temp = pma_buf->value; while (odd--) { *dst8++ = (uint8_t) (temp & 0xfful); temp >>= 8; } } return true; } // Write to PMA from FIFO static bool dcd_write_packet_memory_ff(tu_fifo_t *ff, uint16_t dst, uint16_t wNBytes) { if (wNBytes == 0) return true; // Since we copy from a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies tu_fifo_buffer_info_t info; tu_fifo_get_read_info(ff, &info); uint16_t cnt_lin = tu_min16(wNBytes, info.len_lin); uint16_t cnt_wrap = tu_min16(wNBytes - cnt_lin, info.len_wrap); uint16_t const cnt_total = cnt_lin + cnt_wrap; // We want to read from the FIFO and write it into the PMA, if LIN part is ODD and has WRAPPED part, // last lin byte will be combined with wrapped part To ensure PMA is always access aligned uint16_t lin_even = cnt_lin & ~(FSDEV_BUS_SIZE - 1); uint16_t lin_odd = cnt_lin & (FSDEV_BUS_SIZE - 1); uint8_t const *src8 = (uint8_t const*) info.ptr_lin; // write even linear part dcd_write_packet_memory(dst, src8, lin_even); dst += lin_even; src8 += lin_even; if (lin_odd == 0) { src8 = (uint8_t const*) info.ptr_wrap; } else { // Combine last linear bytes + first wrapped bytes to form fsdev bus width data fsdev_bus_t temp = 0; uint16_t i; for(i = 0; i < lin_odd; i++) { temp |= *src8++ << (i * 8); } src8 = (uint8_t const*) info.ptr_wrap; for(; i < FSDEV_BUS_SIZE && cnt_wrap > 0; i++, cnt_wrap--) { temp |= *src8++ << (i * 8); } dcd_write_packet_memory(dst, &temp, FSDEV_BUS_SIZE); dst += FSDEV_BUS_SIZE; } // write the rest of the wrapped part dcd_write_packet_memory(dst, src8, cnt_wrap); tu_fifo_advance_read_pointer(ff, cnt_total); return true; } // Read from PMA to FIFO static bool dcd_read_packet_memory_ff(tu_fifo_t *ff, uint16_t src, uint16_t wNBytes) { if (wNBytes == 0) return true; // Since we copy into a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies // Check for first linear part tu_fifo_buffer_info_t info; tu_fifo_get_write_info(ff, &info); // We want to read from the FIFO uint16_t cnt_lin = tu_min16(wNBytes, info.len_lin); uint16_t cnt_wrap = tu_min16(wNBytes - cnt_lin, info.len_wrap); uint16_t cnt_total = cnt_lin + cnt_wrap; // We want to read from the FIFO and write it into the PMA, if LIN part is ODD and has WRAPPED part, // last lin byte will be combined with wrapped part To ensure PMA is always access aligned uint16_t lin_even = cnt_lin & ~(FSDEV_BUS_SIZE - 1); uint16_t lin_odd = cnt_lin & (FSDEV_BUS_SIZE - 1); uint8_t *dst8 = (uint8_t *) info.ptr_lin; // read even linear part dcd_read_packet_memory(dst8, src, lin_even); dst8 += lin_even; src += lin_even; if (lin_odd == 0) { dst8 = (uint8_t *) info.ptr_wrap; } else { // Combine last linear bytes + first wrapped bytes to form fsdev bus width data fsdev_bus_t temp; dcd_read_packet_memory(&temp, src, FSDEV_BUS_SIZE); src += FSDEV_BUS_SIZE; uint16_t i; for (i = 0; i < lin_odd; i++) { *dst8++ = (uint8_t) (temp & 0xfful); temp >>= 8; } dst8 = (uint8_t *) info.ptr_wrap; for (; i < FSDEV_BUS_SIZE && cnt_wrap > 0; i++, cnt_wrap--) { *dst8++ = (uint8_t) (temp & 0xfful); temp >>= 8; } } // read the rest of the wrapped part dcd_read_packet_memory(dst8, src, cnt_wrap); tu_fifo_advance_write_pointer(ff, cnt_total); return true; } #endif